
TensoRF: Tensorial Radiance Fields

Anpei Chen1⋆ Zexiang Xu2⋆ Andreas Geiger3 Jingyi Yu1 Hao Su4

1ShanghaiTech University 2Adobe Research
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Abstract. We present TensoRF, a novel approach to model and recon-
struct radiance fields. Unlike NeRF that purely uses MLPs, we model the
radiance field of a scene as a 4D tensor, which represents a 3D voxel grid
with per-voxel multi-channel features. Our central idea is to factorize the
4D scene tensor into multiple compact low-rank tensor components. We
demonstrate that applying traditional CANDECOMP/PARAFAC (CP)
decomposition – that factorizes tensors into rank-one components with
compact vectors – in our framework leads to improvements over vanilla
NeRF. To further boost performance, we introduce a novel vector-matrix
(VM) decomposition that relaxes the low-rank constraints for two modes
of a tensor and factorizes tensors into compact vector and matrix factors.
Beyond superior rendering quality, our models with CP and VM decom-
positions lead to a significantly lower memory footprint in comparison to
previous and concurrent works that directly optimize per-voxel features.
Experimentally, we demonstrate that TensoRF with CP decomposition
achieves fast reconstruction (< 30 min) with better rendering quality
and even a smaller model size (< 4 MB) compared to NeRF. Moreover,
TensoRF with VM decomposition further boosts rendering quality and
outperforms previous state-of-the-art methods, while reducing the recon-
struction time (< 10 min) and retaining a compact model size (< 75
MB).

1 Introduction

Modeling and reconstructing 3D scenes as representations that support high-
quality image synthesis is crucial for computer vision and graphics with various
applications in visual effects, e-commerce, virtual and augmented reality, and
robotics. Recently, NeRF [37] and its many follow-up works [70,31] have shown
success on modeling a scene as a radiance field and enabled photo-realistic
rendering of scenes with highly complex geometry and view-dependent appearance
effects. Despite the fact that (purely MLP-based) NeRF models require small
memory, they take a long time (hours or days) to train. In this work, we pursue
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Fig. 1: Left: We model a scene as a tensorial radiance field using a set of vectors
(v) and matrices (M) that describe scene appearance and geometry along their
corresponding axes. These vector/matrix factors are used to compute volume
density σ and view-dependent RGB color via vector-matrix outer products for
realistic volume rendering. Right: In comparison with previous and concurrent
methods, our TensoRF models can achieve the best rendering quality and are
the only methods that can simultaneously achieve fast reconstruction and high
compactness. (Our models are denoted with their decomposition techniques,
number of components, and training steps.)

a novel approach that is both efficient in training time and compact in memory
footprint, and at the same time achieves state-of-the-art rendering quality.

To do so, we propose TensoRF, a novel radiance field representation that is
highly compact and also fast to reconstruct, enabling efficient scene reconstruction
and modeling. Unlike coordinate-based MLPs used in NeRF, we represent radiance
fields as an explicit voxel grid of features. Note that it is unclear whether voxel
grid representation can benefit the efficiency of reconstruction: While previous
work has used feature grids [31,68,20], they require large GPU memory to store
the voxels whose size grows cubically with resolution, and some even require
pre-computing a NeRF for distillation, leading to very long reconstruction time.

Our work addresses the inefficiency of voxel grid representations in a principled
framework, leading to a family of simple yet effective methods. We leverage the
fact that a feature grid can naturally be seen as a 4D tensor, where three of its
modes correspond to the XYZ axes of the grid and the fourth mode represents the
feature channel dimension. This opens the possibility of exploiting classical tensor
decomposition techniques – which have been widely applied to high-dimensional
data analysis and compression in various fields [27] – for radiance field modeling.
We, therefore, propose to factorize the tensor of radiance fields into multiple low-
rank tensor components, leading to an accurate and compact scene representation.
Note that our central idea of tensorizing radiance fields is general and can be
potentially adopted to any tensor decomposition technique.

In this work, we first attempt the classic CANDECOMP/PARAFAC (CP)
decomposition [7]. We show that TensoRF with CP decomposition can already
achieve photo-realistic rendering and lead to a more compact model than NeRF
that is purely MLP based (see Fig. 1 and Tab. 1). However, experimentally, to
further push reconstruction quality for complex scenes, we have to use more
component factors, which undesirably increases training time.
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Therefore, we present a novel vector-matrix (VM) decomposition technique
that effectively reduces the number of components required for the same expression
capacity, leading to faster reconstruction and better rendering. In particular,
inspired by the CP and block term decomposition [13], we propose to factorize the
full tensor of a radiance field into multiple vector and matrix factors per tensor
component. Unlike the sum of outer products of pure vectors in CP decomposition,
we consider the sum of vector-matrix outer products (see Fig. 2). In essence,
we relax the ranks of two modes of each component by jointly modeling two
modes in a matrix factor. While this increases the model size compared to pure
vector-based factorization in CP, we enable each component to express more
complex tensor data of higher ranks, thus significantly reducing the required
number of components in radiance field modeling.

With CP/VM decomposition, our approach compactly encodes spatially
varying features in the voxel grid. Volume density and view-dependent color can be
decoded from the features, supporting volumetric radiance field rendering. Because
a tensor expresses discrete data, we also enable efficient trilinear interpolation
for our representation to model a continuous field. Our representation supports
various types of per-voxel features with different decoding functions, including
neural features – depending on an MLP to regress view-dependent colors from
the features – and spherical harmonics (SH) features (coefficients) – allowing
for simple color computation from the fixed SH functions and leading to a
representation without neural networks.

Our tensorial radiance fields can be effectively reconstructed from multi-view
images and enable realistic novel view synthesis. In contrast to previous works that
directly reconstruct voxels, our tensor factorization reduces space complexity from
O(n3) to O(n) (with CP) or O(n2) (with VM), significantly lowering memory
footprint. Note that, although we leverage tensor decomposition, we are not
addressing a decomposition/compression problem, but a reconstruction problem
based on gradient decent, since the feature grid/tensor is unknown. In essence,
our CP/VM decomposition offers low-rank regularization in the optimization,
leading to high rendering quality. We present extensive evaluation of our approach
with various settings, covering both CP and VM models, different numbers of
components and grid resolutions. We demonstrate that all models are able to
achieve realistic novel view synthesis results that are on par or better than
previous state-of-the-art methods (see Fig. 1 and Tab. 1). More importantly, our
approach is of high computation and memory efficiency. All TensoRF models
can reconstruct high-quality radiance fields in 30 min; our fastest model with
VM decomposition takes less than 10 min, which is significantly faster (about
100x) than NeRF and many other methods, while requiring substantially less
memory than previous and concurrent voxel-based methods. Note that, unlike
concurrent works [50,38] that require unique data structures and customized
CUDA kernels, our model’s efficiency gains are obtained using a standard PyTorch
implementation. As far as we know, our work is the first that views radiance field
modeling from a tensorial perspective and pose the problem of radiance field
reconstruction as one of low-rank tensor reconstructions.
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2 Related Work

Tensor decomposition. Tensor decomposition [27] has been studied for decades
with diverse applications in vision, graphics, machine learning, and other fields
[43,24,59,14,1,23]. In general, the most widely used decompositions are Tucker
decomposition [58] and CP decomposition [7,19], both of which can be seen as
generalizations of the matrix singular value decomposition (SVD). CP decompo-
sition can also be seen as a special Tucker decomposition whose core tensor is
diagonal. By combining CP and Tucker decomposition, block term decomposition
(BTD) has been proposed with its many variants [13] and used in many vision
and learning tasks [2,67,66]. In this work, we leverage tensor decomposition for
radiance field modeling. We directly apply CP decomposition and also introduce
a new vector-matrix decomposition, which can be seen as a special BTD.

Scene representations and radiance fields. Various scene representations,
including meshes [18,61], point clouds [47], volumes [22,48], implicit functions
[35,46], have been extensively studied in recent years. Many neural representa-
tions [10,71,53,33,4] are proposed for high-quality rendering or natural signal
representation [52,56,29]. NeRF [37] introduces radiance fields to address novel
view synthesis and achieves photo-realistic quality. This representation has been
quickly extended and applied in diverse graphics and vision applications, includ-
ing generative models [9,40], appearance acquisition [3,5], surface reconstruction
[62,42], fast rendering[49,68,20,17], appearance editing [64,32], dynamic capture
[28,44] and generative model [41,8]. While leading to realistic rendering and
a compact model, NeRF with its pure MLP-based representation has known
limitations in slow reconstruction and rendering. Recent methods [68,31,20] have
leveraged a voxel grid of features in radiance field modeling, achieving fast render-
ing. However, these grid-based methods still require long reconstruction time and
even lead to high memory costs, sacrificing the compactness of NeRF. Based on
feature grids, we present a novel tensorial scene representation, leveraging tensor
factorization techniques, leading to fast reconstruction and compact modeling.

Other methods design generalizable network modules trained across scenes
to achieve image-dependent radiance field rendering [57,69,63,12] and fast recon-
struction [11,65]. Our approach focuses on radiance field representation and only
considers per-scene optimization (like NeRF). We show that our representation
can already lead to highly efficient radiance field reconstruction without any
across-scene generalization. We leave the extensions to generalizable settings as
future work.

Concurrent work. The field of radiance field modeling is moving very fast and
many concurrent works have appeared on arXiv as preprints over the last three
months. DVGO [55] and Plenoxels [50] also optimize voxel grids of (neural or
SH) features for fast radiance field reconstruction. However, they still optimize
per-voxel features directly like previous voxel-based methods, thus requiring
large memory. Our approach instead factorizes the feature grid into compact
components and leads to significantly higher memory efficiency. Instant-NGP
[38] uses multi-resolution hashing for efficient encoding and also leads to high
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Fig. 2: Tensor factorization. Left: CP decomposition (Eqn. 1), which factorizes a
tensor as a sum of vector outer products. Right: our vector-matrix decomposition
(Eqn. 3), which factorizes a tensor as a sum of vector-matrix outer products.

compactness. This technique is orthogonal to our factorization-based technique;
potentially, each of our vector/matrix factor can be encoded with this hashing
technique and we leave such combination as future work.

3 CP and VM Decomposition

We factorize radiance fields into compact components for scene modeling. To do
so, we apply both the classic CP decomposition and a new vector-matrix (VM)
decomposition; both are illustrated in Fig. 2. We now discuss both decompositions
with an example of a 3D (3rd-order) tensor. We will introduce how to apply
tensor factorization in radiance field modeling (with a 4D tensor) in Sec. 4.

CP decomposition. Given a 3D tensor T ∈ RI×J×K , CP decomposition
factorizes it into a sum of outer products of vectors (shown in Fig. 2):

T =

R∑
r=1

v1
r ◦ v2

r ◦ v3
r (1)

where v1
r ◦ v2

r ◦ v3
r corresponds to a rank-one tensor component, and v1

r ∈ RI ,
v2
r ∈ RJ , and v3

r ∈ RK are factorized vectors of the three modes for the rth
component. Superscripts denote the modes of each factor; ◦ represents the outer
product. Hence, each tensor element Tijk is a sum of scalar products:

Tijk =
R∑

r=1

v1
r,iv

2
r,jv

3
r,k (2)

where i, j, k denote the indices of the three modes.
CP decomposition factorizes a tensor into multiple vectors, expressing multiple

compact rank-one components. CP can be directly applied in our tensorial
radiance field modeling and generate high-quality results (see Tab. 1). However,
because of too high compactness, CP decomposition can require many components
to model complex scenes, leading to high computational costs in radiance field
reconstruction. Inspired by block term decomposition (BTD), we present a new
VM decomposition, leading to more efficient radiance field reconstruction.

Vector-Matrix (VM) decomposition. Unlike CP decomposition that utilizes
pure vector factors, VM decomposition factorizes a tensor into multiple vectors
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and matrices as shown in Fig. 2 right. This is expressed by

T =

R1∑
r=1

v1
r ◦M2,3

r +

R2∑
r=1

v2
r ◦M1,3

r +

R3∑
r=1

v3
r ◦M1,2

r (3)

where M2,3
r ∈ RJ×K , M1,3

r ∈ RI×K , M1,2
r ∈ RI×J are matrix factors for two

(denoted by superscripts) of the three modes. For each component, we relax
its two mode ranks to be arbitrarily large, while restricting the third mode to
be rank-one; e.g., for component tensor v1

r ◦ M2,3
r , its mode-1 rank is 1, and

its mode-2 and mode-3 ranks can be arbitrary, depending on the rank of the
matrix M2,3

r . In general, instead of using separate vectors in CP, we combine
every two modes and represent them by matrices, allowing each mode to be
adequately parametrized with a smaller number of components. R1, R2, R3 can
be set differently and should be chosen depending on the complexity of each
mode. Our VM decomposition can be seen as a special case of general BTD.

Note that, each of our component tensors has more parameters than a
component in CP decomposition. While this leads to lower compactness, a VM
component tensor can express more complex high-dimensional data than a CP
component, thus reducing the required number of components when modeling
the same complex function. On the other hand, VM decomposition is still of
very high compactness, reducing memory complexity from O(N3) to O(N2),
compared to dense grid representations.

Tensor for scene modeling. In this work, we focus on the task of modeling and
reconstructing radiance fields. In this case, the three tensor modes correspond
to XYZ axes, and we thus directly denote the modes with XYZ to make it
intuitive. Meanwhile, in the context of 3D scene representation, we consider
R1 = R2 = R3 = R for most of scenes, reflecting the fact that a scene can
distribute and appear equally complex along its three axes. Therefore, Eqn. 3
can be re-written as

T =

R∑
r=1

vX
r ◦MY,Z

r + vY
r ◦MX,Z

r + vZ
r ◦MX,Y

r (4)

In addition, to simplify notation and the following discussion in later sections,
we also denote the three types of component tensors as AX

r = vX
r ◦ MY Z

r ,
AY

r = vY
r ◦MXZ

r , and AZ
r = vZ

r ◦MXY
r ; here the superscripts XYZ of A indicate

different types of components. With this, a tensor element Tijk is expressed as

Tijk =

R∑
r=1

∑
m

Am
r,ijk (5)

where m ∈ XY Z, AX
r,ijk = vX

r,iM
Y Z
r,jk, AY

r,ijk = vY
r,jM

XZ
r,ik, and AZ

r,ijk = vZ
r,kM

XY
r,ij .

Similarly, we can also denote a CP component as Aγ = vX
r ◦vY

r ◦vZ
r , and Eqn. 5

can also express CP decomposition by considering m = γ, where the summation
over m can be removed.
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4 Tensorial Radiance Field Representation

We now present our Tensorial Radiance Field Representation (TensoRF). For
simplicity, we focus on presenting TensoRF with our VM decomposition. CP
decomposition is simpler and its decomposition equations can be directly applied
with minimal modification (like Eqn. 5).

4.1 Feature grids and radiance field.

Our goal is to model a radiance field, which is essentially a function that maps any
3D location x and viewing direction d to its volume density σ and view-dependent
color c, supporting differentiable ray marching for volume rendering. We leverage
a regular 3D grid G with per-voxel multi-channel features to model such a function.
We split it (by feature channels) into a geometry grid Gσ and an appearance grid
Gc, separately modelling the volume density σ and view-dependent color c.

Our approach supports various types of appearance features in Gc, depending
on a pre-selected function S that coverts an appearance feature vector and a
viewing direction d to color c. For example, S can be a small MLP or spherical
harmonics (SH) functions, where Gc contains neural features and SH coefficients
respectively. We show that both MLP and SH functions work well with our model
(see Tab.1). On the other hand, we consider a single-channel grid Gσ, whose
values represent volume density directly, without requiring an extra converting
function. The continuous grid-based radiance field can be written as

σ, c = Gσ(x), S(Gc(x), d) (6)

where Gσ(x), Gc(x) represent the trilinearly interpolated features from the two
grids at location x. We model Gσ and Gc as factorized tensors.

4.2 Factorizing radiance fields

While Gσ ∈ RI×J×K is a 3D tensor, Gc ∈ RI×J×K×P is a 4D tensor. Here I, J ,
K correspond to the resolutions of the feature grid along the X, Y, Z axes, and
P is the number of appearance feature channels.

We factorize these radiance field tensors to compact components. In particular,
with the VM decomposition. the 3D geometry tensor Gσ is factorized as

Gσ =

Rσ∑
r=1

vX
σ,r ◦MY Z

σ,r + vY
σ,r ◦MXZ

σ,r + vZ
σ,r ◦MXY

σ,r =

Rσ∑
r=1

∑
m∈XY Z

Am
σ,r (7)

The appearance tensor Gc has an additional mode corresponding to the feature
channel dimension. Note that, compared to the XYZ modes, this mode is often
of lower dimension, leading to a lower rank. Therefore, we do not combine this
mode with other modes in matrix factors and instead only use vectors, denoted
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Fig. 3: TensoRF (VM) reconstruction and rendering. We model radiance fields as
tensors using a set of vectors (v) and matrices (M), which describe the scene along
their corresponding (XYZ) axes and are used for computing volume density σ and
view-dependent color c in differentiable ray marching. For each shading location
x = (x, y, z), we use linearly/bilinearly sampled values from the vector/matrix
factors to efficiently compute the corresponding trilinearly interpolated values
(A(x)) of the tensor components. The density component values ( Aσ(x)) are
summed to get the volume density (σ) directly. The appearance values (Ac(x)) are
concatenated into a vector (⊕[Am

c (x)]m) that is then multiplied by an appearance
matrix B and sent to the decoding function S for RGB color (c) regression.

by br, for this mode in the factorization. Specifically, Gc is factorized as

Gc =

Rc∑
r=1

vX
c,r ◦MY Z

c,r ◦ b3r−2 + vY
c,r ◦MXZ

c,r ◦ b3r−1 + vZ
c,r ◦MXY

c,r ◦ b3r

=

Rc∑
r=1

AX
c,r ◦ b3r−2 +AY

c,r ◦ b3r−1 +AZ
c,r ◦ b3r (8)

Note that, we have 3Rc vectors br to match the total number of components.
Overall, we factorize the entire tensorial radiance field into 3Rσ+3Rc matrices

(MY Z
σ,r ,...,M

Y Z
c,r ,...) and 3Rσ+6Rc vectors (v

X
σ,r,...,v

X
c,r,...,br). In general, we adopt

Rσ ≪ I, J,K and Rc ≪ I, J,K, leading to a highly compact representation that
can encode a high-resolution dense grid. In essence, the XYZ-mode vector and
matrix factors, vX

σ,r, M
Y Z
σ,r , v

X
c,r, M

Y Z
c,r , ..., describe the spatial distributions of

the scene geometry and appearance along their corresponding axes. On the other
hand, the appearance feature-mode vectors br express the global appearance
correlations. By stacking all br as columns together, we have a P ×3Rc matrix B;
this matrix B can also be seen as a global appearance dictionary that abstracts
the appearance commonalities across the entire scene.

4.3 Efficient feature evaluation.

Our factorization-based model can compute each voxel’s feature vector at low
costs, only requiring one value per XYZ-mode vector/matrix factor. We also
enable efficient trilinear interpolation for our model, leading to a continuous field.
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Direct evaluation. With VM factorization, a density value Gσ,ijk of a single
voxel at indices ijk can be directly and efficiently evaluated by following Eqn. 5:

Gσ,ijk =

Rσ∑
r=1

∑
m∈XY Z

Am
σ,r,ijk (9)

Here, computing each Am
σ,r,ijk only requires indexing and multiplying two values

from its corresponding vector and matrix factors.
As for the appearance grid Gc, we always need to compute a full P -channel

feature vector, which the shading function S requires as input, corresponding to
a 1D slice of Gc at fixed XYZ indices ijk:

Gc,ijk =

Rc∑
r=1

AX
c,r,ijkb3r−2 +AY

c,r,ijkb3r−1 +AZ
c,r,ijkb3r (10)

Here, there’s no additional indexing for the feature mode, since we compute a full
vector. We further simplify Eqn. 10 by re-ordering the computation. For this, we
denote ⊕[Am

c,ijk]m,r as the vector that stacks all Am
c,r,ijk values for m = X,Y, Z

and r = 1, ..., Rc, which is a vector of 3Rc dimensions; ⊕ can also be considered as
the concatenation operator that concatenates all scalar values (1-channel vectors)
into a 3Rc-channel vector in practice. Using matrix B (introduced in Sec. 4.1)
that stacks all br, Eqn. 10 is equivalent to a matrix vector product:

Gc,ijk = B(⊕[Am
c,ijk]m,r) (11)

Note that, Eqn. 11 is not only formally simpler but also leads to a simpler
implementation in practice. Specifically, when computing a large number of
voxels in parallel, we first compute and concatenate Am

c,r,ijk for all voxels as
column vectors in a matrix and then multiply the shared matrix B once.

Trilinear interpolation. We apply trilinear interpolation to model a continuous
field. Näıvely achieving trilinear interpolation is costly, as it requires evaluation
of 8 tensor values and interpolating them, increasing computation by a factor of 8
compared to computing a single tensor element. However, we find that trilinearly
interpolating a component tensor is naturally equivalent to interpolating its
vector/matrix factors linearly/bilinearly for the corresponding modes, thanks to
the beauty of linearity of the trilinear interpolation and the outer product.

For example, given a component tensor AX
r = vX

r ◦MY Z
r with its each tensor

element Ar,ijk = vX
r,iM

Y Z
r,jk, we can compute its interpolated values as:

AX
r (x) = vX

r (x)MY Z
r (y, z) (12)

where AX
r (x) is Ar’s trilinearly interpolated value at location x = (x, y, z) in

the 3D space, vX
r (x) is vX

r ’s linearly interpolated value at x along X axis, and
MY Z

r (y, z) is MY Z
r ’s bilinearly interpolated value at (y, z) in the YZ plane.

Similarly, we have AY
r (x) = vY

r (y)M
XZ
r (x, z) and AZ

r (x) = vZ
r (z)M

XY
r (x, y)
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(for CP decomposition Aγ
r (x) = vX

r (x)vY
r (y)vZ

r (z) is also valid). Thus, trilinearly
interpolating the two grids is expressed as

Gσ(x) =
∑
r

∑
m

Am
σ,r(x) (13)

Gc(x) = B(⊕[Am
c,r(x)]m,r) (14)

These equations are very similar to Eqn. 9 and 11, simply replacing the tensor
elements with interpolated values. We avoid recovering 8 individual tensor el-
ements for trilinear interpolation and instead directly recover the interpolated
value, leading to low computation and memory costs at run time.

4.4 Rendering and reconstruction.

Equations 6, 12–14 describe the core components of our model. By combining
Eqn. 6,13,14, our factorized tensorial radiance field can be expressed as

σ, c =
∑
r

∑
m

Am
σ,r(x) , S(B(⊕[Am

c,r(x)]m,r), d) (15)

i.e., we obtain continuous volume density and view-dependent color given any
3D location and viewing direction. This allows for high-quality radiance field
reconstruction and rendering. Note that, this equation is general and describes
TensoRF with both CP and VM decomposition. Our full pipeline of radiance
field reconstruction and rendering with VM decomposition is illustrated in Fig. 3.

Volume rendering. To render images, we use differentiable volume rendering,
following NeRF [37]. Specifically, for each pixel, we march along a ray, sampling
Q shading points along the ray and computing the pixel color by

C =

Q∑
q=1

τq(1− exp(−σq∆q))cq, τq = exp(−
q−1∑
p=1

σp∆p) (16)

Here, σq, cq are the corresponding density and color computed by our model at
their sampled locations xq; ∆q is the ray step size and τq represents transmittance.

Reconstruction. Given a set of multi-view input images with known camera
poses, our tensorial radiance field is optimized per scene via gradient descent,
minimizing an L2 rendering loss, using only the ground truth pixel colors as
supervision. Our radiance field is explained by tensor factorization and modeled
by a set of global vectors and matrices as basis factors that correlate and
regularize the entire field in the optimization. However, this can sometimes lead
to overfitting and local minima issues in gradient descent, leading to outliers
or noises in regions with fewer observations. We utilize standard regularization
terms that are commonly used in compressive sensing, including an L1 norm loss
and a TV (total variation) loss on our vector and matrix factors, which effectively
address these issues. We find that only applying the L1 sparsity loss is adequate
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for most datasets. However, for real datasets that have very few input images
(like LLFF[36]) or imperfect capture conditions (like Tanks and Temples [26,31]
that has varying exposure and inconsistent masks), a TV loss is more efficient
than the L1 norm loss.

To further improve quality and avoid local minima, we apply coarse-to-
fine reconstruction. Unlike previous coarse-to-fine techniques that require unique
subdivisions on their sparse chosen sets of voxels, our coarse-to-fine reconstruction
is simply achieved by linearly and bilinearly upsampling our XYZ-mode vector
and matrix factors.

5 Implementation details

We briefly discuss our implementation; please refer to the appendix for more
details. We implement our TensoRF using PyTorch [45], without customized
CUDA kernels. We implement the feature decoding function S as either an MLP
or SH function and use P = 27 features for both. For SH, this corresponds to
3rd-order SH coefficients with RGB channels. For neural features, we use a small
MLP with two FC layers (with 128-channel hidden layers) and ReLU activation.

We use the Adam optimizer [25] with initial learning rates of 0.02 for tensor
factors and (when using neural features) 0.001 for the MLP decoder. We optimize
our model for T steps with a batch size of 4096 pixel rays on a single Tesla
V100 GPU (16GB). We apply a feature grid with a total number of N3 voxels;
the actual resolution of each dimension is computed based on the shape of the
bounding box. To achieve coarse-to-fine reconstruction, we start from an initial
low-resolution grid with N3

0 voxels with N0 = 128; we then upsample the vectors
and matrices linearly and bilinearly at steps 2000, 3000, 4000, 5500, 7000 with
the numbers of voxels interpolated between N3

0 and N3 linearly in logarithmic
space. Please refer to Sec. 6 for the analysis on different total steps (T ), different
resolutions (N), and different number of total components (3Rσ + 3Rc).

6 Experiments

We now present an extensive evaluation of our tensorial radiance fields. We
first analyze our decomposition techniques, the number of components, grid
resolutions, and optimization steps. We then compare our approach with previous
and concurrent works on both 360◦ objects and forward-facing datasets.

Analysis of different TensoRF models. We evaluate our TensoRF on the
Synthetic NeRF dataset [37] using both CP and VM decompositions with different
numbers of components and different numbers of grid voxels. Table 2 shows the
averaged rendering PSNRs, reconstruction time, and model size for each model.
We use the same MLP decoding function (as described in Sec. 5) for all variants
and optimize each model for 30k steps with a batch size of 4096.

Note that both TensoRF-CP and TensoRF-VM achieve consistently better
rendering quality with more components or higher grid resolutions. TensoRF-CP
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achieves super compact modeling; even the largest model with 384 components
and 5003 voxels requires less than 4MB. This CP model also achieves the best
rendering quality in all of our CP variants, leading to a high PSNR of 31.56,
which even outperforms vanilla NeRF (see Tab. 1).

On the other hand, because it compresses more parameters in each component,
TensoRF-VM achieves significantly better rendering quality than TensoRF-CP;
even the smallest TensoRF-VM model with only 48 components and 2003 voxels
is able to outperform the best CP model that uses many more components and
voxels. Remarkably, the PSNR of 31.81 from this smallest VM model (which
only takes 8.6 MB) is already higher than the PSNRs of NeRF and many other
previous and concurrent techniques (see Tab. 1). In addition, 192 components
are generally adequate for TensoRF-VM; doubling the number to 384 only leads
to marginal improvement. TensoRF-VM with 3003 voxels can already lead to
high PSNRs close to or greater than 33, while retaining compact model sizes
(<72MB). Increasing the resolution further leads to improved quality, but also
larger model size.

Also note that all of our TensoRF models can achieve very fast reconstruction.
Except for the largest VM model, all models finish reconstruction in less than 30
min, significantly faster than NeRF and many previous methods (see Tab. 1).

Optimization steps. We further evaluate our approach with different optimiza-
tion steps for our best CP model and the VM models with 3003 voxels. PSNRs
and reconstruction time are shown in Tab. 3. All of our models consistently
achieve better rendering quality with more steps. Our compact CP-384 model
(3.9MB) can even achieve a PSNR greater than 32 after 60k steps, higher than
the PSNRs of all previous methods in Tab. 1. On the other hand, our VM models
can quickly achieve high rendering quality in very few steps. With only 15k steps,
many models achieve high PSNRs that are already state-of-the-art.

Comparisons on 360◦ scenes. We compare our approach with state-of-the-art
novel view synthesis methods, including previous works (SRN[54], NeRF[37],
NSVF[31]), SNeRG[20], PlenOctrees[68]) and concurrent works (Plenoxels [50],
DVGO[55]). In particular, we compare with them using our best CP model and
our VM models (3003 voxels) with 48 and 192 components. We also show a
192-component VM model with spherical harmonics shading function. Table
1 shows the quantitative results (PSNRs and SSIMs) of ours and comparison
methods on three challenging datasets, where we also show the corresponding
batch size, optimization steps, time, and final output model size for each model, to
compare all methods from multiple perspectives. Note that all of our CP and VM
models can outperform NeRF on all three datasets while taking substantially less
optimization time and fewer steps. Our best VM-192 model can even achieve the
best PSNRs and SSIMs on all datasets, significantly outperforming the comparison
methods. Our approach can also achieve qualitatively better renderings with
more appearance and geometry details and less outliers, as shown in Fig. 4.

Our models are highly efficient, which all require less than 75MB space and can
be reconstructed in less than 30 min. This corresponds to more than 70x speed up
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Synthetic-NeRF NSVF TanksTemples
Method BatchSize Steps Time ↓ Size(MB)↓ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
SRN [54] - - >10h - 22.26 0.846 24.33 0.882 24.10 0.847

NSVF [31] 8192 150k >48∗h - 31.75 0.953 35.18 0.979 28.48 0.901

NeRF [37] 4096 300k ∼35h 5.00 31.01 0.947 30.81 0.952 25.78 0.864
SNeRG [20] 8192 250k ∼15h 1771.5 30.38 0.950 - - - -

PlenOctrees [68] 1024 200k ∼15h 1976.3 31.71 0.958 - - 27.99 0.917

Plenoxels [50] 5000 128k 11.4m 778.1 31.71 0.958 - - 27.43 0.906

DVGO [55] 5000 30k 15.0m 612.1 31.95 0.957 35.08 0.975. 28.41 0.911

Ours-CP-384 4096 30k 25.2m 3.9 31.56 0.949 34.48 0.971 27.59 0.897

Our-VM-192-SH 4096 30k 16.8m 71.9 32.00 0.955 35.30 0.977 27.81 0.907

Ours-VM-48 4096 30k 13.8m 18.9 32.39 0.957 35.34 0.976 28.06 0.909

Ours-VM-192 4096 15k 8.1m 71.8 32.52 0.959 35.59 0.978 28.07 0.913

Ours-VM-192 4096 30k 17.4m 71.8 33.14 0.963 36.52 0.982 28.56 0.920

Table 1: We compare our method with previous and concurrent novel view
synthesis methods on three datasets. All scores of the baseline methods are
directly taken from their papers whenever available. We also report the averaged
reconstruction time and model size for the Synthetic-NeRF dataset. NVSF
requires 8 GPUs for optimization (marked by a star), while others run on a
single GPU. DVGO’s 30k steps correspond to 10k for coarse and 20k for fine
reconstruction.

#Comp 2003 3003 5003

TensoRF-CP

48 27.98/09:29/0.74 28.24/11:45/1.09 28.38/14:20/1.85
96 28.50/09:57/0.88 28.83/12:12/1.29 29.06/15:27/2.18
192 29.50/11:09/1.08 29.99/13:41/1.59 30.33/18.03/2.66
384 30.47/14:41/1.59 31.08/18:09/2.33 31.56/25:11/3.93

TensoRF-VM

48 31.81/11:29/08.6 32.39/13:51/23.5 32.63/18:17/55.8
96 32.33/11:54/16.5 32.86/14:08/37.3 33.06/20:11/105.
192 32.63/13:26/32.3 33.14/17:36/76.7 33.31/27.18/204.
384 32.69/17:24/63.4 33.21/25:14/143. 33.39/43:19/397.

Table 2: We compare the averaged PSNRs / optimization time (mm:ss) / model
sizes (MB) of CP and VM TensoRF models on Synthetic NeRF dataset [37] with
different numbers of components and grid resolutions, optimized for 30k steps.

5k 15k 30k 60k 5k 15k 30k 60k

CP-384 28.37 30.80 31.56 32.03 03:03 11:30 25:11 51:47
VM-48 29.28 31.80 32.39 32.68 01:57 06:21 13:51 27:20
VM-96 29.65 32.26 32.86 33.17 02:01 06:41 14:08 28:57
VM-192 29.86 32.52 33.14 33.44 02:16 08:08 17:37 35:50
VM-384 29.95 32.62 33.21 33.52 02:51 11:30 25:14 52:50

Table 3: PSNRs and time of CP and VM
models with different training steps on
the Synthetic-NeRF dataset [37].

Method Time ↓ Size PSNR↑ SSIM↑
NeRF [37] 36h 5.00M 26.50 0.811
Plenoxels [50] 24:00m 2.59G 26.29 0.829

Ours-VM-48 19:44m 90.4M 26.51 0.832
Ours-VM-96 25.43m 179.7M 26.73 0.839

Table 4: Quantitative comparisons of
our method with NeRF and Plenoxels
on forward-facing scenes [36].

compared to NeRF that requires about 1.5 days for optimization. Our CP model
is even more compact than NeRF. Moreover, SNeRG and PlenOctrees require
pre-training a NeRF-like MLP, requiring long reconstruction time too. DVGO
and Plenoxels are concurrent works, which can also achieve fast reconstruction
in less than 15 min. However, as both are voxel-based methods and directly
optimize voxel values, they lead to huge model sizes similar to previous voxel-
based methods like SNeRG and PlenOctrees. In contrast, we factorize feature
grids and model them with compact vectors and matrices, leading to substantially
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Fig. 4: Qualitative results of our VM-192-30k model and comparison methods
(NeRF[37], plenoxels [50], DVGO [55], NSVF [31]) on two Synthetic NeRF scenes.

smaller model sizes. Meanwhile, our VM-192 can even reconstruct faster than
DVGO and Plenoxels, taking only 15k steps, and achieving better quality in
most cases. In fact, Plenoxels’ fast reconstruction relies on quickly optimizing
significantly more steps (> 4 times our steps) with their CUDA implementation.
Our models are implemented with standard PyTorch modules and already achieve
much better rendering quality with fewer steps taking comparable and even less
reconstruction time than Plenoxels. Note that our SH model essentially represents
the same underlying feature grid as Plenoxels but can still lead to more compact
modeling and better quality with fewer steps, showing the advantages of our
factorization based modeling. In general, our approach enables fast reconstruction,
compact modeling, and photo-realistic rendering simultaneously.

Forward-facing scenes. Our approach can also achieve efficient and high-quality
radiance field reconstruction for forward-facing scenes. We show quantitative
results of our two VM models on the LLFF dataset [36] and compare with NeRF
and Plenoxels in Tab. 4. Our models outperform the previous state-of-the-art
NeRF and take significantly less reconstruction time. Compared with Plenoxels
[50], our approach leads to comparable or faster reconstruction speed, better
quality, and substantially smaller model sizes.

7 Conclusion.

We have presented a novel approach for high-quality scene reconstruction and ren-
dering. We propose a novel scene representation – TensoRF which leverages tensor
decomposition techniques to model and reconstruct radiance fields compactly
as factorized low-rank tensor components. We hope our findings in tensorized
low-rank feature modeling can inspire other modeling and reconstruction tasks.
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approach to learning 3d surface generation. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 216–224 (2018)

19. Harshman, R.A., et al.: Foundations of the parafac procedure: Models and conditions
for an” explanatory” multimodal factor analysis (1970)

20. Hedman, P., Srinivasan, P.P., Mildenhall, B., Barron, J.T., Debevec, P.: Baking
neural radiance fields for real-time view synthesis. arXiv preprint arXiv:2103.14645
(2021)

21. Ji, H., Liu, C., Shen, Z., Xu, Y.: Robust video denoising using low rank matrix
completion. In: 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. pp. 1791–1798. IEEE (2010)

22. Ji, M., Gall, J., Zheng, H., Liu, Y., Fang, L.: SurfaceNet: An end-to-end 3D neural
network for multiview stereopsis. In: Proc. ICCV (2017)

23. Ji, Y., Wang, Q., Li, X., Liu, J.: A survey on tensor techniques and applications in
machine learning. IEEE Access 7, 162950–162990 (2019)

24. Kamal, M.H., Heshmat, B., Raskar, R., Vandergheynst, P., Wetzstein, G.: Tensor
low-rank and sparse light field photography. Computer Vision and Image Under-
standing 145, 172–181 (2016)

25. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

26. Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics 36(4) (2017)

27. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM review
51(3), 455–500 (2009)

28. Li, Z., Niklaus, S., Snavely, N., Wang, O.: Neural scene flow fields for space-time
view synthesis of dynamic scenes. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 6498–6508 (2021)

29. Liang, R., Sun, H., Vijaykumar, N.: Coordx: Accelerating implicit neural represen-
tation with a split mlp architecture. arXiv preprint arXiv:2201.12425 (2022)

30. Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing
values in visual data. IEEE transactions on pattern analysis and machine intelligence
35(1), 208–220 (2012)

31. Liu, L., Gu, J., Lin, K.Z., Chua, T.S., Theobalt, C.: Neural sparse voxel fields.
NeurIPS (2020)

32. Liu, S., Zhang, X., Zhang, Z., Zhang, R., Zhu, J.Y., Russell, B.: Editing conditional
radiance fields. arXiv preprint arXiv:2105.06466 (2021)

33. Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.:
Neural volumes: Learning dynamic renderable volumes from images. ACM Trans.
Graph. (2019)

34. Martin-Brualla, R., Radwan, N., Sajjadi, M.S., Barron, J.T., Dosovitskiy, A.,
Duckworth, D.: Nerf in the wild: Neural radiance fields for unconstrained photo
collections. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 7210–7219 (2021)

35. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: Learning 3d reconstruction in function space. Proc. CVPR (2019)

36. Mildenhall, B., Srinivasan, P.P., Ortiz-Cayon, R., Kalantari, N.K., Ramamoorthi, R.,
Ng, R., Kar, A.: Local light field fusion: Practical view synthesis with prescriptive
sampling guidelines. ACM Transactions on Graphics (TOG) 38(4), 1–14 (2019)



TensoRF: Tensorial Radiance Fields 17

37. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.:
Nerf: Representing scenes as neural radiance fields for view synthesis. In: European
conference on computer vision. pp. 405–421. Springer (2020)

38. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives
with a multiresolution hash encoding. ACM Trans. Graph. 41(4), 102:1–102:15 (Jul
2022)

39. Nam, G., Lee, J.H., Gutierrez, D., Kim, M.H.: Practical svbrdf acquisition of
3d objects with unstructured flash photography. ACM Transactions on Graphics
(TOG) 37(6), 1–12 (2018)

40. Niemeyer, M., Geiger, A.: Giraffe: Representing scenes as compositional generative
neural feature fields. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 11453–11464 (2021)

41. Niemeyer, M., Geiger, A.: Giraffe: Representing scenes as compositional generative
neural feature fields. In: Conference on Computer Vision and Pattern Recognition
(CVPR) (2021)

42. Oechsle, M., Peng, S., Geiger, A.: Unisurf: Unifying neural implicit surfaces and radi-
ance fields for multi-view reconstruction. In: International Conference on Computer
Vision (ICCV) (2021)

43. Panagakis, Y., Kossaifi, J., Chrysos, G.G., Oldfield, J., Nicolaou, M.A., Anandkumar,
A., Zafeiriou, S.: Tensor methods in computer vision and deep learning. Proceedings
of the IEEE 109(5), 863–890 (2021)

44. Park, K., Sinha, U., Hedman, P., Barron, J.T., Bouaziz, S., Goldman, D.B., Martin-
Brualla, R., Seitz, S.M.: Hypernerf: A higher-dimensional representation for topo-
logically varying neural radiance fields. ACM Trans. Graph. 40(6) (dec 2021)

45. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing
systems 32 (2019)

46. Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional
occupancy networks. In: European Conference on Computer Vision. pp. 523–540.
Springer (2020)

47. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d
classification and segmentation. In: Proc. CVPR (2017)

48. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and
multi-view cnns for object classification on 3d data. In: Proc. CVPR (2016)

49. Reiser, C., Peng, S., Liao, Y., Geiger, A.: Kilonerf: Speeding up neural radiance
fields with thousands of tiny mlps. In: International Conference on Computer Vision
(ICCV) (2021)

50. Sara Fridovich-Keil and Alex Yu, Tancik, M., Chen, Q., Recht, B., Kanazawa, A.:
Plenoxels: Radiance fields without neural networks. In: CVPR (2022)

51. Schwarz, K., Liao, Y., Niemeyer, M., Geiger, A.: Graf: Generative radiance fields for
3d-aware image synthesis. In: Advances in Neural Information Processing Systems
(NeurIPS) (2020)

52. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural
representations with periodic activation functions. Advances in Neural Information
Processing Systems 33, 7462–7473 (2020)

53. Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhofer, M.:
Deepvoxels: Learning persistent 3D feature embeddings. In: Proc. CVPR (2019)
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