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Fig. 1: Detailed architecture of ϕU. Notice that all Fully-Connected (FC)
layers receive sparse features as input and no dense tensor is built throughout
the graph, significantly reducing the memory consumption.

1 Network Architecture

For our point encoder ϕE, we use a shared MLP model, which contains 4 layers
including the input and output layers. The output feature size is set to 32.

For our sparse U-Net ϕU, we illustrate it in Fig. 1. Convolution parameters
are given in the format of (n in, n out, kernel size, stride, padding), where
the stride and padding are set to 1 and 0 respectively as the default values. All
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convolutional layers and fully-connected layers except for the output layer are
followed by instance normalization and LeakyRelu layers.

For our SDF decoder ϕD, we use a small network which only contains 3
linear layers including the input and output layers and the channel sizes of the
hidden layers are 64. Unlike other SDF decoders, the input latent vectors are
not concatenated with the intermediate output of the network.

2 Differentiable Renderer

2.1 Derivation

In this section, we detail the procedure of implicit differentiation to obtain Eq.1
of the main paper. We denote the ray origin as o, ray direction as d, and the
rendered depth as z, the hit point can be expressed as p = o+ zd. Compute the
total derivative of f(p, θ) = 0 and we get:
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and according to p = o + zd, we replace ∂p/∂o, ∂p/∂d and ∂p/∂z with 1, z
and d respectively:
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To compute ∂z/∂θ, we ignore dd and do:
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Similarly, we can compute the partial derivatives for o and d:
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In our implementation, to satisfy the above partial derivatives, we construct
the forward equation as:

z = z0 +
f(p0, θ0)− f(p, θ)

⟨∂f/∂p|p=p0 ,d0⟩
, (5)

where f(p0, θ0) means the SDF value provided by ϕD, and all the variables with
subscript 0 are the constant values evaluated at the hit point.

2.2 More Results

We further demonstrate an alternative renderer using auto differentiation pro-
vided by the deep learning framework, i.e.Ours-AD, and show our differentiable
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renderer is faster and more accurate than Ours-AD in Fig. 2 and Fig. 5. For
Ours-AD, rendered depth is given by:

z = c+

N∑
i=0

f(pi, θ), (6)

where c is the depth of ray-voxel intersect point and pi is the ith point in sphere
tracking procedure.

When rendering 300,000 rays, ‘Ours’ takes about 1.3G GPU memory while
‘Ours-AD’ takes about 4.6G. It is because ‘Ours-AD’ stores all of the points pi

in the compute graph while ‘Ours’ only stores the hit point.
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Fig. 2: Speed comparison of two renderers. We show that ‘Ours’ is faster
than ‘Ours-AD’. With the increasing number of rendered rays, rendering time
grows slowly, implying that the performance bottleneck lies in the loop of the
sphere tracing that is hard to be parallelized.

3 Sampling Rates and Noise Level

3.1 Sampling Rates

In the paper, we randomly sample 50% of frames to form the input incomplete
scenes. To further demonstrate our model’s capability of completing larger miss-
ing regions, we design more challenging tasks by decreasing the sampling rate
to 25% and 10%. Shown in Fig. 3, the precision drops with lower sampling rates
because the network is encouraged to complete more areas, leading to increased
regions of inaccurate completions. In Fig. 4, the improvement of our recall over
the original input scene’s is more significant as the sampling rate decreases,
showing that our model can effectively handle the challenging cases with more
missing regions. Additional qualitative results are found in Fig. 6.
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Fig. 3: Precision under different sampling rates and noise level.

3.2 Noise Level

We control the artificial noise and see how the noise influences our method in
Fig. 3. We choose different standard deviations of noise in test time and fix it
to 0.01 while training. Our method works well when the standard deviation is
smaller than 0.01. However, when the standard deviation is greater than 0.015,
our method starts to fail. For real world noise, we provide more qualitative results
on ScanNetv2 dataset in Fig. 7.
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Fig. 4: Recall under different sampling rates.The left sub-figure shows the
mean recall of input scenes and reconstructed scenes, and the right one show the
the improvement of our recall over the original input under different sampling
rates.
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Fig. 5: Qualitative results of differentiable renderer. Our approach opti-
mize geometry and poses jointly and generate fine-detailed mesh. Using implicit
differentiation, our renderer provides more accurate gradient for poses than Ours-
AD.
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Fig. 6: Qualitative result under different sampling rates.
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Fig. 7: Qualitative results using the ScanNetv2 dataset.Our differentiable
renderer fixes inaccurate poses and significantly sharpens the geometric features.
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Fig. 8: Results on large scenes of Matterport3D. We show two building-
scale reconstructions from our method, with a single feed-forward pass. The sizes
of buildings and the inference time are given on the right side of the figure and
the subfigures in the bordered boxes show each floor.

4 Reconstruction of Large Scenes

As illustrated in Fig. 8, our method has the ability to reconstruct large scenes
using a single feed-forward pass with a small run-time memory usage thanks to
the sparse structure.
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