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S1 Overview

In this document we provide additional details about our method, and show
additional qualitative results as well as ablations.

– Section S2 (Prediction Causality and Runtime): In this section, we
detail our keyframe selection process, and compare to other methods. In
addition, we show how to break the online assumption of our keyframe se-
lection process and note increased performance on reconstruction and depth
metrics. We also discuss details of timing reconstruction methods.

– Section S3 (Implementation Details): In this section, we detail our
cost volume construction process, network structure, normal computation
process, and depth fusion pipeline.

– Section S4 (Ablation): In this section, we ablate different metadata inputs
to our model.

– Section S5 (Mesh Evaluation): In this section, we discuss our mesh eval-
uation procedure and compare different 3D evaluations from the literature.

– Section S6 (Point Cloud Fusion): In this section, we compare our TSDF
fusion + marching cubes method to direct point cloud fusion and show state-
of-the-art performance using this method as well.

– Section S7 (Qualitative Evaluation): In this section, we provide fur-
ther qualitative results on 7-Scenes and ScanNet for depth metrics and 3D
reconstruction metrics.

– Section S8 (Metadata in Other MVS): In this section, we introduce
metadata into a different MVS pipeline, CasMVSNet [7].

More 3D scene reconstruction results can be found in Figure S1, and more
depth prediction results in Figures S2 and S3. In addition, we also provide a video
comparing our method to DeepVideoMVS using online frames, and showing live
reconstruction at 10Hz of a sequence captured using a mobile phone, also using
online frames.

⋆ Work done while at Niantic, during Mohamed’s internship.
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Online

ATLAS No
TransformerFusion No
NeuralRecon Yes*
3DVNet No
VoRTX No
Ours Yes

Table S1. Method’s causality, i.e. whether or not a method needs to look into the
future for a new prediction given how they are formulated. *NeuralRecon constructs
geometry on a per chunk basis; each chunk is 9 keyframes long, so the method is only
online as long as the latency penalty of waiting for those frames is paid.

S2 Prediction Causality and Runtime

Our depth prediction pipeline is causal, i.e. all our reference frames come from
past seen frames for online interactive reconstruction. This means our cost vol-
ume is fed reference images that lag behind the current image for which we
predict depth. All scores we report in depth estimation and mesh reconstruction
are therefore predicated on our causal pipeline unless mentioned otherwise.

S2.1 Online Keyframe Selection

We use the same keyframe selection strategy outlined in DeepVideoMVS [4],
including the same optimal rotation and translation distances quoted in the
paper. We also limit the buffer size to the last 30 frames. We evaluate our depth
maps and fuse them on these keyframes.

For when the buffer does not have enough frames, especially given our request
for 7 measurement frames (for 8 image models), we accept any previous (non
key) frame then pad the rest by repeating the available frames. We omit the
evaluation for the first frame in a sequence where no previous frames exist.

S2.2 Non-Interactive Inference

If we assume that we have all available frames in a scene and wish to estimate
the most accurate depths, then we can instead aim for the best selection of both
past and future frames to feed our feature volume when predicting depth for a
frame. With online keyframes, the cost volume will have empty regions for regions
where past frames had not seen. With future frames, these empty regions are
less severe, leading to a more accurate metric depth signal and a more accurate
depth map. We denote when our model uses offline keyframes with “Offline”
in Tables S2, S5, and S8. In this case, we modify DeepVideoMVS’s keyframe
buffer[4] to accept both future and past frames incrementally from the current
frame.
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S2.3 Inference

In the main paper at Sec. 4.3 and Table. 3, we outline the reconstruction time
required to incorporate a new frame into a 3D reconstruction for current state-
of-the-art methods.

All timings with the exception of TransformerFusion [2] were computed on an
A100 GPU. Since TransformerFusion’s code is not available at the time of sub-
mission (March 14th, 2022), we estimate the method’s latency using the authors’
descriptive breakdown of the method’s runtime on an RTX 3090.

Note that the timings we state are the least time required for each method
to update its representation. This does not however guarantee that the meth-
ods would include the measurement accurately, since in most cases this is not
representative of how the methods are meant to operate given how they are
formulated. Most volumetric methods [14, 2, 20] are designed to output a pre-
diction using all frames. NeuralRecon requires 9 keyframe inputs per chunk to
accurately reconstruct a portion of the scene. This means that practically the
overall latency may be much higher.

ScanNet

Abs Diff↓ Abs Rel↓ Sq Rel↓ RMSE↓ logRMSE↓ δ < 1.05 ↑ δ < 1.10 ↑ δ < 1.25 ↑

DPSNet (FT) [10] 0.1552 0.0795 0.0299 0.2307 0.1102 49.36 73.51 93.27
MVDepthNet (FT) [24] 0.1648 0.0848 0.0343 0.2446 0.1162 46.71 71.92 92.77
DELTAS [19] 0.1497 0.0786 0.0276 0.2210 0.1079 48.64 73.64 93.78
GPMVS (FT) [9] 0.1494 0.0757 0.0292 0.2287 0.1086 51.04 75.65 93.96
DeepVideoMVS, fusion† [4] 0.1186 0.0583 0.0190 0.1879 0.0868 60.20 83.66 96.76
Ours (no metadata) 0.0941 0.0467 0.0139 0.1544 0.0717 70.48 89.28 97.84
Ours 0.0885 0.0434 0.0125 0.1468 0.0673 73.16 90.57 98.09

DeepVideoMVS, pairnet† [4] 0.1431 0.0712 0.0253 0.2152 0.0999 51.92 77.24 94.99
DeepVideoMVS, fusion† [4] 0.1186 0.0583 0.0190 0.1879 0.0868 60.20 83.66 96.76
Ours* two frames 0.1225 0.0625 0.0196 0.1796 0.0856 57.58 81.42 96.18
Ours* 0.0867 0.0425 0.0123 0.1450 0.0665 73.86 90.98 98.18

ESTDepth [13] 0.1665 0.0917 0.0352 0.2392 - 44.75 69.17 91.51
IDNSolver [25] 0.1281 0.0666 0.0241 0.1998 0.0987 59.11 79.89 94.71
Ours every 20th 0.0910 0.0461 0.0133 0.1467 0.0698 71.18 89.30 97.80

Ours offline reference frames 0.0829 0.0405 0.0114 0.1401 0.0640 75.65 91.96 98.32

Table S2. Depth evaluation on ScanNet For each metric, the best-performing
method is marked in red, the second-best in orange, and the third-best in yellow.
Results for previous methods were taken from [4], or evaluated for each method using
their keyframes. Ours* indicates our model trained on the same 90/10 training split as
of DVMVS instead of the official ScanNetv2 split. † two measurement frames. Trained
on 90/10 split.

S3 Implementation Details

S3.1 Cost Volume

We use 64 depth planes in our feature volume, spaced uniformly in log space
following FAL [6], between a minimum depth of 0.25m and a maximum depth
of 5m. We perform the computation at quarter resolution, corresponding to the
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7-Scenes

Abs Diff↓ Abs Rel↓ Sq Rel↓ RMSE↓ logRMSE↓ δ < 1.05 ↑ δ < 1.10 ↑ δ < 1.25 ↑

DPSNet (FT) [10] 0.1966 0.1147 0.0550 0.2728 0.1511 38.81 61.91 87.07
MVDepthNet (FT) [24] 0.2009 0.1161 0.0623 0.2828 0.1513 38.81 62.92 87.70
DELTAS [19] 0.1915 0.1140 0.0490 0.2653 0.1470 36.36 60.22 88.13
GPMVS (FT) [9] 0.1739 0.1003 0.0462 0.2557 0.1403 42.71 67.63 90.32
DeepVideoMVS, pairnet† [4] 0.1861 0.1071 0.0498 0.2573 0.1396 39.66 65.03 89.33
DeepVideoMVS, fusion† [4] 0.1448 0.0828 0.0335 0.2254 0.1231 47.96 74.67 93.79
Ours (no metadata) 0.1105 0.0617 0.0175 0.1684 0.0891 57.30 82.73 97.02
Ours 0.1045 0.0575 0.0153 0.1596 0.0838 59.78 84.71 97.38

DeepVideoMVS, pairnet† [4] 0.1861 0.1071 0.0498 0.2573 0.1396 39.66 65.03 89.33
DeepVideoMVS, fusion† [4] 0.1448 0.0828 0.0335 0.2254 0.1231 47.96 74.67 93.79
Ours* two frames 0.1342 0.0766 0.0220 0.1855 0.1002 44.97 73.48 95.98
Ours* 0.1043 0.0574 0.0156 0.1599 0.0840 60.23 84.34 97.46

Ours, every 20th 0.1100 0.0619 0.0173 0.1657 0.0890 57.95 82.43 96.51

Table S3. Depth evaluation on 7-Scenes For each metric, the best-performing
method is marked in red, the second-best in orange, and the third-best in yellow.
Results for previous methods were taken from [4], or evaluated for each method using
their keyframes. Ours* indicates our model trained on the same 90/10 training split as
of DVMVS instead of the official ScanNetv2 split. † two measurement frames. Trained
on 90/10 split.

resolution of the second block of the main encoder. We experimented with both
lower and higher resolution but found it to be a good trade off. We also apply
instance normalization [22] on the last layer of the matching network, as we
found it to produce more stable results when training the baseline model using
mixed precision. We initially also experimented with per-pixel normalization but
found it to perform worse. We predict log-depth as it ensures the depth to be
non-negative and prevents loss of precision when computing the main regression
loss.

S3.2 Network Details

On acceptance we will release code for training and evaluation, models and
precomputed results. Our decoder is similar to UNet++ [27]. Each block is a
residual BasicBlock following [8] of 256, 128, 64, and 64 channels (from bottom
to top). We make use of Leaky ReLU layers with a negative slope of 0.2 as our
activation function.

The cost volume and image feature encoder follows the design of [4] with the
same BasicBlock with the following number of channels per layer: 64, 128, 256,
384. We experimented with batch normalization but found it to create bubble-
like artifacts, similar to the ones described in [11], in the predicted depths which
are particularly visible in the normal-map. We therefore do not use batch nor-
malization outside of the pretrained encoders. We actually suspect the artifacts
visible in the normal maps from DVMVS [4] and ESTDepth [13] are caused
by batch-normalization. For the matching feature encoder we use the first two
blocks of ResNet18 [8].

Our MLP has channel sizes [202, 128, 128, 1] for 8 views. The 202 input chan-
nels are composed of 16 × 8 visual channels, 1 × 7 visual feature dot products,
1× 7 mask values, 3× 8 rays, 1× 7 ray angles, 1× 8 depth values, 1× 7 overall
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pose distances, 1× 7 pose rotation distance, and 1× 7 pose translation distance.
Views are ordered according to pose distance.

S3.3 Normal computation

Because of the discretization and patchiness of the ground truth depth, we first
blur it using a 5x5 Gaussian blur then compute normal vectors using local image
gradients on the backprojected depth following [16]. We apply the same process-
ing to our predicted depths to obtain normals. This process is differentiable,
allowing us to supervise our training with an additional loss on the normals, as
discussed in the main paper.

S3.4 Depth Fusion Pipeline

We fuse depths using standard TSDF fusion with confidence weighting from
InfiniTAM [15]. Similarly to [21], we have noticed that double walled meshes
unfairly lead to higher recall scores due to extra available geometry, so we modify
the voxel check during marching cubes in scikit-image [23] to only consider a
voxel if all neighborhood voxels are larger than -1. This ensures that our mesh
generated from the fused TSDF is single-walled.

We also report scores with our model fused using the Open3D library [26],
which notably produces single-walled meshes from their marching cube imple-
mentation. When we fuse a predicted depth map from our model, we limit the
maximum fused depth to 3m, similar to [21, 4].

Although we can fuse at a higher resolution with little penalty given voxel
hashing, we use a voxel resolution of 4cm to match the other methods we evaluate
against. We also report our model’s score at 2.5cm and 3cm.

We fuse only the keyframes defined by the keyframe buffer from Deep-
VideoMVS [4].

S4 Ablation

In Table S4 we provide additional ablations of our method and comparisons to
baselines.

Baseline — We ablate the information we make available to our cost reduction
MLP in multiple steps. We first show that using no MLP and 16 feature channels,
using the dot product of the image features performs better than using the mean
absolute difference. Interestingly, using 64 feature channels instead of 16 slightly
degrades accuracy while being significantly slower.

Losses — We also show that a combination of multi-scale geometric losses
is important for performance. Removing either the normals loss or multi-view
loss, as defined in the main paper, results in decreased accuracy and slower
convergence times. We also show that our multiscale log-L1 loss leads to better
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Depth evaluation Mesh eval

Abs Diff↓ Sq Rel↓ RMSE↓ δ < 1.05 ↑ δ < 1.25 ↑ Chamfer↓ F-score↑

Ours 0.0885 0.0125 0.1468 73.16 98.09 5.81 67.1

Ours baseline w/ dot product CV 16c 0.0941 0.0139 0.1544 70.48 97.84 6.29 64.2
Ours baseline w/ Absdiff CV 16c 0.1024 0.0155 0.1632 66.65 97.43 6.50 62.7
Ours baseline w/ dot product CV 64c 0.0944 0.0140 0.1548 70.49 97.84 6.08 65.4

Ours w/o Normals Loss 0.0896 0.0129 0.1495 72.76 98.04 5.87 66.7
Ours w/o Multiview Loss 0.0897 0.0127 0.1483 72.68 98.09 6.04 65.7
Ours, w/o Multiscale Gradient 0.0892 0.0127 0.1481 73.00 98.09 5.87 66.8
Ours w/ only Inv-L1 Loss 0.0933 0.0137 0.1551 71.47 97.88 6.09 65.5
Ours w/ ScaleInv instead of log-L1 0.0916 0.0126 0.1481 71.39 98.04 6.08 65.5

Ours w/ MnasNet Encoder 0.0929 0.0141 0.1560 72.11 97.79 6.05 66.0
Ours w/ FPN Matching Network 0.0870 0.0124 0.1455 73.89 98.14 5.74 67.4

DVMVS, fusion† [4] 0.1186 0.0190 0.1879 60.20 96.76 11.05 48.9
Ours 320× 256 0.0916 0.0135 0.1525 71.99 97.94 5.88 66.5
Ours 320× 256 + MnasNet 0.0947 0.0146 0.1587 71.24 97.68 5.92 66.3

Table S4. Ablation Evaluation Ablation evaluation on depth and reconstruc-
tion metrics using DVMVS keyframes for ScanNet. Scores for our full method (e.g.
metadata-enriched MLP with frame ordering and 8 views) are shown in bold. † two
measurement frames. Trained on 90/10 split.

performance over both the scale-invariant loss of Eigen et al. [5] and the inverse
L1 loss used by DeepVideoMVS [4].

Encoders and Matching Networks — We evaluate our choice of image
encoders, both for semantic feature extraction – where we use EfficientNetV2 S
(ENv2S), as well as for matching, where we use the first 2 blocks of ResNet18
(R18). We first swap ENv2S for MnasNet as used in DeepVideoMVS [4]. Al-
though it runs slightly faster than our default, and overall performance suffers,
it outperforms DeepVideoMVS. On the other hand, using a multi-scale Fea-
ture Pyramid Network (FPN) [12] for matching, as in [4], improves our model
performance but at the cost of a ∼50% increase in runtime. Our selected config-
uration, namely ENv2S + R18 provides a good trade-off between performance
and speed, resulting in state-of-the-art results while maintaining fast inference
time and lower memory use.

Comparison with DVMVS [4] We compare our main model to DVMVS.
In both trials, we make use of the same input resolution of 320 × 256, and
additionally for one trial we use the same image encoder as DVMVS (MnasNet).
Our method outperforms [4] in all cases.

S5 Mesh Evaluation

For completeness, we include the mesh evaluation from ATLAS [14] in Tables S6
and S7. As noted by TransformerFusion [2] and 3DVNet [17], ATLAS evaluations
on both meshes and depth are are flawed and produce inconsistent results. To
support this we evaluate the ground truth meshes against themselves and note
that errors are significantly far from zero and that precision, recall, and F-score
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are likewise significantly far from one. We instead use the evaluation of [2] which
produces sensible and consistent results on the GT meshes.

In addition, we include VolumeFusion’s [3] reported results on the ScanNet
test set in this section, compared to our model trained on the same data, as
the authors were unable to share their code or predicted meshes in time for the
submission deadline.

Volumetric Comp↓ Acc↓ Chamfer↓ Prec↑ Recall ↑ F-Score ↑

RevisitingSI No 14.29 16.19 15.24 0.346 0.293 0.314
MVDepthNet (FT) No 12.94 8.34 10.64 0.443 0.487 0.460
GPMVS (FT) No 12.90 8.02 10.46 0.453 0.510 0.477
ESTDepth No 12.71 7.54 10.12 0.456 0.542 0.491
DPSNet (FT) No 11.94 7.58 9.77 0.474 0.519 0.492
DELTAS No 11.95 7.46 9.71 0.478 0.533 0.501
COLMAP No 10.22 11.88 11.05 0.509 0.474 0.489
DeepVideoMVS No 10.68 6.90 8.79 0.541 0.592 0.563
Neural Recon Yes 5.09 9.13 7.11 0.630 0.612 0.619
ATLAS Yes 7.16 7.61 7.38 0.675 0.605 0.636
3DVNet Yes 7.72 6.73 7.22 0.655 0.596 0.621
TransformerFusion Yes 5.52 8.27 6.89 0.728 0.600 0.655
VoRTX Yes 4.31 7.23 5.77 0.767 0.651 0.703
Ours No 5.53 6.09 5.81 0.686 0.658 0.671

Ours 2.5cm No 5.58 5.66 5.62 0.675 0.687 0.679
Ours 3cm No 5.54 5.80 5.67 0.683 0.678 0.679
Ours Open3d 4cm No 5.30 6.16 5.73 0.701 0.641 0.668

Ours Offline frames No 5.26 5.95 5.61 0.701 0.668 0.683

Ours (FPN Matching Net) No 5.45 6.02 5.74 0.690 0.662 0.674

Ours FPN + offline frames No 5.21 5.89 5.55 0.705 0.674 0.688

Groundtruth - 0.15 0.80 0.48 1.000 1.000 1.000

Table S5. Mesh Evaluation. We use [2]’s evaluation. The Volumetric column desig-
nates whether a method is a volumetric 3D reconstruction method; other MVS methods
that produce only depth maps were reconstructed using standard TSDF fusion. The
final row shows a variant of our model which uses an FPN [12] matching encoder as
in [4].

S6 Point Cloud Fusion

3DVNet [17] fuse their depths directly into a point cloud without using a TSDF
volume representation. For fairness, we also use their pipeline for point cloud
fusion from depth maps on our depths. We also downsample our point clouds
to a 2cm resolution. We then use the ground-truth predictions masks provided
in [2] when we evaluate the point clouds against the ground-truth in table S8.

Our model using online DeepVideoMVS keyframes outperforms 3DVNet in
F-score. We see a further improvement in metrics if we ignore the online require-
ment - appropriate given point cloud fusion - and use offline reference frames
instead.
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Training split Comp↓ Acc↓ Prec↑ Recall ↑ F-Score ↑

COLMAP [18] Train 0.069 0.135 0.634 0.505 0.558
MVDepthNet [24] Train 0.040 0.240 0.831 0.208 0.329
GPMVS [9] Train 0.031 0.879 0.871 0.188 0.304
DPSNet [10] Train 0.045 0.284 0.793 0.223 0.344
ATLAS [14] Train 0.084 0.102 0.598 0.565 0.578
NeuralRecon [21] Train 0.128 0.054 0.479 0.684 0.562
TransformerFusion [2] Train 0.099 0.078 0.648 0.547 0.591
3DVNet [17] Train 0.077 0.221 0.506 0.545 0.520
VoRTX [20] Train 0.082 0.062 0.688 0.607 0.644
Ours Train 0.078 0.065 0.641 0.581 0.608

Groundtruth - 0.020 0.016 0.967 0.965 0.966

VolumeFusion [3] Train+Val 0.125 0.038 - - 0.508
Ours Train+Val 0.076 0.063 0.653 0.590 0.618

Table S6. 3D Reconstruction Mesh Evaluation following ATLAS [14]

S7 Qualitative Evaluation

All visualizations made of our method are from the Ours model from the main
text with online DeepVideoMVS keyframes.

S7.1 Mesh

We show additional comparisons between 3D reconstruction methods and differ-
ent TSDF fusion methods in Table S5. Example reconstructions for our method
and baselines is shown in Figure S1. We note that our model reconstructs more
fine detail, as compared to the baselines.

S7.2 Depth

We also show comparisons between depth estimation methods and our method
for the 7-Scenes dataset in Table S3 and for the ScanNet dataset in Table S2. We
also note sharper results with additional detail in our predicted depth maps, as
compared to baseline methods, in Figures S2 and S3. In these figures, we show
normal maps computed from depths as described in Section S3. We also include
a qualitative comparison of our estimated normals to those predicted directly by
IDNSolver in Fig. S4
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Training split Abs Diff↓ Abs Rel↓ Sq Rel↓ RMSE↓ δ < 1.25 ↑ Comp ↑

COLMAP [18] Train .264 .137 .138 .502 83.4 .871
MVDepthNet [24] Train .191 .098 .061 .293 89.6 .928
GPMVS [9] Train .239 .130 .339 .472 90.6 .928
DPSNet [10] Train .158 .087 .035 .232 92.5 .928
ATLAS [14] Train .123 .065 .045 .251 93.6 .999
NeuralRecon [21] Train .106 .065 .031 .195 94.8 .909
TransformerFusion [2] Train .099 .065 .042 .205 93.4 .905
3DVNet [17] Train .107 .062 .042 .214 94.1 .984
VoRTX [20] Train .092 .058 .036 .199 93.8 .950
Ours Train .083 .046 .022 .173 95.4 .944

VolumeFusion [3] Train+Val .084 .049 .021 .164 - -
Ours Train+Val .081 .045 .022 .172 95.5 .945

Groundtruth - .038 .023 .014 .115 96.9 93.7

Table S7. 3D Reconstruction Depth Evaluation following ATLAS [14]
These are depth scores comparing mesh-rendered depths from a fused mesh to the
groundtruth. All models were trained on the ScanNetv2 training set, except Volume-
Fusion [3] which was also trained on the validation split (approximately 25% more
data).

Volumetric Comp↓ Acc↓ Chamfer↓ Prec↑ Recall ↑ F-Score ↑

3DVNet Yes 5.84 7.53 6.68 0.704 0.620 0.655
Ours No 4.99 9.14 7.06 0.646 0.681 0.659
Ours, Offline reference frames No 4.76 8.94 6.85 0.664 0.670 0.672
Ours FPN, Offline reference frames No 4.71 8.84 6.78 0.669 0.692 0.676

Table S8. Point Cloud Evaluation. 3DVNet [17] evaluate their fused point clouds
directly without exporting a mesh. To compare, we fuse our depths maps using their
point cloud fusion pipeline and evaluate both methods using the ground-truth mask
provided in [2].
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ATLAS [14] TransformerFusion [2] VoRTX [20] Ours GT Mesh

Fig. S1. Reconstructions on ScanNet Our model produces more detailed results
compared to the baselines.
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RGB ESTDepth[13] IDNSolver[25] DVMVS[4] Ours GT

Fig. S2. Depth Results on ScanNet Our model produces sharper results compared
to baselines.
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RGB ESTDepth[13] IDNSolver[25] DVMVS[4] Ours GT

Fig. S3. Depth Results on ScanNet (continued)
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Source Frame
IDNSolver [25]

Predicted
IDNSolver [25]

Estimated
Ours GT

Fig. S4. Estimated and Predicted Normals on ScanNet Our model produces
significantly sharper normals. We compute the estimated normals from depth for both
IDNSolver [25]’s and our depth prediction. We also visualize IDNSolver’s predicted
normals alongside.

S8 Metadata in Other MVS

We introduce metadata into CasMVSNet [7]. We expand the dimensions of the
cost volume to also include the metadata features described in the paper. We pass
this data in an ordered fashion through an MLP at every scale. We evaluate both
the base CasMVSNet network and a version with metadata in Table S9. We show
that metadata improves both reconstruction and especially depth estimation
accuracy on the DTU dataset [1]. Both models are trained with four reference
views alongside the source.

Abs Diff↓ Abs Rel↓ Sq Rel↓ δ < 1.05 ↑ δ < 1.10 ↑ Acc↓ Comp↓ Overall↓

CasMVSNet 11.05 0.0143 2.153 92.80 95.95 0.347 0.341 0.344
CasMVSNet + Metadata 10.58 0.0133 2.067 93.64 96.15 0.368 0.314 0.341

Table S9. Metadata in other MVS Pipelines We compare a variant of CasMVS-
Net [7] modified to use metadata in its cost volume. We show an improvement in
reconstruction and depth on the DTU dataset [1].
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