
What Matters for 3D Scene Flow Network

Guangming Wang1, Yunzhe Hu1, Zhe Liu2, Yiyang Zhou3, Masayoshi Tomizuka3,
Wei Zhan3, and Hesheng Wang1⋆

1 Department of Automation, Key Laboratory of System Control and Information Processing of
Ministry of Education, Key Laboratory of Marine Intelligent Equipment and System of Ministry

of Education, Shanghai Jiao Tong University
2 MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University

3 Mechanical Systems Control Laboratory, University of California, Berkeley
{wangguangming,huyz7830,liuzhesjtu,wanghesheng}@sjtu.edu.cn

{yiyang.zhou,tomizuka,wzhan}@berkeley.edu

Abstract. 3D scene flow estimation from point clouds is a low-level 3D mo-
tion perception task in computer vision. Flow embedding is a commonly used
technique in scene flow estimation, and it encodes the point motion between two
consecutive frames. Thus, it is critical for the flow embeddings to capture the cor-
rect overall direction of the motion. However, previous works only search locally
to determine a soft correspondence, ignoring the distant points that turn out to
be the actual matching ones. In addition, the estimated correspondence is usually
from the forward direction of the adjacent point clouds, and may not be consis-
tent with the estimated correspondence acquired from the backward direction. To
tackle these problems, we propose a novel all-to-all flow embedding layer with
backward reliability validation during the initial scene flow estimation. Besides,
we investigate and compare several design choices in key components of the 3D
scene flow network, including the point similarity calculation, input elements of
predictor, and predictor & refinement level design. After carefully choosing the
most effective designs, we are able to present a model that achieves the state-
of-the-art performance on FlyingThings3D and KITTI Scene Flow datasets. Our
proposed model surpasses all existing methods by at least 38.2% on FlyingTh-
ings3D dataset and 24.7% on KITTI Scene Flow dataset for EPE3D metric. We
release our codes at https://github.com/IRMVLab/3DFlow.

Keywords: 3D scene flow estimation, 3D PWC structure, all-to-all point mix-
ture, point clouds, 3D deep learning.

1 Introduction

As a fundamental task in computer vision, scene flow estimation aims to estimate a
3D motion field consisting of point-wise or pixel-wise 3D displacement vectors be-
tween two consecutive frames of point clouds or images. It provides a low-level rep-
resentation and understanding of the motion of dynamic objects in the scene. Many
applications directly benefit from the techniques used in scene flow estimation, such
as semantic segmentation [20], multi-object tracking [48,41], point cloud registration
⋆ Corresponding Author. The first two authors contributed equally.

https://github.com/IRMVLab/3DFlow


2 G. Wang et al.

[19,45,43], etc. The performance of scene flow estimation algorithms on point clouds
has been greatly improved since deep learning was first applied in [19]. Recent studies
[19,4,50,28,16,17,44,39] focus more on estimating scene flow in an end-to-end fashion
from two consecutive frames of raw 3D point clouds. These approaches predict scene
flow with only 3D coordinates of point clouds as inputs with no need for any prior
knowledge of the scene structure. This paper also focuses on such a research topic.

Previous learning-based methods [19,50,44] adopt flow embedding to correlate ad-
jacent frames of point clouds and to encode point motion. Their models then propagate
the flow embedding through set upconv layers [19] or coarse-to-fine warping [50,44] to
regress the scene flow. FlowNet3D [19], for example, introduces the flow embedding in
a point-to-patch manner, which means that a specific point in the first point cloud PC1

merely uses several neighbouring points in the second point cloud PC2 to learn the
correlation. PointPWC-Net [50] further improves it and proposes to learn a patch-to-
patch flow embedding, which adds a second point-to-patch embedding process in PC1

itself after the first point-to-patch embedding between two point clouds. In addition,
Pyramid, Warping, and Cost volume (PWC) structure [32] is introduced to refine the
scene flow for several times. HALFlow [44] also follows this PWC structure [32] but
improves by introducing the attention mechanism in both embedding processes. How-
ever, during the first embedding process between two point clouds, these methods only
search forK Nearest Neighbours (KNN) in PC2 to aggregate correspondence informa-
tion. Practically,K is substantially smaller than the total number of points in the second
frame, making it possible for a point in PC1 to miss the correct yet distant matching
point in PC2. Moreover, it is extremely important to obtain a reliable correlation when
calculating it for the first time because it encodes the overall direction of the flow. The
scene flow will be eventually misguided if this issue is ignored. To tackle this problem,
we introduce a novel all-to-all flow embedding layer based on the double attentive flow
embedding layer in HALFlow [44]. With all-to-all embedding, each point in PC1 will
use all points in PC2 for correlation during the first embedding process, and each point
in PC2 can therefore obtain the correlation with all points in PC1 too. This mechanism
allows that the feature correlation of all points can be exhaustively utilized from both
sides and reliable correspondence estimation can be further achieved.

This all-to-all mechanism, however, cannot guarantee that the reliable correlation is
bi-directional. That is, the estimated match pair for a specific point in PC1 in the for-
ward direction may not be consistent with the match for the corresponding matched
point in PC2 in the backward direction. Therefore, we need another constraint on
the backward match to validate its consistency with the forward pass. Mittal et al.
[26] utilize a similar mechanism by designing a cycle-consistency loss to achieve self-
supervising the scene flow estimation. However, we expect to directly incorporate this
constraint of backward validation into our network to allow the network to learn this
ability in forward reasoning. To this end, we propose backward reliability validation, a
joint learning method of backward constraint in the all-to-all flow embedding layer.

Furthermore, there are several components of our network with alternative designs
either from themselves or from other works that could affect the performance. There-
fore, we conduct a series of ablation studies to compare different designs and to explore
which elements are important and which designs are suitable for 3D scene flow network,



What Matters for 3D Scene Flow Network 3

including the point similarity calculation, predictor elements choice, and predictor &
refinement level design. Our key contributions are as follows:

1. A novel all-to-all point mixture module with backward reliability validation is pro-
posed for reliable correlation between point clouds. The all-to-all mechanism is
adopted to capture reliable match candidates from the distance, and backward infor-
mation is integrated in the inference process to validate the matching consistency.

2. Different designs and techniques of 3D scene flow network are widely compared
and analyzed. Point Similarity Calculation, Designs of Scene Flow Predictor, Input
elements of Scene Flow Predictor, and Flow Refinement Level Design are individ-
ually discussed and evaluated to showcase what matters in 3D scene flow network.

3. Experiments demonstrate that our model achieves state-of-the-art performance, re-
ducing EPE3D metric by at least 38.2% on FlyingThings3D dataset [23] and 24.7%
on KITTI Scene Flow dataset [25]. The effectiveness of proposed techniques and
choices of network designs are demonstrated through extensive ablation studies.

2 Related Work

The concept of scene flow is first introduced by Vedula et al. [36] as the 3D motion field
in real-world scenarios. Many previous works estimate scene flow by recovering the 3D
motion from optical flow and depth information on 2D image pairs, either using RGB-
stereo [7,27,35,24,37,38,23,22] or RGB-D [5,6,11] data. There has also been some re-
cent works focusing on recovering scene flow from monocular camera [52,8,53,9,42].
However, since scene flow indicates the 3D motion, directly estimating scene flow from
3D data input can enable direct optimization and higher accuracy. The applications of
LiDARs in recent years have created more available raw data of point cloud, and point-
cloud-based scene flow estimation approaches [2,34] are rapidly emerging.

Since deep learning has shown excellent performance for raw point-cloud-based
tasks [40,46,21,51] with the proposal of PointNet [29] and PointNet++ [30], many
works estimate scene flow directly from raw point clouds in an end-to-end fashion.
FlowNet3D [19] presents the first end-to-end scene flow estimation framework on point
clouds. It uses PointNet++ [30] to extract local point features and introduces a flow em-
bedding layer to encode the point motions. HPLFlow-Net [4] leverages the idea from
Bilateral Convolutional Layers (BCL) [14,12] and proposes DownBCL, UpBCL, and
CorrBCL designs to restore structural information of large-scale point clouds.

More recent works focus on improving the network performance through intro-
ducing new techniques or incorporating new components. FLOT [28] proposes to find
the correspondences from an optimal transport module by graph matching. PointPWC-
Net [50] follows a coarse-to-fine fashion for scene flow estimation on point clouds.
It extends the important component of cost volume in optical flow network [32] and
proposes a novel point-based patch-to-patch cost volume. HALFlow [44] improves the
aforementioned cost volume by a novel double attentive flow embedding method that
distributes more weights on task-related regions. HCRF-Flow [17] focuses on maintain-
ing the local geometric smoothness with the help of Conditional Random Fields (CRFs)
in deep neural networks and proposes a high-order CRFs module as the formulations of
spatial smoothness and rigid motion constraints. FESTA [47] improves naive Farthest



4 G. Wang et al.

Point Cloud 1 

(PC1)

Point Cloud 2 

(PC2)

FC

Flow Embedding

32
64

256

512 256
128

128

256

3
3 3 3 3

4N

4N

Flow 

Refinement

Flow 

Refinement

Flow 

Refinement

Flow 

Refinement

4F

4E

3F
2F

2E3E

1F

1E

3
3

256

3

Scene FlowXYZ coordinates PC1 Local Features Set Conv

1283

32
643

3

1283

512

2

NN
8

N

8

N

2

N

N

8

N

32

N
128

N

32

N

32

N 32

N

32

N

8

N

8

N

2

N

2

N

N

N

Set Upconv

All-to-All Point Mixture
Hierarchical 

Flow Refinement

Hierarchical 

Point Feature

Abstraction

all-to-all  

flow 

embedding

PC2 Local Features

32

N

128

Fig. 1. The detailed architecture of our network. Three set conv layers for PC1 and four set
conv layers for PC2 constitute the hierarchical point feature abstraction module. The all-to-all
point mixture module consists of one layer of all-to-all flow embedding followed by two set conv
layers. Four flow refinement layers are constructed in the hierarchical flow refinement module.

Point Sampling (FPS) by proposing a trainable Aggregate Pooling (AP) to adaptively
shift points to invariant positions. Inspired by [28], FlowStep3D [16] designs a Global
Correlation Unit that computes a soft correlation matrix to guide the initially estimated
scene flow and adopts Gated Recurrent Unit (GRU) for local flow update. PV-RAFT
[49] leverages point-based and voxel-based features and presents point-voxel correla-
tion fields to capture both local and long-range dependencies for point pairs.

In [50,16], different information is utilized for updating local scene flow but they
do not show which information is more important for the input of the updating unit. In
[16,49], GRU is used for iterative flow update inspired by RAFT [33] and claimed to be
more effective than a fully-connected layer. Since RAFT [33] has shown a promising
performance on optical flow, we also want to know whether the use of GRU will im-
prove the performance in other scene flow network structures. In [28,16], element-wise
product and cosine similarity are used to represent correlation between points while
concatenation of point feature is implemented for learning correlation in [44], but none
of them gives evaluation about which one is better. This paper will discuss the above
issues and compare what matters for 3D scene flow network based on PWC structure.

3 3D Scene Flow Network

3.1 Network Architecture

Our proposed network, illustrated in Fig. 1, takes in two frames of point clouds with
4N points in each, which are PC1 and PC2, and estimates N points’ scene flow from
coarse to fine. Our network is comprised of three modules: 1) Hierarchical Point Feature
Abstraction, 2) All-to-All Point Mixture, and 3) Hierarchical Flow Refinement.

The hierarchical point feature abstraction module has three set conv layers from [19]
for PC1 and four set conv layers for PC2. Each set conv layer performs down-sampling



What Matters for 3D Scene Flow Network 5

operation on the input points and extracts local features of the down-sampled points.
The same level of the set conv layers shares the same weights. Then, the proposed all-to-
all flow embedding layer correlates two point clouds and learns the flow embedding. We
then use two set conv layers after the flow embedding layer for smoothness. Next, the
output of the all-to-all point mixture module is up-sampled by the set upconv layer from
[19] to generate the initial flow embedding. A Fully-Connected (FC) layer is thereafter
applied on the initial flow embedding to produce the initial scene flow. Finally, the
initial scene flow and flow embedding are both fed into the hierarchical flow refinement
module and refined iteratively to derive the final scene flow using the information from
specific level. The skip connections indicate which level of information is utilized.

3.2 Hierarchical Point Feature Abstraction

In the hierarchical point feature abstraction module, two consecutive point clouds are
down-sampled and encoded through a series of set conv layers respectively. We adopt
the set conv layer in PointNet++ [30] to perform point feature abstraction.

Each set conv layer consumes n points {(xi, pi) | i = 1, . . . , n}, where xi ∈ R3

and pi ∈ Rc represent 3D coordinate and the point feature. The output of each layer are
n′ sampled point {(x′j , p′j) | j = 1, . . . , n′} with x′j ∈ R3 and p′j ∈ Rc′ denoting the
3D coordinate and extracted local feature. All of the output n′ (n′ < n) are sampled
from the input n points using Farthest Point Sampling (FPS) [30].

For each of the n′ sampled point, itsK nearest neighbours {(xki , pki ) | k = 1, . . . ,K}
are selected from the input n points. Then, a learnable shared Multi-Layer Perceptron
(MLP) and max-pooling operation are adopted to extract the point feature p′j of each
sampled point from the K neighbouring points. The point feature p′j is formulated as:

p′j = maxpool
k=1,...,K

(MLP((xkj − x′j)⊕ pkj )), (1)

where ⊕ indicates concatenation operation. maxpool means max-pooling operation.

3.3 All-to-All Point Mixture

The inputs of the all-to-all embedding layer are two consecutive frames of point clouds:
PC1 = {(xi, pi) | i = 1, . . . , n1} and PC2 = {(yj , qj) | j = 1, . . . , n2}, sampled in
the hierarchical point feature abstraction module. xi, yj ∈ R3 indicate 3D coordinates
and pi, qj ∈ Rc indicate the point feature. The output of the layer will be the flow
embedding E = {ei | ei ∈ Rc, i = 1 . . . , n1}, which utilizes exhaustive information in
two point clouds and encodes motion for points in PC1.

Our all-to-all embedding includes a two-stage attention-based embedding process
with an improved first embedding stage. For the first embedding process, we correlate
points in two point clouds by incorporating the all-to-all mechanism with backward
reliability validation as shown in Fig. 2. Instead of choosing only K(K < n2) nearest
points, each point in PC1 selects all n2 points Qi = {(yki , qki ) | k = 1, . . . , n2} from
PC2. In this process, all n2 points Qi from PC2 are utilized to embed point motion
into points in PC1. The motion embeddings will then be updated by carefully designed



6 G. Wang et al.

All-to-All 

Softmax

The calculation of the first flow embedding

  1PC

2PC

replicate

obtain coordinate 

information

⊙

Dot 

Product maxpool replicate

Shared 

FC

Shared 

FC

Shared 

MLP

Shared 

MLP

Shared 

MLP

Shared 

MLP

⊙

Dot 

Product

∑

Reduce 

Sum

∑

Reduce 

Sum

first flow 

embedding

1 (3 )n c +

2 (3 )n c +

1 2n n c 

1 (3 )n c +
1 2 (3 )n n c  +

1 2 10n n 

1 2n n c 
21 n c 

1 2n n c 

1 2 (3 10)n n c  +

1 2n n c  1 2 2n n c 

1 2n n c  1 2n n c 
1 2n n c 

1n c

FC
( ) ,i ix p

( ) ,j jy q

 k

is( ) ,i ix p

( ) ,k k

i iy q

 k

id

 k

ih  k

iw
 ife

Fig. 2. The detailed calculation of the first flow embedding between PC1 and PC2.

attentive weighting to derive the first flow embedding FE = {fei | i = 1, . . . , n1}.
The calculation details are elaborated as below.

A 10-dimensional vector capturing the 3D Euclidean space information is first cal-
culated as follows:

dki = xi ⊕ yki ⊕ (xi − yki )⊕
∥∥xi − yki

∥∥
2
, (2)

where ∥·∥2 indicates the L2 norm. Then, to realize backward reliability validation, we
first formulate a vector that represents a form of similarity between two point clouds by
applying element-wise product of PC1 point feature pi and PC2 point feature qki . Max-
pooling operation is then performed over n1 candidate backward embedding features,
selecting the most potential and reliable matching candidates in PC1 for each point of
PC2. An FC layer is then adopted to encode the backward reliability information. The
calculation of backward validation vector is as follows:

ski = FC(maxpool
i=1,...,n1

(pi ⊙ qki )), (3)

where ⊙ denotes dot product. The first flow embedding before attentive weighting is
then formulated as:

hki = MLP(dki ⊕ pi ⊕ qki ⊕ ski ). (4)

Specifically, pi and qki are normalized on the feature channel before concatenation.
Given the 10-dimensional vector dki , the first attentive weights for soft aggregation of
the queried points can be written as:

wk
i = softmax

k=1,...,n2

(MLP(FC(dki )⊕ hki )). (5)

The first flow embedding FE = {fei | i = 1, . . . , n1} corresponding to points with
xi coordinates is calculated as:

fei =

n2∑
k=1

hki ⊙ wk
i . (6)

For the second flow embedding process, we follow the same process as [44], which
is an aggregation process within the PC1 self with attention. Each point in PC1 selects



What Matters for 3D Scene Flow Network 7

several nearest neighbours in PC1 self, and the neighbourhood flow embeddings in
FE will be aggregated into each point in PC1 to obtain the second flow embedding
E = {ei | i = 1, . . . , n1}, which is the output of the all-to-all flow embedding layer.

Calculation of Point Similarity In formula (4), point feature pi of PC1 and qki of
PC2 are concatenated to learn the similarity between points from two point clouds.
However, there are other ways [28,16,13] to calculate and represent the point similarity:
1) product similarity: the direct dot product of pi and qki as sim(pi, q

k
i ) =< pi, q

k
i >,

2) cosine product similarity: the dot product of pi and qki divided by their respective L2

norm as sim(pi, q
k
i ) =<

pi

∥pi∥2
,

qki
∥qki ∥2

>, and 3) normalized product similarity: the dot

product of pi and qki normalized by their respective mean value µ and standard devia-

tion σ over each feature dimension as sim(pi, q
k
i ) =<

pi−µi

σi
,
qki −µk

i

σk
i

>. We intend to
explore whether the concatenation of point feature is more suitable to represent similar-
ity in our network compared with the product similarity presented above. By replacing
the concatenation of feature with different forms of product of feature in formula (4),
the effectiveness of our design is demonstrated in experiments.

3.4 Hierarchical Flow Refinement

The hierarchical flow refinement module consists of four flow refinement layers. The
layer takes coarse sparse flow and coarse sparse flow embedding as inputs with informa-
tion of PC1 and PC2 from the previous level while producing refined flow and refined
flow embedding as outputs, as illustrated in Fig. 3. It contains four main components: 1)
Set Upconv Layer, 2) Position Warping Layer, 3) Attentive Flow Re-embedding Layer,
and 4) Scene Flow Predictor. For the first flow refinement layer, the set upconv layer is
eliminated to keep the point number unchanged for suitable multi-scale supervision.

Set Upconv Layer In order to up-sample the coarse sparse flow embedding, the set
upconv layer in [19] is adopted here to propagate flow embedding from sparse level
to dense level. The inputs of this layer are n points with coarse sparse flow embed-
ding {(xi, sei) | sei ∈ Rdsparse , i = 1, . . . , n} and n′ (n′ > n) points with feature
{(x′j , p′j) | j = 1, . . . , n′} from the previous dense level. The outputs are n′ points with
dense flow embedding {(x′j , dej) | dej ∈ Rddense , j = 1, . . . , n′}. Specifically, each of
the n′ dense points will select its KNN from the sparse n points, and the coarse sparse
flow embedding will be aggregated to learn the coarse dense flow embedding by MLP.

Position Warping Layer As a coarse-to-fine style, coarse dense flow {fdensei | i =
1, . . . , n1} is first obtained from coarse sparse flow through Three-Nearest Neighbours
(Three-NN) interpolation. Next, the coordinates of the first point cloud PC1 = {(xi, pi)
| i =, . . . , n1} are updated by warping PC1 with coarse dense flow. The warped PC1

is signified as PC ′
1 = {(x′i, pi) | i = 1, . . . , n1}, where x′i = xi + fdensei .



8 G. Wang et al.

coarse sparse 

flow

coarse sparse

 flow embedding 

PC1

PC2

Three-NN 

Interpolation

Warping

flow re-embedding 

Set Upconv

Attentive 

Cost Volume 

refined flow 

embedding 

FC

refined scene 

flow

Flow Refinement Layer

coarse dense

 flow embedding 

coarse dense flow

Scene 

Flow 

Predictor

flow 

encoding

Fig. 3. The details of flow refinement layer.

Attentive Flow Re-embedding Layer
The attentive flow embedding layer pro-
posed in [44] is applied to derive a
new flow re-embedding {rei | rei ∈
Rdre , i = 1, . . . ,= n1} between PC ′

1

and PC2. Here, the flow re-embedding
contains the flow encoding from each
point in PC ′

1 toward PC2, which is es-
sential in the subsequent refinement.

Scene Flow Predictor The scene flow
predictor aims to refine coarse dense flow
embedding for the input of later flow re-
finement layer. It takes five elements as
inputs: 1) the up-sampled coarse dense
flow embedding dei ∈ Rddense , 2) the
flow re-embedding rei ∈ Rdre , 3) the point feature of the first point cloud pi ∈ Rdpc1 ,
4) the coarse dense flow fdensei ∈ R3, and 5) the dense flow feature fenc.i ∈ Rdenc. .
Specifically, the coarse dense flow is encoded by two set conv layers [19] to derive the
dense flow feature fenc.i , but the number of points remain unchanged instead of being
down-sampled. The refined dense flow embedding is formulated as:

de′i = MLP(dei ⊕ rei ⊕ pi ⊕ fi ⊕ fenc.i ). (7)

Finally, we adopt a residual flow learning structure to estimate the refined scene
flow. To be specific, an FC layer is first applied on the refined flow embedding to pro-
duce the residual flow fresi . Next, the refined scene flow is generated by adding fresi to
fdensei . The calculation of refined scene flow is as follows:

fresi = FC(de′i), (8)

fi = fdensei + fresi . (9)

Designs of Scene Flow Predictor: The scene flow predictor corrects the coarse scene
flow by regressing residual flow from the refined flow embedding. In this paper, we
adopt the concatenation of all five inputs of scene flow predictor and directly feed it into
shared MLP to derive the refined flow embedding. On the other hand, FlowStep3D [16]
and PV-RAFT [49] propose to use a GRU-based gated activation unit on point clouds,
inspired by RAFT [33], for updating a hidden state. Given a hidden state hl−1 ∈ Rc

from previous iteration and a current iteration vector xl, hl−1 is updated as follows:

zl = σ(SetConvz(hl−1 ⊕ xl)), (10)
rl = σ(SetConvr(hl−1 ⊕ xl)), (11)

h̃l = tanh(SetConvh((rl ⊙ hl−1)⊕ xl)), (12)

hl = (1− zl)⊙ hl−1 + zl ⊙ h̃l, (13)



What Matters for 3D Scene Flow Network 9

where σ(·) represents sigmoid activation function.
In particular, xl ∈ Rdre+dpc1

+denc.+3 is defined as the concatenation of flow re-
embedding, the point feature of PC1, the coarse dense flow, and the dense flow feature.
We refer to the dense flow embedding as the hidden state that will be refined iteratively.
Then, we can consider replacing our scene flow predictor with this newly designed
GRU-based updating unit. Since FlowStep3D [16] and PV-RAFT [49] claim that this
GRU-based updating mechanism outperforms the fully-connected structure which is
implemented in MLP, we will validate the performance of our scene flow predictor in
our network architecture compared with this GRU-based method in the experiment.

Input of Scene Flow Predictor: Another issue we want to investigate is what infor-
mation is needed to predict the finer flow embedding. i.e. what information is needed in
the input of the scene flow predictor. PointPWC-Net [50] uses the flow re-embedding,
the point feature of PC1, the coarse dense flow, and the up-sampled coarse dense flow
embedding as inputs. FlowStep3D [16] additionally includes the dense flow feature
but do not add the up-sampled flow embedding. PV-RAFT [49], HCRF-Flow [17], and
FESTA [47] all only use the flow re-embedding, the point feature of PC1, and the
coarse flow. HALFlow [44] does not add the dense flow feature. In this sense, we ex-
plore whether removing certain elements from the input will degrade the performance
and the extent to which those information contributes to the performance. We consider
the flow re-embedding as an indispensable element because it encodes the motion be-
tween warped PC1 and PC2 in the current level.

Level of Flow Refinement Layer: In [44], three flow refinement layers are applied
for a more-for-less network architecture, which estimates N points’ scene flow from
4N points of raw input. Only Three-NN interpolation is used for up-sampling in the
finest level of flow estimation. Apparently, this structure does not exhaustively leverage
the functionality of the whole components in the flow refinement layer. Therefore, we
choose to employ an additional flow refinement layer on the finest level to estimate the
final scene flow. The above consideration raises another question: Can the performance
be further improved if more information from denser level is taken into account? Here
we consider using raw point cloud with 4N points to estimate the 4N points’ scene flow.
The best choice will be demonstrated in the experiment.

4 Experiments

4.1 Datasets and Data Preprocess

Because of the inherent difficulty in acquiring large-scale ground-truth scene flow of
the real world, we resort to the common synthetic FlyingThings3D dataset [23] for
training and evaluation. We first train our network on FlyingThings3D dataset [23], and
then directly test our trained model on real-world LiDAR scans from KITTI scene flow
dataset [25] without any fine-tuning to demonstrate the generalization capability.

There are two common versions of preparing point clouds from FlyingThings3D
dataset [23] and KITTI scene flow dataset [25]. The first version of data preprocessing
is proposed by HPLFlowNet [4] and adopted in [4,50,44,17,16]. It does not contain
occlusion for input point clouds, which means each point in PC1 has its correspond-
ing point in PC2 when warped by its ground-truth scene flow. The second version is



10 G. Wang et al.

proposed by FlowNet3D [19]. This version provides occluded point clouds as inputs
and masks that indicate the invalid points without corresponding ones in the adjacent
frame. These masks are also used in computing training loss and evaluation metrics. To
compare with all 3D scene flow estimation methods to our knowledge, we follow two
versions of data preprocessing and conduct experiments on both versions of datasets.
More details about datasets and preprocessing is in the supplementary material.

4.2 Training and Evaluation Details

Training Loss We train our network in a supervised manner at different levels, similar
to [32,50]. Suppose the predicted scene flow of each point at level l is {f li ∈ R3 | i =
1, . . . , Nl} and the ground-truth scene flow is {GT (f li ) ∈ R3 | i = 1, . . . , Nl}. Here,
Nl denotes the number of points at level l. Our training loss can be therefore written as:

Loss =

4∑
l=1

ψl
1

Nl

Nl∑
i=1

∥∥f li −GT (f li )
∥∥
2
, (14)

where ψl indicates the weight at level l. We define the finest level, which is also the level
with the densest points, as level l = 1. Specifically, our network takes in 4N = 8, 912
as inputs, N1 = N = 2, 048, N2 = N/2 = 1, 024, N3 = N/8 = 256, and N4 =
N/32 = 64. The loss weights are ψ1 = 0.02, ψ2 = 0.04, ψ3 = 0.08, and ψ4 = 0.16.

Implementation Details For the training and evaluation process of our network, 8,192
points are randomly sampled as inputs from the raw points clouds of two consecutive
frames. Only 3D XYZ coordinates of the point clouds are fed into our network, like
[4,50,44,17,16]. For fair comparison with previous methods, on FlyingThings3D pre-
pared by [4], we first train our network on one quarter of the training set (4,910 pairs)
and then fine-tune our model on the complete training set to speed up the training pro-
cess. On FlyingThings3D prepared by [19], we train our model without fine-tuning.

We conduct all the experiments on a single Titan RTX GPU. Pre-training is done for
800 epochs, and fine-tuning lasts for 200 epochs after loading the pre-trained weights.
Batch size is 14. Adam optimizer [15] is used in training, and β1 = 0.9, β2 = 0.99. The
initial learning rate is 0.001 and decays for every 80 epochs exponentially with decay
rate γ = 0.5. Our supplementary material provides all details of network parameters.

Evaluation Metrics We adopt the same evaluation metrics used in [4,50,44,17] to
evaluate our model for fair comparison, including EPE3D(m), Acc3D Strict, Acc3D
Relax, Outliers3D, EPE2D(px), and Acc2D. The detailed description of the metrics is
shown in the supplementary material.

5 Results

5.1 Comparison with State-of-the-Art (SOTA)

Table 1 shows the quantitative comparison between previous state-of-the-arts and our
approach on FlyingThings3D dataset [23] and KITTI scene flow dataset [25] prepared



What Matters for 3D Scene Flow Network 11

Table 1. The quantitative comparison between recent state-of-the-art methods and ours on Fly-
ingThings3D and KITTI scene flow datasets prepared by Gu et al. [4] without occlusion. All
listed approaches are only trained on FlyingThings3D dataset. The best results are in bold. “Full”
means fully-supervised training.

Evaluation Dataset Method Training Data Input Sup. EPE3D Acc3D Strict Acc3D Relax Outliers3D EPE2D Acc2D

FlowNet3 [10] Quarter RGB stereo Full 0.4570 0.4179 0.6168 0.6050 5.1348 0.8125

ICP [1] No Points Full 0.4062 0.1614 0.3038 0.8796 23.2280 0.2913
FlowNet3D [19] Quarter Points Full 0.1136 0.4125 0.7706 0.6016 5.9740 0.5692
SPLATFlowNet [31] Quarter Points Full 0.1205 0.4197 0.7180 0.6187 6.9759 0.5512
HPLFlowNet [4] Quarter Points Full 0.0804 0.6144 0.8555 0.4287 4.6723 0.6764
HPLFlowNet [4] Complete Points Full 0.0696 — — — — —
PointPWC-Net [50] Complete Points Full 0.0588 0.7379 0.9276 0.3424 3.2390 0.7994
HALFlow [44] Quarter Points Full 0.0511 0.7808 0.9437 0.3093 2.8739 0.8056
HALFlow [44] Complete Points Full 0.0492 0.7850 0.9468 0.3083 2.7555 0.8111
FLOT [28] Complete Points Full 0.0520 0.7320 0.9270 0.3570 — —

FlyingThings 3D
dataset [23]

HCRF-Flow [17] Quarter Points Full 0.0488 0.8337 0.9507 0.2614 2.5652 0.8704
PV-RAFT [49] Complete Points Full 0.0461 0.8169 0.9574 0.2924 — —
FlowStep3D [16] Complete Points Full 0.0455 0.8162 0.9614 0.2165 — —
Ours Quarter Points Full 0.0317 0.9109 0.9757 0.1673 1.7436 0.9108
Ours Complete Points Full 0.0281 0.9290 0.9817 0.1458 1.5229 0.9279

FlowNet3 [10] Quarter RGB stereo Full 0.9111 0.2039 0.3587 0.7463 5.1023 0.7803

ICP [1] No Points Full 0.5181 0.0669 0.1667 0.8712 27.6752 0.1056
FlowNet3D [19] Quarter Points Full 0.1767 0.3738 0.6677 0.5271 7.2141 0.5093
SPLATFlowNet [31] Quarter Points Full 0.1988 0.2174 0.5391 0.6575 8.2306 0.4189
HPLFlowNet [4] Quarter Points Full 0.1169 0.4783 0.7776 0.4103 4.8055 0.5938
HPLFlowNet [4] Complete Points Full 0.1113 — — — — —
PointPWC-Net [50] Complete Points Full 0.0694 0.7281 0.8884 0.2648 3.0062 0.7673
HALFlow [44] Quarter Points Full 0.0692 0.7532 0.8943 0.2529 2.8660 0.7811
HALFlow [44] Complete Points Full 0.0622 0.7649 0.9026 0.2492 2.5140 0.8128
FLOT [28] Complete Points Full 0.0560 0.7550 0.9080 0.2420 — —

KITTI
dataset [25]

HCRF-Flow [17] Quarter Points Full 0.0531 0.8631 0.9444 0.1797 2.0700 0.8656
PV-RAFT [49] Complete Points Full 0.0560 0.8226 0.9372 0.2163 — —
FlowStep3D [16] Complete Points Full 0.0546 0.8051 0.9254 0.1492 — —
Ours Quarter Points Full 0.0332 0.8931 0.9528 0.1690 1.2186 0.9373
Ours Complete Points Full 0.0309 0.9047 0.9580 0.1612 1.1285 0.9451

by [4]. It is demonstrated that our approach outperforms all other methods by a large
margin for both 3D and 2D metrics on FlyingThings3D dataset [23]. Meanwhile, our
method also achieves the best generalization results on KITTI scene flow [25]. Specif-
ically, we surpasses the SOTA method, FlowStep3D [16], by 38.2% for EPE3D metric
on FlyingThings3D dataset [23], and 43.4% on KITTI scene flow [25] dataset.

The recent work, FESTA [47], is only tested on the datasets prepared by [19]. To
compare with all the methods to our knowledge, we also present the evaluation results
on FlyingThings3D dataset [23] and KITTI scene flow dataset [25] prepared by [19] in
Table 2. It can be demonstrated that our approach still outperforms previous methods
substantially for all 3D metrics on both datasets. Specifically, we surpasses the SOTA
method, FESTA [47], by 43.2% with respect to EPE3D metric on FlyingThings3D
dataset [23], and 24.7% on KITTI scene flow [25] dataset. We believe the superior
performance of our method on the datasets with occlusion partly from our backward
validation, which can be aware of the occlusion in the network inference.

We also present detailed visualization of the accuracy of the estimated scene flow
by our approach in Fig. 4, compared with methods in [19,44]. It can be seen that our
method can better handle the structures with repetitive patterns and large motions.



12 G. Wang et al.

Table 2. Evaluation results on FlyingThings3D and KITTI Scene Flow datasets prepared by Liu et
al. [19] with occlusion. The best results are in bold. “Self” means self-supervised training. “Full”
means fully-supervised training. All fully-supervised approaches are trained on FlyingThings3D
dataset. Self-Point-Flow [18] is trained on raw LiDAR data from KITTI dataset [3].

Evaluation Dataset Method Input Sup. EPE3D Acc3D Strict Acc3D Relax Outliers

FlowNet3D [19] Points Full 0.169 0.254 0.579 0.789
FLOT [28] Points Full 0.156 0.343 0.643 0.700
FESTA [47] Points Full 0.111 0.431 0.744 —

FlyingThings 3D
dataset [23]

Ours Points Full 0.063 0.791 0.909 0.279

Self-Point-Flow [18] Points Self 0.105 0.417 0.725 0.501

FlowNet3D [19] Points Full 0.173 0.276 0.609 0.649
FLOT [28] Points Full 0.110 0.419 0.721 0.486
FESTA [47] Points Full 0.097 0.449 0.833 —

KITTI
dataset [25]

Ours Points Full 0.073 0.819 0.890 0.261

5.2 Ablation Study

In this section, we demonstrate the effectiveness of the proposed all-to-all point mix-
ture module and validate our network design choices compared with other discussed
alternative structures through a series of ablation studies. All methods in the ablation
studies are trained on 1

4 of the training set (4,910 pairs) of FlyingThings3D dataset [23]
prepared by [4] and evaluated using the corresponding evaluation set.

All-to-all and Backward Information In order to demonstrate the effectiveness of
both the all-to-all mechanism and the backward validation vector, we first remove the
vector that stores the backward information in the all-to-all flow embedding layer,
which means ski is removed from formula (4). Then, the all-to-all mechanism is re-
moved, which means points from PC1 will only select K nearest neighbours instead.
The results in Table 3(a) show that both the all-to-all mechanism and the backward
validation vector contribute to the improvement of performance. In fact, the all-to-all
mechanism enables the querying point in PC1 to expand its searching range from K
nearest neighbours to all points in PC2 to determine its most reliable matching candi-
date. The backward validation vector acquired based on the all-to-all mechanism brings
in the information that imposes bi-directional consensus from the backward direction.
Therefore, the network can be guided by this backward validation information to better
learn the correct matching and estimate more accurate scene flow.

Calculation of Point Similarity Three different forms of similarity calculation are
discussed in section 3.3. Since point similarity design can affect the correlation of ad-
jacent point clouds to a large extent, we compare these product similarity methods with
ours. The results in Table 3(b) demonstrate that the concatenation of point feature has
the best performance than product forms of point similarity. Representing point simi-
larity via concatenation is more suited in our network. We believe this is because the
concatenation operation allows the network to fully exploit its self-learning ability.



What Matters for 3D Scene Flow Network 13

FlyingThings3D [23] dataset KITTI Scene Flow [25] dataset

F
lo

w
N

et
3

D
 [

1
9

] 
 

H
A

L
F

lo
w

  
[4

4
]

O
u

rs

Fig. 4. The visualization results of the proposed method, compared with FlowNet3D [19] and
HALFlow [44], on FlyingThings3D (left) and KITTI scene flow (right) datasets prepared by Gu
et al. [4]. Blue points indicate PC1. Green points indicate accurate predictions P̃C2 = PC1+F
and red points indicate inaccurate predictions (measured by Acc3D Relax).

Designs of Scene Flow Predictor Since our scene flow predictor is only implemented
with MLP, we want to know whether GRU in [16,49] can improve the performance. We
consider the flow embedding as the hidden state to be updated and replace our MLP
based scene flow predictor with GRU. Table 3(c) show that the performance actually
degrades using GRU. For our coarse-to-fine network, GRU is less suitable for updating
and refining the flow embedding. We believe this is due to the difference of the point
number at different levels, which is different from FlowStep3D [16] and PV-RAFT [49].

Input of Scene Flow Predictor As the scene flow predictor serves to refine the flow
embedding for regression of more accurate scene flow, we are interested in what matters
in the input information of the scene flow predictor and to what extent each of the
inputs contributes to the performance. Therefore, we respectively ablate each of the five
inputs except the flow re-embedding in our scene flow predictor to demonstrate their
importance. Table 3(d) show that the up-sampled flow embedding is the most important
element of inputs, which is intuitive because the up-sampled flow embedding is refined
in the previous layer and contains abundant motion information. The removal of the
coarse flow and flow feature also causes a slight decline in quantitative performance,
which demonstrates that they can also provide some instructions for the improvement
of the refinement.

Level of Flow Refinement Layer In our hierarchical flow refinement module, four
flow refinement layers exhaustively utilize all four levels of sampled point feature, in-



14 G. Wang et al.

Table 3. The ablation study results on FlyingThings3D dataset prepared by Gu et al. [4].

Method EPE3D Acc3D Strict Acc3D Relax Outliers EPE2D Acc2D

(a) Ours w/o backward validation 0.0332 0.9044 0.9743 0.1766 1.8221 0.9065
Ours w/o backward validation and all-to-all mechanism 0.0349 0.9001 0.9725 0.1798 1.9819 0.9032
Ours (full, with backward validation and all-to-all mechanism) 0.0317 0.9109 0.9757 0.1673 1.7436 0.9108

(b) Ours (with product similarity) 0.0356 0.8872 0.9692 0.1953 1.9872 0.8870
Ours (with cosine product similarity) 0.0370 0.8755 0.9670 0.2142 2.0637 0.8746
Ours (with normalized product similarity ) 0.0339 0.8971 0.9724 0.1845 1.8790 0.8965
Ours (full, with concatenated similarity) 0.0317 0.9109 0.9757 0.1673 1.7436 0.9108

(c) Ours (replace Scene Flow Predictor with GRU) 0.0350 0.8892 0.9668 0.1827 1.9274 0.8896
Ours (full, with Scene Flow Predictor) 0.0317 0.9109 0.9757 0.1673 1.7436 0.9108

(d) Ours w/o features of PC1 in Scene Flow Predictor 0.0333 0.9047 0.9743 0.1740 1.8428 0.9073
Ours w/o up-sampled flow embedding in Scene Flow Predictor 0.0380 0.8732 0.9642 0.2099 2.0953 0.8785
Ours w/o coarse flow in Scene Flow Predictor 0.0323 0.9076 0.9750 0.1717 1.7760 0.9083
Ours w/o flow feature in Scene Flow Predictor 0.0327 0.9061 0.9748 0.1740 1.8063 0.9074
Ours (full, with complete five inputs in Scene Flow Predictor) 0.0317 0.9109 0.9757 0.1673 1.7436 0.9108

(e) Ours (with interpolation estimating 2048 points’ flow) 0.0359 0.8844 0.9691 0.2004 1.9511 0.8911
Ours (with interpolation estimating 8192 points’ flow) 0.0332 0.9043 0.9739 0.1740 1.8039 0.9076
Ours (full, with flow refinement estimating 2048 points’ flow) 0.0317 0.9109 0.9757 0.1673 1.7436 0.9108

dicated by skip connection. Compared with [44], we add an additional flow refinement
layer on the finest level. In order to validate its effectiveness, we remove this flow refine-
ment layer and instead use Three-NN interpolation to obtain the final N points’ scene
flow from 4N points’ inputs, as [44]. In addition, we further apply the Three-NN inter-
polation to obtain 4N points’ scene flow out of 4N points’ inputs to see whether more
information from raw input will result in an improvement. It turns out in Table 3(e) that
both of these designs will degrade the network performance and our four layers of flow
refinement that leverage all levels’ sampled point feature prove the most suitable and
effective structure design for our network.

6 Conclusion

In this paper, a novel all-to-all point mixture module with backward reliability valida-
tion is proposed for reliable correlation. In addition, different designs and techniques for
key components of our network are thoroughly compared. We provide a series of abla-
tion studies to show the contributions of each element in key components and to demon-
strate what matters in scene flow network. Quantitative results on FlyingThings3D [23]
and KITTI scene flow dataset [25] show that our method achieves SOTA performance.
Our comparison and analysis on design choices of key components and structure are
expected to facilitate the design of scene flow network in future research.

Acknowledgement. This work was supported in part by the Natural Science Foundation of
China under Grant 62073222, Grant U21A20480, and Grant U1913204; in part by the Science
and Technology Commission of Shanghai Municipality under Grant 21511101900; and in part
by the Open Research Projects of Zhejiang Laboratory under Grant 2022NB0AB01. The authors
gratefully appreciate the contribution of Chaokang Jiang from China University of Mining and
Technology, and Xinrui Wu from Shanghai Jiao Tong University.



What Matters for 3D Scene Flow Network 15

References

1. Besl, P.J., McKay, N.D.: Method for registration of 3-d shapes. In: Sensor fusion IV: control
paradigms and data structures. vol. 1611, pp. 586–606. Spie (1992)

2. Dewan, A., Caselitz, T., Tipaldi, G.D., Burgard, W.: Rigid scene flow for 3d lidar scans.
In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp.
1765–1770. IEEE (2016)

3. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The kitti dataset. The
International Journal of Robotics Research 32(11), 1231–1237 (2013)

4. Gu, X., Wang, Y., Wu, C., Lee, Y.J., Wang, P.: Hplflownet: Hierarchical permutohedral lat-
tice flownet for scene flow estimation on large-scale point clouds. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3254–3263 (2019)

5. Hadfield, S., Bowden, R.: Kinecting the dots: Particle based scene flow from depth sensors.
In: 2011 International Conference on Computer Vision. pp. 2290–2295. IEEE (2011)

6. Herbst, E., Ren, X., Fox, D.: Rgb-d flow: Dense 3-d motion estimation using color and depth.
In: 2013 IEEE international conference on robotics and automation. pp. 2276–2282. IEEE
(2013)

7. Huguet, F., Devernay, F.: A variational method for scene flow estimation from stereo se-
quences. In: 2007 IEEE 11th International Conference on Computer Vision. pp. 1–7. IEEE
(2007)

8. Hur, J., Roth, S.: Self-supervised monocular scene flow estimation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7396–7405 (2020)

9. Hur, J., Roth, S.: Self-supervised multi-frame monocular scene flow. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2684–2694 (2021)

10. Ilg, E., Saikia, T., Keuper, M., Brox, T.: Occlusions, motion and depth boundaries with a
generic network for disparity, optical flow or scene flow estimation. In: Proceedings of the
European Conference on Computer Vision (ECCV). pp. 614–630 (2018)

11. Jaimez, M., Souiai, M., Gonzalez-Jimenez, J., Cremers, D.: A primal-dual framework for
real-time dense rgb-d scene flow. In: 2015 IEEE international conference on robotics and
automation (ICRA). pp. 98–104. IEEE (2015)

12. Jampani, V., Kiefel, M., Gehler, P.V.: Learning sparse high dimensional filters: Image filter-
ing, dense crfs and bilateral neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 4452–4461 (2016)

13. Jonschkowski, R., Stone, A., Barron, J.T., Gordon, A., Konolige, K., Angelova, A.: What
matters in unsupervised optical flow. In: European Conference on Computer Vision. pp. 557–
572. Springer (2020)

14. Kiefel, M., Jampani, V., Gehler, P.: Permutohedral lattice cnns. In: ICLR Workshop Track
2015 (2015)

15. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

16. Kittenplon, Y., Eldar, Y.C., Raviv, D.: Flowstep3d: Model unrolling for self-supervised scene
flow estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition. pp. 4114–4123 (2021)

17. Li, R., Lin, G., He, T., Liu, F., Shen, C.: Hcrf-flow: Scene flow from point clouds with contin-
uous high-order crfs and position-aware flow embedding. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 364–373 (2021)

18. Li, R., Lin, G., Xie, L.: Self-point-flow: Self-supervised scene flow estimation from point
clouds with optimal transport and random walk. In: Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition. pp. 15577–15586 (2021)



16 G. Wang et al.

19. Liu, X., Qi, C.R., Guibas, L.J.: Flownet3d: Learning scene flow in 3d point clouds. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
529–537 (2019)

20. Liu, X., Yan, M., Bohg, J.: Meteornet: Deep learning on dynamic 3d point cloud sequences.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 9246–
9255 (2019)

21. Liu, Z., Zhou, S., Suo, C., Yin, P., Chen, W., Wang, H., Li, H., Liu, Y.H.: Lpd-net: 3d point
cloud learning for large-scale place recognition and environment analysis. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 2831–2840 (2019)

22. Ma, W.C., Wang, S., Hu, R., Xiong, Y., Urtasun, R.: Deep rigid instance scene flow. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
3614–3622 (2019)

23. Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox, T.: A large
dataset to train convolutional networks for disparity, optical flow, and scene flow estimation.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp.
4040–4048 (2016)

24. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 3061–3070 (2015)

25. Menze, M., Heipke, C., Geiger, A.: Object scene flow. ISPRS Journal of Photogrammetry
and Remote Sensing 140, 60–76 (2018)

26. Mittal, H., Okorn, B., Held, D.: Just go with the flow: Self-supervised scene flow estimation.
In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
pp. 11177–11185 (2020)

27. Pons, J.P., Keriven, R., Faugeras, O.: Multi-view stereo reconstruction and scene flow esti-
mation with a global image-based matching score. International Journal of Computer Vision
72(2), 179–193 (2007)

28. Puy, G., Boulch, A., Marlet, R.: Flot: Scene flow on point clouds guided by optimal transport.
In: European conference on computer vision. pp. 527–544. Springer (2020)

29. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classi-
fication and segmentation. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 652–660 (2017)

30. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning on point
sets in a metric space. Advances in neural information processing systems 30 (2017)

31. Su, H., Jampani, V., Sun, D., Maji, S., Kalogerakis, E., Yang, M.H., Kautz, J.: Splatnet:
Sparse lattice networks for point cloud processing. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 2530–2539 (2018)

32. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Pwc-net: Cnns for optical flow using pyramid, warp-
ing, and cost volume. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 8934–8943 (2018)

33. Teed, Z., Deng, J.: Raft: Recurrent all-pairs field transforms for optical flow. In: European
conference on computer vision. pp. 402–419. Springer (2020)

34. Ushani, A.K., Wolcott, R.W., Walls, J.M., Eustice, R.M.: A learning approach for real-time
temporal scene flow estimation from lidar data. In: 2017 IEEE International Conference on
Robotics and Automation (ICRA). pp. 5666–5673. IEEE (2017)

35. Valgaerts, L., Bruhn, A., Zimmer, H., Weickert, J., Stoll, C., Theobalt, C.: Joint estimation
of motion, structure and geometry from stereo sequences. In: European Conference on Com-
puter Vision. pp. 568–581. Springer (2010)

36. Vedula, S., Baker, S., Rander, P., Collins, R., Kanade, T.: Three-dimensional scene flow. In:
Proceedings of the Seventh IEEE International Conference on Computer Vision. vol. 2, pp.
722–729. IEEE (1999)



What Matters for 3D Scene Flow Network 17

37. Vogel, C., Schindler, K., Roth, S.: Piecewise rigid scene flow. In: Proceedings of the IEEE
International Conference on Computer Vision. pp. 1377–1384 (2013)

38. Vogel, C., Schindler, K., Roth, S.: 3d scene flow estimation with a piecewise rigid scene
model. International Journal of Computer Vision 115(1), 1–28 (2015)

39. Wang, G., Jiang, C., Shen, Z., Miao, Y., Wang, H.: Sfgan: Unsupervised generative adver-
sarial learning of 3d scene flow from the 3d scene self. Advanced Intelligent Systems 4(4),
2100197 (2022)

40. Wang, G., Liu, H., Chen, M., Yang, Y., Liu, Z., Wang, H.: Anchor-based spatio-temporal
attention 3-d convolutional networks for dynamic 3-d point cloud sequences. IEEE Transac-
tions on Instrumentation and Measurement 70, 1–11 (2021)

41. Wang, G., Peng, C., Zhang, J., Wang, H.: Interactive multi-scale fusion of 2d and 3d features
for multi-object tracking. arXiv preprint arXiv:2203.16268 (2022)

42. Wang, G., Tian, X., Ding, R., Wang, H.: Unsupervised learning of 3d scene flow from monoc-
ular camera. In: 2021 IEEE International Conference on Robotics and Automation (ICRA).
pp. 4325–4331. IEEE (2021)

43. Wang, G., Wu, X., Jiang, S., Liu, Z., Wang, H.: Efficient 3d deep lidar odometry. arXiv
preprint arXiv:2111.02135 (2021)

44. Wang, G., Wu, X., Liu, Z., Wang, H.: Hierarchical attention learning of scene flow in 3d
point clouds. IEEE Transactions on Image Processing 30, 5168–5181 (2021)

45. Wang, G., Wu, X., Liu, Z., Wang, H.: Pwclo-net: Deep lidar odometry in 3d point clouds
using hierarchical embedding mask optimization. In: Proc. CVPR. pp. 15910–15919 (2021)

46. Wang, G., Yang, Y., Zhang, H., Liu, Z., Wang, H.: Spherical interpolated convolutional net-
work with distance-feature density for 3-d semantic segmentation of point clouds. IEEE
Transactions on Cybernetics (2021)

47. Wang, H., Pang, J., Lodhi, M.A., Tian, Y., Tian, D.: Festa: Flow estimation via spatial-
temporal attention for scene point clouds. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 14173–14182 (2021)

48. Wang, S., Sun, Y., Liu, C., Liu, M.: Pointtracknet: An end-to-end network for 3-d object
detection and tracking from point clouds. IEEE Robotics and Automation Letters 5(2), 3206–
3212 (2020)

49. Wei, Y., Wang, Z., Rao, Y., Lu, J., Zhou, J.: Pv-raft: point-voxel correlation fields for scene
flow estimation of point clouds. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 6954–6963 (2021)

50. Wu, W., Wang, Z.Y., Li, Z., Liu, W., Fuxin, L.: Pointpwc-net: Cost volume on point clouds
for (self-) supervised scene flow estimation. In: European conference on computer vision.
pp. 88–107. Springer (2020)

51. Xia, Y., Xu, Y., Li, S., Wang, R., Du, J., Cremers, D., Stilla, U.: Soe-net: A self-attention
and orientation encoding network for point cloud based place recognition. In: Proceedings
of the IEEE/CVF Conference on computer vision and pattern recognition. pp. 11348–11357
(2021)

52. Yang, G., Ramanan, D.: Upgrading optical flow to 3d scene flow through optical expansion.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 1334–1343 (2020)

53. Yang, G., Ramanan, D.: Learning to segment rigid motions from two frames. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1266–1275
(2021)


	What Matters for 3D Scene Flow Network

