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1 Implementation Details

We implement the MODE framework with PyTorch. For the omnidirectional
stereo matching stage of our framework, we first train the network for 45 epochs
with a learning rate of 0.001, and then decay the learning rate to 0.0001 to
train the model for 10 epochs. For the depth map fusion stage, we first train
the network for 150 epochs with a learning rate of 0.0001, and then fine-tune
the fusion network for 20 epochs on the soiled version of Deep360. For stage 1,
GPU memory requirement is 54 GB and training time is 130h. For stage 2, GPU
memory requirement is 10 GB and training time is 12h.

We use one of the official dataset splits of 3D60[2] that contains 7858 frames
for training, 1103 for validation, and 2189 for test in experiments. All the SOTA
360◦ depth estimation methods are fine-tuned based on this dataset split for
comparison.

We use Insta360 ONE X2 cameras to build the multi-view 360◦ camera sys-
tem in the real-world environment. The 360◦ cameras are calibrated with the
toolbox Kalibr, in particular [1].

2 More Results of Experiments

We show the qualitative results of omnidirectional stereo matching in Fig. 1.
Since the spherical disparity is defined in Cassini projection domain, we present
the disparity maps in Cassini projection.

More qualitative comparisons of SOTA 360◦ depth estimation methods are
shown in Fig. 2 and 3. Additional test results of our framework in the real-world
environment are presented in the supplementary video at https://youtu.be/
Fw-KR35UWgQ.
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3 Details of Proposed Datasets

The generation details of our proposed 360◦ dataset Deep360 are presented in
the supplementary video as well. More examples of Deep360 are shown in Fig. 4
and 5.
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Fig. 1. Qualitative comparisons of omnidirectional stereo matching on
Deep360
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Fig. 2. Qualitative comparisons of omnidirectional depth estimation meth-
ods on Deep360
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Fig. 3. Qualitative comparisons of omnidirectional depth estimation meth-
ods on Deep360 (Soiled)
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Fig. 4. Deep360 From left: rectified panoramas, disparity maps, and ground truth
depth map
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Fig. 5. Deep360 (Soiled) From left: soiled panoramas, disparity maps, and ground
truth depth map. From top: mud spots, water drops, and glare
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