
PoserNet: Refining Relative Camera Poses
Exploiting Object Detections ⋆

Matteo Taiana, Matteo Toso, Stuart James, and Alessio Del Bue

Pattern Analysis and Computer Vision (PAVIS), Istituto Italiano di Tecnologia (IIT),
Genoa, Italy

{name.surname}@iit.it

Abstract. The estimation of the camera poses associated with a set
of images commonly relies on feature matches between the images. In
contrast, we are the first to address this challenge by using objectness
regions to guide the pose estimation problem rather than explicit se-
mantic object detections. We propose Pose Refiner Network (PoserNet)
a light-weight Graph Neural Network to refine the approximate pair-
wise relative camera poses. PoserNet exploits associations between the
objectness regions - concisely expressed as bounding boxes - across multi-
ple views to globally refine sparsely connected view graphs. We evaluate
on the 7-Scenes dataset across varied sizes of graphs and show how this
process can be beneficial to optimisation-based Motion Averaging algo-
rithms improving the median error on the rotation by 62◦with respect to
the initial estimates obtained based on bounding boxes. Code and data
are available at github.com/IIT-PAVIS/PoserNet.

1 Introduction

A common problem in computer vision is the recovery of multiple camera poses
in a common reference frame starting from a set of images, with applications
in tasks such as Structure from Motion (SfM), Simultaneous Localisation And
Mapping (SLAM) or visual odometry. Traditionally, most solutions rely on the
extraction and matching of keypoint features from the images [31]. Those ap-
proaches are vulnerable to many factors, such as: changes in viewpoint, illumi-
nation, repeated patterns that can lead to mismatches; and the presence of fea-
tureless, transparent or reflective surfaces which can result in a scarcity of useful
keypoints. Since all these factors commonly occur in real-world scenes, feature-
based approaches often rely on extensive refinement steps of the matches, and
on outlier rejection methods like RANSAC [8].

We propose an alternative approach, instead of focusing on keypoints, we
leverage on the continuous improvements in object detectors [15, 27] to extract
the location of potential objects in the images as the basis of our approach. This
presents multiple advantages: i) detections matching is more reliable; ii) working

⋆ This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 870743.

https://github.com/IIT-PAVIS/PoserNet

2 M. Taiana et al.

Fig. 1: (a) Our method takes a set of unordered images as input; (b) it detects
ROIs; and (c) matches them between frames; (d) ROI & matches are then used
to estimate an initial relative pose using 5-point algorithm; (e) the initial poses
are refined exploiting the matched detections by PoserNet; and, finally, (f) the
refined poses are processed by Motion Averaging to compute absolute poses.

with objects is more efficient than handling tens of thousands of keypoints;
and iii) for many downstream applications it is convenient to reason in terms
of objects present in the scene, rather than 3D points. The use of objects for
camera pose estimation, i.e. Structure from Motion with Objects (SfMO), has
been previously proposed [6, 12], however, it relies on a closed-form solution
based on multiple disparate views of objects and a simpler camera model that
makes its application highly constrained and challenging to apply in the wild.

To overcome the limitation of SfMO and test our object-based assumptions,
we propose: i) to extract a set of 2D bounding boxes using an objectness de-
tector indicating the probable location of objects of interest; ii) to match these
detections across images; iii) to use them to provide an initial estimate of the
relative transformation between each pair of images that contain common scene
elements; and iv) to exploit the matched detections and rough relative poses to
create a view graph, which we then refine via a novel GNN-based architecture
called Pose Refinement Network (PoserNet). This allows us to obtain more ac-
curate relative camera poses, which v) we then use to recover absolute poses via
Motion Averaging algorithms and place camera poses in a common reference
frame (as seen in Fig. 1).

To summarise, the contributions of this paper are threefold:

– A GNN-based architecture, PoserNet, that exploits matched region detec-
tions to refine rough estimates of the pair-wise camera transformations, pro-
ducing accurate relative poses;

PoserNet 3

– we combine the PoserNet module with two paradigms of Motion Averaging
algorithms (EIG-SE3 [2] & MultiReg [36]) to estimate absolute camera poses;

– we provide experimental evidence using object detections and keypoints,
comparing our method against a state-of-the-art methods for small view-
graphs on 7-Scenes.

2 Related work

Recovering camera poses from a sparse set of images is a well studied problem,
especially in the context of SfM, and there are extensive reviews on the topic (see
Bianco et al. [3]). Similarly, many works discussed in this paper, and our Poser-
Net model, are based on Graph Neural Networks (GNN). These have recently
received a lot of attention, due to their successful applications in many domains,
and we point to Wu et al. [32] and Zhou et al. [37] for an extensive review of
GNNs. In this section, we will instead discuss: methods for relative camera pose
estimation (Sec. 2.1), as these are the approaches PoserNet aims to improve
on; Motion Averaging works (Sec. 2.2), which allow us to evaluate the effects of
PoserNet pose refinements; and object-based approaches in 3D Computer Vision
(Sec. 2.3), as PoserNet takes as inputs matched object detections.

2.1 Relative Pose Estimation

The most common approach to relative pose estimation is to extract a large
number of keypoints, matched across the images, and to apply geometrical meth-
ods like Hartley’s normalised eight-point algorithm [14], Nistér’s five-point algo-
rithm [25] or its simplified implementation introduced by Li and Hartley [17].
This problem is hard in real scenarios, since pixel locations and camera extrinsics
can assume a wide range of values, and keypoint matches are noisy and unre-
liable in many practical application. For this reason, such geometrical methods
are typically paired with tools like RANSAC to reduce the impact of outliers.
The advancement of deep learning allowed approaching relative pose estimation
as a learning problem: Li et al. [18] directly trained a deep network to predict the
relative pose and orientation between two images, in the context of image relo-
calisation. Moran et al. [21] directly recovered global camera poses from feature
matches and a sparse scene reconstruction, minimizing an unsupervised repro-
jection loss exploiting one encoder equivariant to feature permutations. Cai et
al. [4] proposed an encoders-based network, with dense correlation volume rep-
resentation, trained to estimate the relative pose from image pairs via cues like
light source directions, vanishing points, and scene symmetries. Alternatively,
Neural Radiance Fields for View Synthesis (NeRF) [20] was re-framed by Yen-
Chen et al. [35] and used for camera pose estimation. Yan et al. [33], used a
GNN to frame the problem of image retrieval for camera relocalisation as a node
binary classification in a subgraph.

Unlike these methods, we suggest that the relative poses estimated via geo-
metrical approaches - which are typically computationally efficient and do not

4 M. Taiana et al.

require training - can provide competitive performance, if properly refined. We
exemplify this by showing how even rough estimates obtained by applying a
standard geometrical method to a small number of loosely matched points (the
centres of matched detections) can be refined by our PoserNet.

2.2 Motion Averaging

Given a set of relative poses, there are different approaches to reconstruct abso-
lute poses in a common reference frame (i.e. the Motion Averaging or synchro-
nisation problem). Classically, this is done via optimisation algorithms, like the
ones of standard global SfM [22], or of Arrigoni et al. [2], who proposed a closed-
form solution based on spectral decomposition, using an iteratively reweighted
Least Squares scheme to reduce the impact of outliers. Recently, Arrigoni et
al. [1] showed how cycle consistency allows establishing whether a view graph is
solvable or not. Lee and Civera [16] proposed a rotation-only Bundle Adjustment
(BA) framework, decoupling rotation estimation from translation and scene re-
construction, and Chen et al. [5] combined a global optimiser with fast view
graph filtering and a local optimiser, improving on the traditional BA loss.

Also in the case of Motion Averaging, there has been a proliferation of deep
models, such as NeuRoRA [26], which employed two GNNs to clean the relative
camera poses before computing absolute poses. Yang et al. [34] introduced an
end-to-end neural network for multiple rotation averaging and optimisation. Its
view-graph is refined by fusing image context and features to predict outlier ro-
tations, and initialising the rotation averaging process through a differentiable
module, that allows outlier refinement at test time. Similarly, Yew and Lee [36]
used a GNN to learn transformation synchronisation, but use an iterative ap-
proach in the tangent space where each step consists of a single weight-shared
message passing layer that refines the absolute poses.

We test the effects of relative pose refinement via PoserNet on one optimisation-
based [2] and one deep model [36], as both cases present interesting advantages.
Classical methods do not require training, and therefore generalise better to dif-
ferent use cases, and are typically efficient, easy to deploy and well-studied; on
the other hand, successfully combining PoserNet with a deep learning method
would allow merging them in an end-to-end pipeline. While PoserNet shares some
similarities with methods like [26], we focus on refining the relative poses before
the Motion Averaging task, providing better inputs. Moreover, our method rea-
sons about all relative poses of the graph while also exploiting bounding box
information usually not used by models like [26](e.g. the location of the object
detections).

2.3 Object-Based Computer Vision

One of our key insight is the use of object locations instead of generic key-
points, as initial step of the camera pose reconstruciton process. Other works
have already suggested reasoning about the world in terms of object detections:

PoserNet 5

Rubino et al. [28] proposed a closed-form solution for estimating the 3D occu-
pancy of an object, from multiview 2D object detections, and Gaudilliere et al. [9]
used a similar representation to show how, in a scene represented as a collec-
tion of ellipsoids, a single ellipse-ellipsoid match and an approximate orientation
from IMUs or vanishing point algorithms is enough to recover the camera loca-
tion. They later [10] showed how, given two ellipse-ellipsoid correspondences, the
camera rotation is recovered via an optimisation problem over the three Euler
angles. The problem can then be further simplified [11], reducing it to an op-
timisation over a single angle by introducing constraints satisfied in many real
world applications, i.e. that the images have null azimuth angle, and that the
segment connecting the centres of the ellipsoids projects on the one connecting
the centres of the detected ellipses.

In the context of object-level SLAM, notable contributions include Fusion++
[19], which combines Microsoft Fusion’s [23] TSDF and instance segmentation
for indoor scene understanding; or SLAM++ [29], which implements real-time
object detection, tracking and mapping in a dense RGB-D framework, but re-
quires a database of well defined 3D models of the objects; or QuadricSLAM [24],
which uses noisy odometry and object detections (as bounding boxes) to simul-
taneously estimate camera poses and objects locations, expressed as ellipsoids.

Unlike the aforementioned methods, we do not use a specific parameteri-
sation of the objects shape (e.g. ellipsoid), and only rely on the approximate
location of generic ROIs. Moreover, our method can be seen as complementary
to theirs, as in principle we could take the bounding boxes associated with our
ROIs, and the camera poses produced by combining PoserNet with a Motion
Averaging approach, and use one of the approaches to localise the scene ele-
ments in 3D. Regarding SLAM methods, a direct comparison is not possible, as
our approach is aimed at scenes with large camera baseline displacement and
sparsely connected view-graphs, with minimal overlapping views.

3 Methodology

Our approach takes as input an unordered set of images {Ii}, i ∈ [1, ..., N] and
their respective camera matrix intrinsics (Ki). We then aim to reconstruct the
extrinsics Mi = [Ri|ti], with rotation Ri ∈ SO(3) i.e. Special Orthogonal Group,
and translation ti ∈ R3 that map from the world reference frame to the camera
reference frame (as shown in Figure 1). Firstly we detect ROIs within Ii, then
we perform matching between ROIs and in turn solve for an initial estimate of
the pairwise problem (Sec. 3.1). The ROIs represented as bounding boxes (BB)
and the initial estimates are then passed to our PoserNet module to refine the
relative poses (Sec. 3.2). Finally, the refined relative poses are processed by a
rotation averaging method, which computes the absolute poses estimates of the
cameras (Sec. 3.3).

6 M. Taiana et al.

3.1 Objectness, matching and initial poses

For each image, we compute a set of bounding boxes bbi,a, a ∈ [1, ..., 50] which
represent the top most confident ROIs candidates for objects. We opt for ROIs
instead of the explicit object detections, as we make no assumption on semantic
classes and they provide bounding boxes even in scenes with few objects. We use
the objectness-based detector, Object Localisation Network (OLN) [15]. OLN is
a generalisation of common detectors, substituting the classification layer (object
semantic class) with a localisation confidence and trained in a weakly supervised
manner relying on intersection over union and centreness.

Once we have a set of bounding boxes for each image, we then match them to
obtain tracks of detections across the multi-view images. The matching of bound-
ing boxes, or their image patches, between images is in a non-trivial problem,
therefore we treat it as a black-box task. For simplicity, we solve the matching
problem by applying the pre-trained SuperGlue model [30], which can be re-
placed by any matching approach. From the matches we construct a view graph,
two images are considered connected if they share at least five matched ROIs.
In addition, only images that are connected to at least another image are used
in the graph, and the graph is built so that its connections form a chain that
passes through all N images. This is necessary to ensure that the set of im-
ages and their matches constitute a solvable problem, in which no image view is
completely disconnected from the others.

For each connected pair of images Ii, Ij , we estimate the relative transfor-

mation mapping from one image to the other, i.e. R̂i,j and translation t̂i,j that

satisfy: R̂i,j = RjR
T
i and t̂i,j = tj −RT

j ti. We compute the relative transforma-
tion using the 5-point algorithm and RANSAC. We experiment using both BB
centres, which are sensitive to the quality of the BB detection, and SuperGlue
keypoint matches within the region, which are sensitive to mismatches.

3.2 PoserNet: Graph-Based Relative Camera Pose Refinement

We define the PoserNet Graph Neural Network (GNN) as a special case of a
multi-layer GNN, with shared edges representing the relative transformations
and a partly shared node encoding. Therefore, we first review a general formula-
tion of GNNs and then we describe our directed GNN with matched detections.

General Graph Neural Networks: The standard GNN formulation employs
a graph G = ⟨N,E⟩, representing a structure of nodes N = {N1 . . . Np} and
edges E = {E1 . . . Eq}. Each Ni or Ei has an embedding (hN

i ,hE
i) representing

its latent information, which can be initialised based on a priori information
(e.g. relative poses). The representations are then updated independently via a
combination of message passing, nonlinear update functions (ΨN (·) and ΨE(·))
and aggregation functions. Each update constitutes a step (k) of the graph. The
message mN between nodes from j to i, for step (k), is defined as:

mN
i,j,k = ΨN (hN

i,k, h
N
j,k, h

E
i,j,k). (1)

PoserNet 7

To update Ni, a message is computed for all its neighbouring nodes j ∈ Ni.
Finally, the aggregation function averages the incoming messages to produce the
latent information for node i for the (k + 1)th iteration:

hN
i,k+1 ←

1

|Ni|
∑
j∈Ni

mN
i,j,k. (2)

Edges are updated in a similar fashion by applying a nonlinear transformation
(ΨE(·)) to information from the neighbour nodes and from their current la-
tent space, i.e. hE

i,j,k+1 ← mE
i,j,k = ΨE(hN

i,k, h
N
j,k, h

E
i,j,k). The formulation can be

generalised to multi-layer graphs simply by connecting nodes across layers and
having a custom (or repeating) G topography for each layer.
PoserNet: The Pose Refinement network (PoserNet) takes as input a graph
which contains the noisy relative camera poses obtained via pairwise geometry
estimation (Sec. 3.1) to initialise its edges, and it outputs a graph with the same
topology, but having refined estimates for the same relative poses. Therefore,
PoserNet is a special case of the multi-layer GNN paradigm. At its simplest, it
works on a graph representing an enriched version of the view graph of a scene,
however, across layers of matched detections l = {l1 . . . lr}, with a shared node
encoding (hN), and with a shared edge representation (hE). See Fig. 2 for a
graphical representation of the structure of such a graph.

Specifically, PoserNet works on a graph in which nodes (Ni) represent camera
poses, while directed edges (Ei,j) represent pairwise relative camera poses. Each
node is associated with one of the input images, Ii. It contains the correspond-
ing intrinsic camera parameters and it is associated with the list of bounding
boxes detected on that image, arranged as layers. The embedding for a detection
consists of the normalised information on the BB location, height, and width:
bbi,l ∈ R4. Detections from different nodes are connected pairwise when matched
(i.e. they represent the same object in multi-view), where matched detections
are represented as logical layers in the graph. Edge Ei,j exists in the graph only
if nodes Ni and Nj have at least one detection in common. For the message
passing, the Ψ functions are implemented as a multi-layer perception (MLP).
Edge representation & update: The relative camera transformations are
encoded in the edges as a translation vector plus a quaternion: hE

i,j ∈ R7. We
encode the transformation induced by traversing the edge in one, specified, direc-
tion, and we enforce that the transformation observed by traversing the edge in
the opposite direction is the inverse of that transformation. Updating the edge
representation requires creating one message per active layer (l ∈ Nl), based
on a pair of matched detections at its sides. Thus, for PoserNet the message
is enriched in contrast to traditional GNNs, as it takes as additional input the
representations of a pair of detections. A message is defined as:

mE
i,j,k,l = ΨE(hN

i,k, h
N
j,k, h

E
i,j,k, bbi,l, bbj,l), (3)

and the updated representation for the edge is computed as the average of the
messages for all layers: hE

i,j,k+1 ← 1
|Nl|

∑
l∈Nl

mE
i,j,k,l.

8 M. Taiana et al.

Fig. 2: (a) The structure of graphs processed by PoserNet. Each image Ii is as-
sociated with a node Ni where the corresponding edges are relative transforma-
tions. Each set of corresponding detections (orange lines) between nodes refers
to a layer of the graph for message passing (Detection track). (b) Nodes and (c)
edges are updated by passing through Ψ(·) the node and edge information and
respective bounding boxes (bb) for a given layer.

Node representation & update: The information contained in each node
consists of image height and width, the camera focal length and the first co-
efficient of radial distortion, all normalised: hn

i ∈ R4. For updating the latent
representation of a node in PoserNet, each of its neighbours can send not just
one, but a set of messages, each of which corresponds to a layer with a matched
pair of detections. A message is defined as:

mN
i,j,k,l = ΨN (hN

i,k, h
N
j,k, h

E
i,j,k, bbi,l, bbj,l), (4)

and the updated representation for the node is computed as the average of the
messages from all of its neighbours (j ∈ Ni), for all layers (l ∈ Nl):

hN
i,j,k+1 ←

1

|Nj |
∑
j∈Nj

1

|Nl|
∑
l∈Nl

mN
i,j,k,l. (5)

This message-passing and data processing scheme is repeated a fixed number
of times (one of the hyperparameters of GNNs), and it finally produces the
output edge embeddings which represent the refined estimates for inter-camera
pose transformations. During this process, the embedding on the nodes and edges
are updated, but the information relative to bounding boxes is kept constant.
Loss function: PoserNet is trained using graphs for which the relative trans-
formations between camera poses are known. The loss function comprises four

PoserNet 9

components: the first and second component drive the network to produce ac-
curate estimates for the relative poses:

Lorient = ∠(q∗GT ◦ qest), (6)

Ltr dir = ∠(trGT , trest). (7)

The orientation loss, Lorient, encodes the angle between (∠) the ground-truth
and the estimated quaternion, where ◦ represents quaternion composition, and
q∗GT is the conjugate of the ground-truth quaternion. The translation direction
loss, Ltr dir, encodes the angle between ground-truth (trGT) and estimated trans-
lation vectors. The remaining two components are the quaternion normalisation
loss, Lq||, and the translation normalisation loss, Ltr||. They push the network
towards producing unit norm outputs:

Lq|| = |∥qest∥ − 1|, (8)

Ltr|| = |∥trest∥ − 1|. (9)

The total loss function of PoserNet is defined as:

LPoserNet = Lorient + Ltr dir + α(Lq|| + Ltr||), (10)

where α is a coefficient used to tune the strength of the contribution of the
different components of the loss.

3.3 Absolute Pose Estimation

The relative poses refined by PoserNet can be used to compute absolute camera
poses; for this, we look at State-of-the-Art methods for two common approaches:
optimisation and deep learning. With the former, we want to show how mod-
ern convolution techniques can improve “classical” approaches, while combining
PoserNet with a deep-learning model could lead to an end-to-end pipeline.
EIG-SE3 [2]: This method solves the Motion Averaging problem in closed-
form using spectral decomposition. Given a fully connected graph with n nodes,
and accurate estimates of the relative and absolute transformations between the
cameras expressed as:

Mi,j =

(
Ri,j ti,j
0 1

)
,Mi =

(
Ri ti
0 1

)
, (11)

with Mi,j ∈ SE(3), SE(3) the Special Euclidean Group (3), the absolute camera
poses Mi ∈ SE(3), with Mi,j = MiM

−1
j , can be recovered solving the problem

XM = nM, where M is the 4n× 4 matrix obtained concatenating all matrices
Mi and X is a block matrix with block i, j = Mi,j .

If the relative transformations are exact, this problem can be solved in closed
form in two steps: i) the columns of M are four eigenvectors of X associated

10 M. Taiana et al.

with the eigenvalue n, found as the 4-dimensional basis of the null-space of
L = (nI4n−X); ii) the basis found at the previous point is not guaranteed to be
composed of Euclidean motions, i.e. it is not guaranteed that each 4 × 4 block
belongs to SE(3). This is addressed by extracting every fourth row of M and
finding the change of basis that maps them to [0, 0, 0, 1].

In the original work, the authors show how this approach can be generalised
to problems with noisy relative transformation, by solving the Least Squares
problem minM∈SE(3) ||LM ||2F . They also extend the approach to work on graphs
that are not fully connected - i.e. some of the off-diagonal blocks of X are zero
- and show how the optimisation problem can be included in an iteratively
reweighted Least Squares scheme to reduce the impact of outliers, which are a
common occurrence in most camera pose estimation applications. See [2] for a
full description of the optimisation algorithm.
MultiReg: computes incremental pose updates within tangent space to ensure
that poses remain on the SO(3) or SE(3) manifold. Like PoserNet, a GNN is
used where, however, nodes represent camera poses and the edges represent
transformations, Ga = ⟨Na, Ea⟩. In addition, only the absolute pose and a latent
representation is updated on a node, with no edge update. To achieve this each
increment ϵi is computed from the pose residuals Γi,j = TiT

−1
j T̂−1

i,j based on the

current absolute pose and the latent encoding (hN) stored in the node. Therefore
each update is equivalent to:(

ϵi, ∆hN
i

)
← ΨN (hN

i , u, ΨE(hN
i , hN

j Γi,j)), (12)

where ΨN and ΨE are MLPs and u is a global encoding from average pooling
of f over the graph. The transform update is therefore Ti ← exp(ϵ̂i)Ti which
corresponds to addition in Euclidean space for Lie Groups. Finally, similar to
pair-wise we compute the loss based on the decomposed rotation and translation.

Labs =
1

|ϵc|
∑

(i,j)∈ϵc

(∣∣Ri,j −RGT
i,j

∣∣+ λt

∣∣ti,j − tGT
i,j

∣∣) . (13)

4 Experiments

In this section, we provide an evaluation of the proposed PoserNet model. We
validate our choice of PoserNet structure (i.e. depth, choice of training data),
and show how PoserNet can improve the accuracy of relative pose estimation. We
then investigate the effects of this refinement on Motion Averaging. As an im-
plementation detail, PoserNet partially relies on PyTorch Geometric (PyG) [7].

For each experiment we report separately the error on the camera rotation
and the translation error; the former is expressed in degrees, while the transla-
tion is reported in meters for absolute poses and in degrees for relative poses.
This is due to the fact that relative poses are defined up to a scale, and we
therefore report the angular distance between the ground-truth and the esti-
mated translation unit vector. These results are expressed in form of the median

PoserNet 11

Dataset part Graphs Nodes Edges Nodes/graph Edges/graph Edges/node

Small graphs, train 14000 112000 215790 8 15.4 1.9
Small graphs, test 7000 56000 110367 8 15.8 2.0
Large graphs, train 5 625 22674 125 4534.8 36.3
Large graphs, test 5 625 22606 125 4521.2 36.2

Table 1: Composition of the small and large graph datasets used to validate the
proposed method. The different graph-building strategies result in large graphs
which have a higher (18-fold higher) connectivity than the small graphs.

error η (the smaller the better) and as the percentage of testing graphs with and
average error smaller than predefined thresholds (the higher the better). Such
thresholds are 3, 5, 10, 30 and 45 degrees for the angular metrics, and 0.05,
0.1, 0.25, 0.5 and 0.75 for errors expressed in meters. For all experiments that
required training network, we trained three separate models and report their
average performance, with their standard deviation.

4.1 Dataset

For our experiments, we use graphs built from the 7-Scenes [13]: this is a col-
lection of 41k images acquired in seven small-sized indoor environments with a
Microsoft Kinect. The RGB-D information has been used to compute accurate
ground-truth camera poses. For each scene, several sequences were recorded by
different users, and they are split into distinct training and testing sequence
sets. Starting from 7-Scenes data, we created two datasets comprising graphs of
different sizes: a small graphs dataset and a larger graph dataset. In each case,
we followed the split between training and test data or the original work.
Small graphs dataset: It contains 8-node graphs. For each scene we created
2k graphs from the training sequences, and 1k from the test ones. Each graph
was created by randomly selecting eight images that satisfy the connectivity
constraints outlined in Section 3.1. We thus ensure that all graph nodes are
connected, while not requiring the graph to be fully connected.
Large graphs dataset: The graphs are generated sampling, for each scene,
125 frames from the aggregated training or testing sequences. In this case, we
do not explicitly enforce a connectivity constraint, because the limited size of
the scenes and the large number of nodes guarantee a large number of connected
edges. We extracted only one training and one testing graphs from the first five
scenes, due to the difficulty in identifying large graphs.

4.2 PoserNet Refining Relative Poses

We present an analysis designed to assess the effectiveness of PoserNet in refining
relative camera poses. We first show how PoserNet successfully improves relative
poses provided by different initialisation algorithms, and secondly how PoserNet
generalises well to graphs of different sizes. In Supplementary Material we discuss

12 M. Taiana et al.

the impact of choosing different depths for PoserNet’s GNN, we identify a depth
of 2 as the best and we use it throughout the remaining experiments.

Refining Relative Poses from Different Initialisation Modes: We as-
sessed the effectiveness of PoserNet in refining the relative pose estimates ini-
tialised from bounding box centres (BB) and keypoints (KP), as discussed in
Section 3.1. We evaluate the PoserNet model on the small graphs dataset as
shown in Table 2. In both cases we see a significant performance gain, with
median rotation error reduction of over 76◦ and 28◦ for the BB and KP cases
respectively, and an improvement of over 42◦ and 72◦ for the translation median
angular error. This confirms PoserNet’s effectiveness at refining relative poses
generated by different algorithms, with different levels of noise.

Dealing with graphs of different sizes: We explore the impact of using the
large and small graphs to train and test PoserNet. The results are summarised
in Table 3. For each test set, we provide the baseline errors of the unrefined
graphs, and the performances of models trained on either the large graph or
small graph dataset. From the results, we make three observations. First, we
verify that PoserNet is effective at refining relative poses: models trained on
either small or large graphs and tested on the corresponding test set achieve a
significant accuracy improvement over the baseline. Second, we see that PoserNet
has good generalisation capabilities: the pose refinement performance generalises
quite well when training on one dataset, e.g. small graphs, and testing on large
graphs. Finally, we observe that models trained on small graphs perform better,
while testing on large graphs leads to more accurate estimates.

Generalisation to unseen graphs: To test the ability of our method to gen-
eralise to novel scenes, we evaluate PoserNet’s performance on relative pose
refinement for 8-node graphs using a leave-one-out scheme. This is done eval-
uating on each of the seven scenes of the dataset a model trained only on the
other six scenes. The results of this test, reported in the Supplementary Ma-
terial, show median orientation and translation orientation errors of 8.04◦ and
19.75◦ respectively, comparable with the performance on the full dataset (7.31◦

and 14.54◦).

4.3 Absolute Pose Estimates

The last experiments show the impact of PoserNet on the motion averaging task
(i.e. extract absolute camera poses from the relative ones). We consider two
possible approaches: a modern, graph-network based model (MultiReg); and an
optimisation-based algorithm (EIG-SE3). Results for both Motion Averaging
approaches are reported in Table 4, using the same notation of previous exper-
iments. However, since the Motion Averaging process reintroduces the scale of
the translation vector, the error on the translations is reported as the Euclidean
distance between the ground-truth and estimated vectors, expressed in meters.

PoserNet 13

Orientation error (deg) Translation direction error (deg)

Input 3 5 10 30 45 η 3 5 10 30 45 η

BB
Initial 0.00 0.00 0.00 0.16 1.44 96.48 0.00 0.00 0.00 0.00 0.00 89.30

PoserNet
0.00
±0.00

0.00
±0.00

0.74
±0.14

88.18
±0.28

99.02
±0.02

20.39
±0.20

0.00
±0.00

0.00
±0.00

0.00
±0.00

7.92
±0.25

45.63
±0.43

46.60
±0.14

KP
Initial 0.74 4.01 11.16 41.46 62.53 36.26 0.00 0.03 0.10 1.37 5.49 87.23

PoserNet
1.13
±0.11

17.24
±0.86

78.19
±1.36

98.78
±0.02

99.86
±0.01

7.31
±0.11

0.01
±0.01

1.42
±0.28

27.67
±0.70

80.07
±0.31

90.01
±0.68

14.54
±0.14

Table 2: PoserNet performances in refining relative pose computed from the
centres of matched bounding boxes (BB) or from a standard keypoints approach
(KP). For both cases, the initial orientation and translation direction error are
improved by PoserNet processing.

Orientation error (deg) Translation direction error (deg)

Train Test 3 5 10 30 45 η 3 5 10 30 45 η

Raw Small 0.74 4.01 11.16 41.46 62.53 36.26 0.00 0.03 0.10 1.37 5.49 87.23

Small Small
1.13
±0.11

17.24
±0.86

78.19
±1.36

98.78
±0.02

99.86
±0.01

7.31
±0.11

0.01
±0.01

1.42
±0.28

27.67
±0.70

80.07
±0.31

90.01
±0.68

14.54
±0.14

Large Small
0.00
±0.00

0.04
±0.03

13.26
±5.55

96.98
±0.37

99.61
±0.09

13.97
±0.94

0.00
±0.00

0.00
±0.00

0.11
±0.10

57.19
±5.72

81.26
±1.16

27.56
±2.02

Raw Large 0.00 0.00 0.00 20.00 60.00 37.70 0.00 0.00 0.00 0.00 0.00 79.60

Small Large
0.00
±0.00

0.00
±0.00

80.0
±0.00

100.00
±0.00

100.00
±0.00

6.85
±0.11

0.00
±0.00

0.00
±0.00

20.00
±0.00

100.00
±0.00

100.00
±0.00

12.62
±0.48

Large Large
0.00
±0.00

0.00
±0.00

13.33
±9.43

100.00
±0.00

100.00
±0.00

12.11
±1.10

0.00
±0.00

0.00
±0.00

0.00
±0.00

100.00
±0.00

100.00
±0.00

21.58
±1.36

Table 3: PoserNet performances when trained and evaluated on small (Small)
or large (Large) graphs. While versions of PoserNet trained on either largely
outperform the baseline error (Raw), models trained on small give the best
performances on both testing datasets. (Highlighted in bold).

Orientation error (deg) Translation error (meters)

Model Init 3 5 10 30 45 η 0.05 0.1 0.25 0.5 0.75 η

MultiReg
BB

0.60
±0.00

2.10
±0.00

8,10
±0.10

47.60
±0.53

69.13
±0.47

31.37
±0.30

0.50
±0.00

1.47
±0.06

6.93
±0.12

23.03
±0.70

40.80
±0.85

0.89
±0.01

KP
10.23
±0.12

24.23
±0.25

39.7
±0.40

67.97
±0.06

79.90
±0.00

15.69
±0.08

1.00
±0.00

3.77
±0.06

17.77
±0.12

40.30
±0.17

57.23
±0.06

0.64
±0.01

MultiReg
+
PoserNet

BB
0.50
±0.00

1.60
±0.00

6.10
±0.10

41.03
±0.42

62.50
±0.14

35.60
±0.33

0.60
±0.00

1.50
±0.00

6.53
±0.06

21.60
±0.00

39.33
±0.06

0.91
±0.00

KP
0.50
±0.00

1.63
±0.06

6.20
±0.10

40.90
±0.44

62.60
±0.53

35.73
±0.37

0.60
±0.00

1.50
±0.00

6.40
±0.10

21.43
±0.12

39.23
±0.12

0.91
±0.00

EIG-SE3
BB 0.00 0.00 0.09 2.46 7.84 78.46 0.00 0.00 0.00 0.57 13.47 0.65

KP 11.99 23.87 34.49 57.59 62.09 25.37 0.00 0.06 2.63 31.39 74.40 0.61

EIG-SE3
+
PoserNet

BB 0.00 0.09 10.36 88.00 94.06 15.80 0.00 0.00 7.54 46.80 83.23 0.52

KP 15.56 48.36 82.14 93.14 5.69 5.10 0.04 1.94 34.51 76.43 94.49 0.32

Table 4: Motion averaging performances on the 7-Scenes dataset using the
MultiReg and EIG-SE3 algorithms. We report results for different initialisation
methods: bounding box centres (BB) and keypoints (KP).

14 M. Taiana et al.

Motion averaging via MultiReg: In the case of MultiReg, the refinement
of the relative poses via PoserNet does not improve the performance, leading
instead to larger errors. Specifically, refining the poses makes the orientation
and translation errors respectively 4.2◦ and 0.02 m worse in the case of BB
initialisation, and 20◦ and 0.27 m worse in the case of KP initialisation.

While this performance is disappointing, it is not completely unexpected.
Firstly, the original MultiReg model was tested on large, very connected graphs,
which means its structure and parameters might not be well-suited for our small
graph dataset. On the other hand, the MultiReg model is too complex to be
trained only on our limited large graph dataset. Moreover, [36] discarded as
outliers all edges initialised with a rotation error larger than 15◦ and a translation
error of more than 15 cm, which makes our initial error condition very challenging
in comparison.

Motion averaging via EIG-SE3: Finally, we show the performance gain
obtained by combining PoserNet with a closed-form approach to solve Motion
Averaging, the EIG-SE3. Unlike MultiReg, this approach does not require train-
ing, making it easier to deploy and more general. Given the deterministic nature
of this model, we report results of only one evaluation run.

Results of this experiment are reported in the bottom two rows of Table 4; in
this case, PoserNet results in improvement over the baseline error for both the
BB and KP initialisation modes. In the BB case, the median error on the rota-
tion improves by 62◦, and in the KP case the orientation error is reduced by 20◦.
Performance on the translation are also clearly noticeable, with an improvement
of 0.13 m and 0.29 m for the BB and KP initialisation respectively.

5 Conclusions

We have proposed the novel PoserNet module for relative pose refinement driven
by matched detections, based on ROIs generated from objectness-based detec-
tors. We have shown that such ROIs are sufficient to recover accurate camera
poses, with a large improvement with respect to the initial pair-wise estimates.
In addition, we have shown how PoserNet can improve the outcome of the
optimisation-based Motion Averaging EIG-SE3. The proposed model is a rel-
atively simple and fast network relying on sparse object detections (in contrast
to keypoints) and relatively lightweight bounding box representation. Therefore,
the combination with a ‘classical’ geometric approach, such as EIG-SE3, yields
increased performance compared to the more complex state-of-the-art networks
like MultiReg. While the lack of improvement in combination with MultiReg
highlights a challenge of deep learning methods being able to generalise to other
scenarios outside of their initial design. We point to this limitation as a direction
for future work, which could result in a generalised Motion Averaging method as
flexible as optimisation methods and able to incorporate specific elements such
as PoserNet for task or domain-specific improvement.

PoserNet 15

References

1. Federica Arrigoni, Andrea Fusiello, Elisa Ricci, and Tomas Pajdla. Viewing graph
solvability via cycle consistency. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 5540–5549, October 2021.

2. Federica Arrigoni, Beatrice Rossi, and Andrea Fusiello. Spectral synchronization
of multiple views in se (3). SIAM Journal on Imaging Sciences, 9(4):1963–1990,
2016.

3. Simone Bianco, Gianluigi Ciocca, and Davide Marelli. Evaluating the performance
of structure from motion pipelines. Journal of Imaging, 4(8), 2018.

4. Ruojin Cai, Bharath Hariharan, Noah Snavely, and Hadar Averbuch-Elor. Extreme
rotation estimation using dense correlation volumes. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2021.

5. Yu Chen, Ji Zhao, and Laurent Kneip. Hybrid rotation averaging: A fast and
robust rotation averaging approach. In 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 10353–10362, 2021.

6. Marco Crocco, Cosimo Rubino, and Alessio Del Bue. Structure from motion with
objects. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4141–4149, 2016.

7. Matthias Fey and Jan E. Lenssen. Fast graph representation learning with Py-
Torch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds, 2019.

8. Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

9. V. Gaudilliere, G. Simon, and M. Berger. Camera relocalization with ellipsoidal
abstraction of objects. In 2019 IEEE International Symposium on Mixed and
Augmented Reality (ISMAR), pages 8–18, Los Alamitos, CA, USA, oct 2019. IEEE
Computer Society.

10. Vincent Gaudillière, Gilles Simon, and Marie-Odile Berger. Camera pose estima-
tion with semantic 3d model. In 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4569–4576, 2019.

11. Vincent Gaudillière, Gilles Simon, and Marie-Odile Berger. Perspective-2-ellipsoid:
Bridging the gap between object detections and 6-dof camera pose. IEEE Robotics
and Automation Letters, 5(4):5189–5196, 2020.

12. Paul Gay, Cosimo Rubino, Vaibhav Bansal, and Alessio Del Bue. Probabilistic
structure from motion with objects (psfmo). In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 3075–3084, 2017.

13. Ben Glocker, Shahram Izadi, Jamie Shotton, and Antonio Criminisi. Real-time
rgb-d camera relocalization. In International Symposium on Mixed and Augmented
Reality (ISMAR). IEEE, October 2013.

14. R.I. Hartley. In defense of the eight-point algorithm. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(6):580–593, 1997.

15. Dahun Kim, Tsung-Yi Lin, Anelia Angelova, In So Kweon, and Weicheng Kuo.
Learning open-world object proposals without learning to classify. IEEE Robotics
and Automation Letters (RA-L), 2022.

16. Seong Hun Lee and Javier Civera. Rotation-only bundle adjustment. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2021.

17. Hongdong Li and Richard Hartley. Five-point motion estimation made easy. In
Proceedings of the 18th International Conference on Pattern Recognition - Volume
01, ICPR ’06, page 630–633, USA, 2006. IEEE Computer Society.

16 M. Taiana et al.

18. Qing Li, Jiasong Zhu, Rui Cao, Ke Sun, Jonathan M. Garibaldi, Qingquan Li,
Bozhi Liu, and Guoping Qiu. Relative geometry-aware siamese neural network for
6dof camera relocalization. Neurocomputing, 426:134–146, 2021.

19. John McCormac, Ronald Clark, Michael Bloesch, Andrew J. Davison, and Stefan
Leutenegger. Fusion++: Volumetric object-level slam. 2018.

20. Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi
Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for
view synthesis. In ECCV, 2020.

21. Dror Moran, Hodaya Koslowsky, Yoni Kasten, Haggai Maron, Meirav Galun, and
Ronen Basri. Deep permutation equivariant structure from motion, 2021.

22. Pierre Moulon, Pascal Monasse, Romuald Perrot, and Renaud Marlet. OpenMVG:
Open multiple view geometry. In International Workshop on Reproducible Research
in Pattern Recognition, pages 60–74. Springer, 2016.

23. Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David
Kim, Andrew J. Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and An-
drew Fitzgibbon. Kinectfusion: Real-time dense surface mapping and tracking. In
2011 IEEE International Symposium on Mixed and Augmented Reality (ISMAR),
2011.

24. Lachlan Nicholson, Michael Milford, and Niko Sunderhauf. Quadricslam: Dual
quadrics from object detections as landmarks in object-oriented slam. IEEE
Robotics and Automation Letters, PP:1–1, 08 2018.

25. D. Nistér. An efficient solution to the five-point relative pose problem. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 26(6):756–770, 2004.

26. Pulak Purkait, Tat-Jun Chin, and Ian Reid. Neurora: Neural robust rotation
averaging. In European Conference on Computer Vision, pages 137–154. Springer,
2020.

27. Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards
real-time object detection with region proposal networks. In Advances in Neural
Information Processing Systems (NIPS), 2015.

28. Cosimo Rubino, Marco Crocco, and Alessio Del Bue. 3d object localization
from multi-view image detections. In Pattern Analysis and Machine Intelligence
(TPAMI), 2017 IEEE Transactions on, 2017.

29. Renato F. Salas-Moreno, Richard A. Newcombe, Hauke Strasdat, Paul H.J. Kelly,
and Andrew J. Davison. Slam++: Simultaneous localisation and mapping at
the level of objects. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2013.

30. Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. SuperGlue: Learning feature matching with graph neural networks. In
CVPR, 2020.

31. Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revis-
ited. In Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

32. Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, C. Zhang, and Philip S.
Yu. A comprehensive survey on graph neural networks. IEEE Transactions on
Neural Networks and Learning Systems, 32:4–24, 2021.

33. Shen Yan, Yang Pen, Shiming Lai, Yu Liu, and Maojun Zhang. Image retrieval for
structure-from-motion via graph convolutional network. CoRR, abs/2009.08049,
2020.

34. Luwei Yang, Heng Li, Jamal Ahmed Rahim, Zhaopeng Cui, and Ping Tan. End-
to-end rotation averaging with multi-source propagation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 11774–11783, June 2021.

PoserNet 17

35. Lin Yen-Chen, Pete Florence, Jonathan T. Barron, Alberto Rodriguez, Phillip
Isola, and Tsung-Yi Lin. iNeRF: Inverting neural radiance fields for pose estima-
tion. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2021.

36. Zi Jian Yew and Gim Hee Lee. Learning iterative robust transformation synchro-
nization. In International Conference on 3D Vision (3DV), 2021.

37. Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review
of methods and applications. AI Open, 1:57–81, 2020.

	PoserNet: Refining Relative Camera Poses Exploiting Object Detections

