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In this supplementary, we provide more related work and discussions to clarify
the differences of ProCA with existing methods. In addition, we also provide
more implementation details and more experimental results. We organize the
supplementary materials as follows.

1) In Appendix A, we review universal domain adaptation [18] and give more
discussions on partial domain adaptation and prototype-based methods.

2) In Appendix B, we present the pseudo-code of our prototype identification
scheme.

3) In Appendix C, we provide more construction details of class-incremental
domain adaptation data.

4) In Appendix D, we provide more training details of our proposed ProCA.
5) In Appendix E, we provide more results of applying ProCA to improve the

PDA method.
6) In Appendix F, we provide more ablation studies, including the influence

of hyper-parameters, the number of target prototypes and the number of
incremental classes.

7) In Appendix G, we examine the effectiveness of our shared class detection
strategy.

8) In Appendix H, we provide more detailed results of each subtask in the three
datasets in terms of the Step-level Accuracy and the Final S-1 Accuracy.

A More related work and discussions

In this appendix, we first review the literature of universal domain adaptation.
After that, to better illustrate our novelty, we discuss the differences between
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CI-UDA and two types of relevant methods, i.e., PDA methods and prototype-
based methods.

Universal domain adaptation (Uni-DA). Uni-DA [18] assumes that the
target label space is not limited to the source label space and may contain
target private (unknown) classes. It seeks to classify unlabeled target samples
into known classes from the source label space or an additional “unknown”
category. With various transferability measures, most existing methods conduct
domain alignment by quantifying sample-level transferability [4,18]. In addition,
to exploit the structure information, DANCE [17] proposes to learn the structure
of the target domain in a self-supervised way, while DCC [10] seeks to better
exploit the intrinsic structure of the target domain and discover discriminative
clusters. However, existing Uni-DA methods assume all target data are available
in advance, making them incapable in CI-UDA.

Table I. The shared class indexes of different detection strategies at each time step on
Office-31-CI. Note that correct shared classes are in blue while false shared classes
are in magenta. Note that the higher SCD Acc. means the strategy detects more shared
classes, and the higher TCD Acc. means the strategy detects less false shared classes.

Task Method Time Step Shared Class Index SCD Acc. TCD Acc. Avg.

A→D

HBW [8]
Step 1 [0, 1, 2, 9] 40.0 100.0 70.0
Step 2 [0, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30] 100.0 40.0 70.0
Step 3 [0, 5, 7, 9, 10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] 100.0 47.6 73.8

Ours
Step 1 [0, 1, 2, 3, 4, 5, 6, 7, 9, 12] 90.0 90.0 90.0
Step 2 [8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] 100.0 90.9 95.5
Step 3 [12, 13, 20, 21, 22, 23, 25, 26, 27, 28, 29] 90.0 81.8 85.9

A→W

HBW [8]
Step 1 [0, 1, 2, 6, 9] 50.0 100.0 75.0
Step 2 [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] 100.0 34.5 67.3
Step 3 [0, 7, 9, 12, 13, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] 100.0 55.6 77.8

Ours
Step 1 [0, 1, 2, 3, 4, 5, 6, 7, 9, 12] 90.0 90.0 90.0
Step 2 [10, 11, 12, 13, 15, 16, 17, 18, 19, 27] 90.0 90.0 90.0
Step 3 [12, 13, 20, 21, 22, 23, 24, 26, 27, 28, 29] 90.0 81.8 85.9

D→A

HBW [8]
Step 1 [0, 1, 6] 30.0 100.0 65.0
Step 2 [0, 11, 12, 13, 14, 15, 16, 17, 19, 27,29] 80.0 66.7 73.4
Step 3 [0, 14, 20, 21, 22, 23, 26, 27, 29] 70.0 77.8 73.9

Ours
Step 1 [0, 1, 2, 3, 5, 6, 7, 9, 14] 80.0 88.9 84.5
Step 2 [11, 12, 13, 14, 15, 16, 17, 19, 27] 80.0 88.9 84.5
Step 3 [0, 14, 20, 21, 22, 23, 26, 27, 29] 70.0 77.8 73.9

D→W

HBW [8]
Step 1 [0, 2, 6] 30.0 100.0 65.0
Step 2 [0, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 25] 100.0 66.7 83.4
Step 3 [0, 12, 15, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] 100.0 71.4 85.7

Ours
Step 1 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 100.0 100.0 100.0
Step 2 [10, 11, 12, 13, 14, 15, 16, 17, 18, 19] 100.0 100.0 100.0
Step 3 [20, 21, 22, 23, 24, 26, 27, 28, 29, 30] 90.0 90.0 90.0

W→A

HBW [8]
Step 1 [0, 1, 2, 5, 6, 9] 60.0 100.0 80.0
Step 2 [0, 2, 4, 5, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24, 26, 27, 29] 100.0 47.6 73.8
Step 3 [0, 4, 5, 11, 13, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29] 90.0 50.0 70.0

Ours
Step 1 [0, 1, 2, 3, 5, 6, 7, 9, 11, 27, 29] 80.0 72.7 76.4
Step 2 [10, 11, 12, 14, 15, 16, 17, 18, 19, 27] 90.0 90.0 90.0
Step 3 [11, 14, 16, 18, 20, 21, 22, 23, 24, 26, 27, 29] 80.0 66.7 73.4

W→D

HBW [8]
Step 1 [0, 1, 2, 4, 6, 7, 8, 9] 80.0 100.0 90.0
Step 2 [7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] 100.0 90.9 95.5
Step 3 [20, 21, 22, 23, 26, 27, 29] 70.0 100.0 85.0

Ours
Step 1 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 100.0 100.0 100.0
Step 2 [10, 11, 12, 13, 14, 15, 16, 17, 18, 19] 100.0 100.0 100.0
Step 3 [20, 21, 22, 23, 24, 25, 26, 27, 28, 29] 100.0 100.0 100.0

Relations to partial domain adaptation methods. PDA [1] assumes that
the target label set is a subset of the source label set, and seeks to transfer
a model trained from a big labeled source domain to a small unlabeled tar-
get domain. To alleviate the negative transfer caused by source private classes,
existing PDA methods [1,2,8] decrease the transferability weights of source pri-
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vate classes when aligning the source and target domains. To be specific, ETN [2]
quantifies the instance-level transferability weights to all source samples. In con-
trast, PADA [1] and DPDAN [8] assign class-level transferability weights to all
source classes. However, PADA directly exploits the cumulative probabilities as
the transferability weights of all source classes, leading to the presence of the
negative impact of source private classes in transfer. To address this, DPDAN [8]
proposes the Hard Binary Weights (HBW) strategy which decomposes the source
domain into two distributions (i.e., source-positive and source-negative distribu-
tions). More specifically, to detect the shared classes, HBW sets the cumulative
probabilities threshold by maximizing the variance of these distributions. Similar
to HBW, our shared class detection strategy also alleviates the negative transfer
at the class level and aims to eliminate the negative impact of source private
classes.

However, HBW tends to fail in CI-UDA since the target label space is incon-
sistent between steps, i.e., the shared classes between the source and the target
are inconsistent between different steps. Unfortunately, the target label space
inconsistency may bring noise into the optimization of the variance in HBW,
resulting in false source-positive and source-negative distributions. In contrast,
our strategy sets the pre-defined cumulative probabilities threshold α to detect
shared classes, which is more robust to the variation of the target label space. To
verify this, we visualize the detected shared classes by HBW and our strategy
in different learning steps of CI-UDA. As shown in Table I, compared with our
method, the HBW strategy detects more false shared classes (e.g., Step 2 of
A→D) and filters more shared classes out (e.g., Step 1 of D→W) in CI-UDA.
To quantify the results of shared class detection, we use two accuracy measures:
1) Shared Class Detection Accuracy (SCD Acc.): the truly shared classes
divided by the number of ground truths; and 2) Total Class Detection Ac-
curacy (TCD Acc.): the truly detected shared classes divided by the number
of all detected classes. The Experiment shows that our shared class detection
strategy outperforms the HBW strategy in CI-UDA with the higher average
accuracy in almost all tasks on the Office-31-CI.

Relations to prototype-based methods. Existing prototype-based meth-
ods have separately explored prototypes to conduct domain alignment [13] or
prevent catastrophic forgetting [15]. However, these methods are different from
our ProCA. To be specific, existing prototype-based domain adaptation meth-
ods [13,14] conduct domain alignment by aligning source feature prototypes to
all target data, while ProCA aligns class-wise source centers and the feature
prototypes extracted from the target label prototypes. In addition, even though
we select prototypes in the same manner with iCaRL [15] for replaying knowl-
edge, iCaRL constructs the memory bank via images and ignores updating,
while ProCA constructs the prototype memory bank based on our target label
prototypes and designs a novel way to update this memory bank based on the
cumulative probabilities. Note that obtaining image prototypes for knowledge
retaining in iCaRL [15] requires data labels but the target domain in CI-UDA
is totally unlabeled. Meanwhile, feature prototypes [13,14] for domain adapta-
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tion cannot update the feature extractor, so simply detecting them is unable
to overcome the knowledge forgetting issue of the feature extractor in CI-UDA.
Therefore, a simple combination of existing prototype-based methods is not fea-
sible for CI-UDA while our ProCA provides the first feasible prototype-based
solution to CI-UDA (cf. Section 5 in the main paper).

B Pseudo-code of Label Prototype Identification

In this section, we present the pseudo-code of the prototype identification scheme.
Specifically, we first detect shared classes in each time step and generate pseudo
labels for target data. As shown in Algorithm 1, for each class k in the detected
shared class set, we obtain T target label prototypes via a nearest neighbor
approach.

Algorithm 1 Label Prototype identification of ProCA

Require: Pseudo-labeled target data Dk
t = {xk

i }
nk
i=1 of class k at the current time;

Model G ; Hyper-parameter T .
1: Attain the k-th class feature center: fkt = 1

nk

∑nk
i=1 G(xk

i );
2: for m = 1 → T do
3: pk

m = argmin
xk∈Dk

t

∥∥∥fkt − 1
m
[G(xk) +

∑m−1
i=1 G(pk

i )]
∥∥∥
2
;

4: end for
5: return Label prototypes of class k {pk

1 , ...,p
k
T }.

C Details of Data Construction

In this section, we show the containing classes in each disjoint subset of all
the three benchmark datasets (i.e., Office-31-CI, Office-Home-CI and ImageNet-
Caltech-CI) in Tables III and II. Specifically, we choose 10 for the number of
incremental classes on the three benchmark datasets. For Office-31-CI, we sort
the class name in alphabetic order and group every 10 categories into a step. For
Office-Home-CI, we randomly group every 10 categories into a step. As a result,
each domain of Office-31-CI has 3 disjoint subsets for 3 time steps, while each
domain of Office-Home-CI has 6 disjoint subsets for 6 time steps. For ImageNet-
Caltech-CI, we adopt the class indexes following [16,6]. As shown in Table III,
we also group every 10 categories into a time step based on the sorted class
indexes. Thus, each domain of ImageNet-Caltech-CI has 8 disjoint subsets for 8
time steps. We have put the splits of three datasets into the code.
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Table II. Class names in each time step on Office-31-CI and Office-Home-CI.

Dataset Time Step Class Index Class Name

Office-31-CI

Step 1 [0,1,2,3,4,5,6,7,8,9]
back pack, bike, bike helmet, bookcase, bottle, calculator,
desk chair, desk lamp, desktop computer, file cabinet

Step 2 [10,11,12,13,14,15,16,17,18,19]
headphones, keyboard, laptop computer, letter tray,
mobile phone, monitor, mouse, mug, paper notebook, pen

Step 3 [20,21,22,23,24,25,26,27,28,29]
phone, printer, projector, punchers, ring binder, ruler,
scissors, speaker, stapler, tape dispenser

Office-Home-CI

Step 1 [0,1,2,3,4,5,6,7,8,9]
Drill, Exit Sign, Bottle, Glasses, Computer,
File Cabinet, Shelf, Toys, Sink, Laptop

Step 2 [10,11,12,13,14,15,16,17,18,19]
Kettle, Folder, Keyboard, Flipflops, Pencil,
Bed, Hammer, ToothBrush, Couch, Bike

Step 3 [20,21,22,23,24,25,26,27,28,29]
Postit Notes, Mug, Webcam, Desk Lamp, Telephone,
Helmet, Mouse, Pen, Monitor, Mop

Step 4 [30,31,32,33,34,35,36,37,38,39]
Sneakers, Notebook, Backpack, Alarm Clock, Push Pin,
Paper Clip, Batteries, Radio, Fan, Ruler

Step 5 [40,41,42,43,44,45,46,47,48,49]
Pan, Screwdriver, Trash Can, Printer, Speaker,
Eraser, Bucket, Chair, Calendar, Calculator

Step 6 [50,51,52,53,54,55,56,57,58,59]
Flowers, Lamp Shade, Spoon, Candles, Clipboards
Scissors, TV, Curtains, Fork, Soda

Table III. Class indexes in each time step on ImageNet-Caltech-CI.

Task Time Step Class Index

I→C

Step 1 [1, 9, 24, 39, 51, 69, 71, 79, 94, 99]
Step 2 [112, 113, 145, 148, 171, 288, 308, 311, 314, 315]
Step 3 [327, 334, 340, 354, 355, 361, 366, 367, 413, 414]
Step 4 [417, 435, 441, 447, 471, 472, 479, 504, 508, 515]
Step 5 [543, 546, 555, 560, 566, 571, 574, 579, 593, 594]
Step 6 [604, 605, 620, 621, 637, 651, 664, 671, 713, 745]
Step 7 [760, 764, 779, 784, 805, 806, 814, 839, 845, 849]
Step 8 [852, 859, 870, 872, 876, 879, 895, 907, 910, 920]

C→I

Step 1 [0, 2, 7, 9, 11, 27, 28, 29, 30, 33]
Step 2 [37, 39, 40, 44, 45, 47, 50, 60, 62, 68]
Step 3 [71, 75, 76, 82, 85, 86, 87, 88, 89, 90]
Step 4 [92, 94, 96, 97, 106, 107, 108, 109, 110, 112]
Step 5 [114, 115, 116, 123, 126, 128, 133, 134, 141, 145]
Step 6 [146, 150, 151, 157, 160, 163, 165, 170, 172, 177]
Step 7 [178, 179, 181, 185, 188, 192, 193, 196, 198, 200]
Step 8 [209, 211, 215, 219, 225, 227, 228, 229, 230, 234]

D More Implementation Details

We train ProCA using SGD optimizer with the learning rate, weight decay and
momentum set to 1×10−3, 1×10−6 and 0.9, respectively. When training in each
time step, we update pseudo-labels, label prototypes and source centers every 4,
7 and 5 epochs. Due to the lack of train-validation splits in the three datasets,
we report the results at the last epoch for all methods. Note that we do not
exploit any additional target augmentation, e.g., [3], for training or evaluation.
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E More Results of Enhancing Partial Domain Adaptation

In this section, we apply ProCA to improve ETN [2] to fully investigate the
ability of our method to boost existing PDA methods for handling CI-UDA. As
shown in Table IV, ProCA could enhance existing partial domain adaptation
methods to alleviate catastrophic forgetting and thus overcome CI-UDA.

Table IV. Comparisons of the existing partial domain adaptation methods with and
without our label prototype identification strategy on Office-31-CI. We show the final
accuracy (%) and final S-1 accuracy (%).

Method Prototypes Metric A→D A→W D→A D→W W→A W→D Avg.

ETN
✗ Final Acc. (%) 21.3 82.2 61.7 94.3 64.1 100.0 70.6
✓ 60.4 83.1 65.2 97.9 65.1 100.0 78.6

✗ Final S-1 Acc. (%) 38.8 95.5 72.2 100.0 67.9 100.0 79.1
✓ 68.3 95.5 75.5 100.0 68.1 100.0 84.6

ProCA (ours) ✓ Final Acc. (%) 81.6 82.6 65.5 99.1 63.9 99.8 82.1

✓ Final S-1 Acc. (%) 96.7 94.2 74.1 100.0 80.0 100.0 90.8

F More Ablation Studies

In this section, we first study the effect of three hyper-parameters (i.e., λ, η and
α) on three datasets. We fix the other hyper-parameters when studying ones. As
shown in Table V, ProCA usually achieves the best performance in terms of Final
Accuracy when setting λ = 0.1 and η = 1.0. Moreover, the results demonstrate
that our method is non-sensitive for λ and η. Although ProCA may obtain the
best performance in terms of Final Accuracy with a high α, we recommend
setting a lower α, e.g., 0.15, since a high threshold possibly filters shared classes
out. One may concern false shared classes, but it can be handled by our method
in fact since they would be updated by our label prototype identification strategy
when a higher cumulative probability comes (c.f. Fig.3 in the main paper).

In addition, we train ProCA with a varying number of prototypes and incre-
mental classes to investigate the effect of the number of target prototypes and
that of incremental classes. As shown in Table VI, our method can achieve com-
petitive performance (i.e., 81.4% final Acc.) even with one prototype. With the
increase of prototypes, the model retains the previous knowledge better and 20
prototypes in each class are sufficient for our ProCA. As for incremental classes,
our method is non-sensitive to the number of incremental classes and performs
well on all these settings. More specifically, when adding 10 classes each time
step, ProCA achieves the best performance.
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Table V. Effect of hyper-parameters λ, η and α on Office-31-CI (A→W, W→A),
Office-Home-CI (Pr→Rw, Rw→Pr) and ImageNet-Caltech-CI (C→I). The value of λ
is chosen from [0, 0.05, 0.1, 0.2, 0.5, 1.0] and η is chosen from [0, 0.1, 0.5, 1.0, 1.5, 2.0].
Moreover, the value of α is chosen from [0.1, 0.15, 0.2, 0.25, 0.30]. In each experiment,
the rest of hyper-parameters are fixed to the value reported in the main paper.

Dataset Metric
λ η α

0 0.05 0.1 0.2 0.5 1.0 0 0.1 0.5 1.0 1.5 2.0 0.1 0.15 0.2 0.25 0.30

Office-31-CI
Final Acc. 84.7 84.9 85.6 84.5 84.3 84.1 84.1 84.7 84.6 85.6 84.4 84.9 81.6 85.6 85.3 85.4 83.5
Final S-1 Acc. 85.1 85.4 87.1 85.8 85.7 84.3 84.8 85.4 87.0 87.1 87.3 86.8 86.6 87.1 85.9 86.1 85.2

Office-Home-CI
Final Acc. 72.5 73.2 73.3 73.0 73.0 73.2 72.5 72.6 72.9 73.3 73.2 73.3 73.7 73.3 73.1 73.4 73.0
Final S-1 Acc. 77.5 78.3 80.6 78.3 77.1 76.1 76.7 79.0 78.2 80.6 77.4 79.0 73.4 80.6 79.5 78.9 74.2

ImageNet-Caltech-CI
Final Acc. 82.4 83.5 83.1 83.1 83.1 82.3 79.8 82.4 83.0 83.1 83.5 83.4 77.2 83.1 84.8 87.8 87.0
Final S-1 Acc. 70.4 73.6 72.0 72.8 74.2 69.0 67.8 71.2 71.8 72.0 73.4 73.0 69.2 72.0 71.6 67.4 68.0

Table VI. Effect of the number of prototypes and incremental classes each time step
on ImageNet-Caltech-CI. The number of prototypes is chosen from [1, 5, 10, 20, 40]
and the number of incremental classes is chosen from [10, 15, 20, 30, 40]. Note that we
fix the other hyper-parameters when studying ones.

Setting
# Target Label Prototypes # Incremental classes

1 5 10 20 40 10 15 20 30 40

Final Acc. 81.4 82.5 83.1 83.9 83.5 83.1 80.6 80.0 79.3 80.6
Final S-1 Acc. 65.8 70.6 72.0 73.8 74.0 72.0 69.0 71.0 68.2 67.8

G Effectiveness of Shared Class Detection

To further investigate the effectiveness of our shared class detection strategy, we
compare our method with two variants. The first variant (i.e., Pseudo-labeling)
removes the shared class detection strategy and directly clusters target samples
for all classes [11]. The second variant (i.e., Pseudo-labeling with HBW) applies
the HBW strategy [8] to the clustering method [11] and generates pseudo-labels
for target samples. As shown in Table VII, the Final Accuracy of pseudo-labels
of [11] yields inferior accuracy (74.1% Avg. Acc.) and even performs worse than
source-only (77.5% Avg. Acc., ResNet-50) on Office-31-CI. This is because the
pseudo labels generated by clustering may be noisy when facing the label space
inconsistency between domains. The second variant also suffers performance
degradation (66.6% Avg. Acc.). The reason lies in that the HBW strategy may
fail to get the best variance of the source-positive and source-negative distri-
butions in CI-UDA (cf. Appendix A), so it is unable to distinguish the source
positive classes and the shared classes well (cf. Table I). In contrast, when using
our shared class detection strategy, ProCA detects the shared classes well in
various learning steps (cf. Table I) and thus achieves much better performance
(cf. Table VII). Such a result demonstrates the superiority of our shared class
detection strategy in CI-UDA over existing baselines.
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Table VII. Final Accuracy (%) of the pseudo-labels with and without shared class
detection (SCD) strategy on Office-31-CI.

Method A→D A→W D→A D→W W→A W→D Avg.

ResNet-50 [7] 74.1 74.4 58.5 96.9 61.2 99.6 77.5
Pseudo-labeling [11] 71.2 73.8 60.3 84.8 63.0 91.5 74.1
Pseudo-labeling [11] with HBW [8] 67.5 71.5 42.7 82.9 44.9 90.2 66.6
Pseudo-labeling with our SCD 79.7 78.3 63.5 99.0 64.9 100.0 80.9

H More Experimental Results

To evaluate the ability of our method in sequential learning, we report Step-
level Accuracy and the average accuracy of step-1 classes in each time step (S-1
Accuracy) on ImageNet-Caltech-CI (Table VIII), Office-31-CI (Table IX) and
Office-Home-CI (Tables X, XI, XII and XIII). The experiments show that: 1)
ProCA achieves the best (or at least comparable) performance w.r.t. Step-level
Accuracy on all steps of all transfer tasks, which demonstrates the effectiveness
of our method. 2) Compared with the other baselines, ProCA shows the least S-1
Accuracy drop on most transfer tasks, which shows that the proposed ProCA is
good at alleviating catastrophic forgetting.

Table VIII. Classification accuracies (%) on ImageNet-Caltech-CI. Note that the
results outside the brackets are Step-level Accuracy, while the results in brackets rep-
resent the average accuracy of step-1 classes in each time step (S-1 Accuracy).

Task Method Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Avg.

C→I

ResNet-50 [7] 50.6 (50.6) 53.8 (50.6) 64.1 (50.6) 66.4 (50.6) 66.6 (50.6) 69.7 (50.6) 71.3 (50.6) 71.2 (50.6) 61.9 (50.6)
DANN [5] 47.6 (47.6) 52.4 (55.6) 53.9 (52.2) 53.0 (52.2) 53.0 (52.6) 51.9 (49.4) 58.0 (53.6) 58.8 (54.8) 53.6 (52.3)
PADA [1] 52.1 (52.1) 38.8 (19.7) 41.1 (21.5) 28.7 (19.8) 34.5 (22.2) 30.4 (34.3) 31.6 (29.5) 37.3 (29.1) 36.8 (28.5)
ETN [2] 54.6 (54.6) 55.3 (35.6) 25.3 (11.0) 9.4 (0.8) 4.4 (0.0) 3.4 (0.0) 1.8 (0.0) 1.4 (0.0) 19.4 (12.8)
BA3US [12] 65.6 (65.6) 52.2 (68.4) 54.1 (65.8) 59.4 (65.6) 59.4 (60.0) 58.5 (58.2) 61.9 (56.2) 60.8 (53.0) 59.0 (61.6)
CIDA [9] 58.6 (58.6) 61.3 (56.8) 65.4 (58.4) 67.1 (56.4) 65.9 (55.0) 69.4 (55.8) 68.8 (53.8) 69.3 (58.0) 65.7 (56.6)
ProCA (ours) 74.4 (74.4) 74.8 (73.6) 75.2 (73.4) 77.5 (73.6) 78.5 (72.4) 81.6 (72.0) 82.1 (71.2) 83.1 (72.0) 78.4 (72.8)

I→C

ResNet-50 [7] 81.2 (81.2) 71.8 (81.2) 76.5 (81.2) 73.8 (81.2) 75.2 (81.2) 73.1 (81.2) 71.3 (81.2) 70.7 (81.2) 74.2 (81.2)
DANN [5] 62.8 (63.4) 53.0 (72.8) 43.3 (66.8) 43.2 (56.5) 36.0 (49.0) 33.9 (43.8) 33.1 (43.9) 31.4 (37.2) 42.1 (54.2)
PADA [1] 72.4 (72.0) 53.5 (52.7) 50.0 (54.8) 46.1 (51.5) 53.6 (44.4) 40.3 (43.4) 44.5 (42.2) 45.9 (51.0) 50.8 (51.5)
ETN [2] 75.9 (75.8) 70.5 (78.4) 73.5 (79.4) 69.1 (78.8) 72.2 (79.5) 71.0 (79.2) 48.5 (48.3) 3.1 (0.0) 60.5 (64.9)
BA3US [12] 94.0 (94.1) 71.2 (95.4) 82.2 (95.3) 84.5 (93.5) 81.2 (92.3) 77.8 (90.7) 64.0 (79.7) 45.0 (64.7) 75.0 (88.2)
CIDA [9] 78.2 (78.7) 58.8 (80.5) 61.5 (81.1) 55.9 (78.5) 59.5 (77.8) 58.2 (76.9) 59.1 (77.9) 49.2 (64.6) 60.1 (77.0)
ProCA (ours) 97.8 (97.7) 85.5 (97.5) 87.6 (96.7) 85.4 (96.2) 86.9 (96.3) 85.3 (95.9) 84.2 (96.4) 82.8 (95.0) 86.9 (96.5)
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Table IX. Classification accuracies (%) on Office-31-CI. Note that the results outside
the brackets are Step-level Accuracy, while the results in brackets represent the average
accuracy of step-1 classes in each time step (S-1 Accuracy).

Task Method Step 1 Step 2 Step 3 Avg.

A→D

ResNet-50 [7] 89.0 (87.8) 75.8 (87.8) 74.1 (87.8) 79.6 (87.8)
DANN [5] 87.0 (85.6) 77.1 (87.1) 74.9 (85.4) 79.7 (86.0)
PADA [1] 88.3 (88.7) 63.5 (35.7) 56.9 (35.2) 69.6 (53.2)
ETN [2] 96.8 (96.2) 63.5 (89.2) 21.3 (38.8) 60.5 (74.7)
BA3US [12] 89.0 (89.7) 76.8 (89.7) 74.1 (89.7) 80.0 (89.7)
CIDA [9] 90.3 (89.4) 77.1 (88.5) 70.4 (86.5) 79.3 (88.1)
ProCA (ours) 97.4 (97.3) 84.5 (96.7) 81.6 (96.7) 87.8 (96.9)

A→W

ResNet-50 [7] 85.5 (85.3) 75.9 (85.3) 74.4 (85.3) 78.6 (85.3)
DANN [5] 85.1 (86.1) 75.2 (86.4) 72.5 (85.2) 77.6 (85.9)
PADA [1] 84.7 (82.9) 72.0 (53.5) 61.5 (49.9) 72.7 (62.1)
ETN [2] 97.9 (96.5) 85.6 (96.5) 82.2 (95.5) 88.6 (96.2)
BA3US [12] 92.3 (89.1) 84.5 (88.6) 73.3 (89.0) 83.4 (88.9)
CIDA [9] 82.1 (82.5) 70.6 (84.1) 64.5 (79.8) 72.4 (82.1)
ProCA (ours) 92.3 (93.7) 83.3 (94.2) 82.6 (94.2) 86.1 (94.0)

D→A

ResNet-50 [7] 68.8 (68.6) 68.6 (68.6) 58.5 (68.5) 65.3 (68.5)
DANN [5] 68.7 (68.2) 64.9 (68.0) 55.7 (67.7) 63.1 (68.0)
PADA [1] 78.0 (78.2) 57.8 (63.7) 12.5 (17.2) 49.4 (53.0)
ETN [2] 80.3 ( 79.5) 73.5 (74.7) 61.7 (72.2 ) 71.8 (75.5)
BA3US [12] 81.3(81.0) 78.0 (78.7) 63.3 (76.7) 74.2 (78.8)
CIDA [9] 71.0 (71.3) 63.9 (71.5) 48.1 (64.9) 61.0 (69.2)
ProCA (ours) 78.0 (74.6) 75.0 (73.0) 65.5 (74.1) 72.8 (73.9)

D→W

ResNet-50 [7] 100.0 (100.0) 99.1 (100.0) 96.9 (100.0) 98.7 (100.0)
DANN [5] 85.1 (86.1) 75.2 (86.4) 72.5 (85.2) 77.6 (85.9)
PADA [1] 84.7 (82.9) 72.0 (53.5) 61.5 (49.9) 72.7 (62.1)
ETN [2] 97.9 (96.5) 85.6 (96.5) 82.2 (95.5) 88.6 (96.2)
BA3US [12] 100.0 (100.0) 98.1 (100.0) 94.8 (100.0) 97.6 (100.0)
CIDA [9] 97.4 (97.8) 99.8 (100.0) 95.1 (99.0) 97.4 (99.0)
ProCA (ours) 100.0 (100.0) 100.0 (100.0) 99.1 (100.0) 99.7 (100.0)

W→A

ResNet-50 [7] 70.9 (71.4) 71.5 (71.4) 61.2 (71.4) 67.9 (71.4)
DANN [5] 54.0 (55.1) 62.7 (65.9) 51.4 (65.8) 56.0 (62.3)
PADA [1] 74.2 (73.9) 60.5 (50.4) 46.7 (39.9) 60.5 (54.7)
ETN [2] 76.9 (73.5) 74.8 (70.4) 64.1 (67.9) 71.9 (70.6)
BA3US [12] 81.7 (81.3) 78.3 (79.2) 64.0 (77.3) 74.7 (79.3)
CIDA [9] 72.1 (71.8) 65.7 (71.8) 52.7 (70.6) 63.5 (71.4)
ProCA (ours) 80.0 (82.0) 72.8 (81.3) 63.9 (80.0) 72.2 (81.1)

W→D

ResNet-50 [7] 100.0 (100.0) 99.7 (100.0) 99.6(100.0) 99.8 (100.0)
DANN [5] 100.0 (100.0) 99.0 ( 99.2) 97.7 ( 99.2) 98.9 (99.5)
PADA [1] 100.0 (100.0) 83.9 (66.2) 84.3 (72.8) 89.4 (79.7)
ETN [2] 100.0 (100.0) 99.7 (100.0) 100.0 (100.0) 99.9 (100.0)
BA3US [12] 100.0 (100.0) 100.0 (100.0) 100.0 (99.8) 100.0 (99.9)
CIDA [9] 100.0 (100.0) 97.7 (100.0) 98.8 (100.0) 98.8 (100.0)
ProCA (ours) 100.0 (100.0) 99.7 (100.0) 99.8 (100.0) 99.8 (100.0)
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Table X. Classification accuracies (%) on Office-Home-CI with Ar as source domain.
Note that the results outside the brackets are Step-level Accuracy, while the results
in brackets represent the average accuracy of step-1 classes in each time step (S-1
Accuracy).

Task Method Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Avg.

Ar→Cl

ResNet-50 [7] 48.9 (51.2) 48.3 (51.2) 45.1 (51.2) 46.1 (51.2) 47.5 (51.2) 47.6 (51.2) 47.2 (51.2)
DANN [5] 39.6 (43.6) 29.6 (43.9) 29.6 (43.8) 35.2 (48.0) 28.7 (36.6) 33.1 (39.3) 32.6 (42.5)
PADA [1] 49.9 (52.0) 43.6 (37.0) 29.3 (30.1) 23.9 (23.7) 27.2 (35.0) 24.8 (30.7) 33.1 (34.8)
ETN [2] 49.2 (51.8) 49.6 (50.4) 42.0 (51.2) 42.2 (50.2) 43.4 (51.3) 42.4 (51.4) 44.8 (51.1)
BA3US [12] 53.0 (53.0) 47.0 (54.7) 35.4 (54.9) 33.0 (54.9) 30.7 (52.5) 33.7 (54.6) 38.8 (54.1)
CIDA [9] 50.5 (54.6) 45.1 (53.0) 40.4 (51.2) 37.3 (52.3) 34.8 (48.7) 32.2 (45.4) 40.1 (50.9)
ProCA (ours) 53.3 (57.6) 54.2 (57.6) 47.8 (57.3) 51.4 (58.8) 52.2 (58.2) 51.5 (57.1) 51.7 (57.8)

Ar→Pr

ResNet-50 [7] 66.5 (66.2) 62.9 (66.2) 62.7 (66.2) 64.5 (66.2) 65.6 (66.2) 65.2 (66.2) 64.6 (66.2)
DANN [5] 51.0 (51.1) 45.3 (53.6) 39.8 (50.4) 40.6 (52.2) 45.9 (52.7) 40.0 (53.9) 43.8 (52.3)
PADA [1] 61.1 (59.4) 42.7 (27.0) 44.2 (34.5) 41.2 (39.7) 39.9 (35.5) 41.4 (36.4) 45.1 (38.8)
ETN [2] 65.2 (65.5) 71.3 (64.6) 64.8 (64.9) 64.4 (65.0) 59.4 (60.4) 2.8 (1.1) 54.7 (53.6)
BA3US [12] 62.0 (62.7) 50.0 (62.5) 42.3 (61.4) 39.7 (60.4) 41.0 (56.9) 39.7 (54.3) 45.8 (59.7)
CIDA [9] 66.2 (65.8) 59.6 (64.2) 57.0 (63.8) 52.0 (61.8) 50.8 (61.5) 45.9 (55.9) 55.2 (62.2)
ProCA (ours) 86.7 (84.6) 75.3 (84.1) 74.0 (83.5) 73.9 (79.5) 75.3 (78.2) 75.1 (77.1) 76.7 (81.2)

Ar→Rw

ResNet-50 [7] 73.1 (72.3) 70.7 (72.3) 69.8 (72.3) 72.0 (72.3) 72.0 (72.3) 72.7 (72.3) 71.7 (72.3)
DANN [5] 57.0 (55.8) 51.3 (56.6) 51.3 (60.6) 45.4 (55.3) 42.0 (49.3) 45.8 (54.7) 48.8 (55.4)
PADA [1] 77.1 (74.9) 60.1 (43.3) 56.9 (42.6) 49.0 (36.9) 56.3 (42.2) 55.1 (43.8) 59.1 (47.3)
ETN [2] 75.0 (74.6) 73.5 (73.6) 71.9 (72.2) 63.3 (59.2) 29.0 (25.1) 7.4 (0.2) 53.4 (50.8)
BA3US [12] 79.4 (78.2) 71.5 (77.6) 64.8 (77.8) 62.9 (77.4) 58.1 (74.3) 63.2 (74.7) 66.7 (76.7)
CIDA [9] 67.6 (66.7) 60.5 (67.9) 60.2 (69.8) 58.7 (68.2) 58.3 (67.0) 49.1 (54.0) 59.1 (65.6)
ProCA (ours) 86.2 (86.5) 86.2 (84.4) 83.7 (83.5) 85.3 (81.5) 85.4 (82.6) 85.9 (80.8) 85.5 (83.2)

Table XI. Classification accuracies (%) on Office-Home-CI with Cl as source domain.
Note that the results outside the brackets are Step-level Accuracy, while the results
in brackets represent the average accuracy of step-1 classes in each time step (S-1
Accuracy).

Task Method Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Avg.

Cl→Ar

ResNet-50 [7] 57.7 (58.1) 55.4 (58.1) 52.7 (58.1) 52.7 (58.1) 51.9 (58.1) 54.7 (58.1) 54.2 (58.1)
DANN [5] 30.9 (30.5) 32.1 (39.0) 34.0 (47.0) 35.4 (45.3) 35.7 (45.7) 36.8 (44.1) 34.1 (41.9)
PADA [1] 58.7 (52.9) 41.1 (30.3) 31.5 (27.5) 25.4 (19.9) 19.8 (20.3) 18.3 (18.5) 32.5 (28.2)
ETN [2] 63.3 (63.2) 57.3 (63.0) 54.2 (63.8) 55.5 (59.6) 25.9 (25.5) 4.3 (0.2) 43.4 (45.9)
BA3US [12] 71.4 (68.7) 57.8 (69.3) 48.5 (68.8) 37.5 (64.8) 40.2 (56.4) 36.6 (59.6) 48.7 (64.6)
CIDA [9] 41.8 (46.0) 41.6 (61.3) 37.1 (55.0) 35.2 (59.3) 35.4 (59.8) 36.5 (57.8) 37.9 (56.5)
ProCA (ours) 66.1 (63.6) 64.9 (64.4) 60.9 (64.7) 59.7 (62.2) 58.8 (63.6) 60.9 (63.5) 61.9 (63.7)

Cl→Pr

ResNet-50 [7] 67.3 (68.9) 63.8 (68.9) 63.5 (68.9) 60.8 (68.9) 62.6 (68.9) 62.8 (68.9) 63.5 (68.9)
DANN [5] 40.1 (39.9) 41.3 (40.7) 36.7 (40.1) 39.4 (48.9) 39.4 (45.6) 36.6 (47.3) 38.9 (43.8)
PADA [1] 75.2 (74.9) 48.0 (31.8) 39.3 (29.8) 36.7 (24.2) 36.6 (23.1) 35.0 (23.6) 45.1 (34.6)
ETN [2] 67.1 (67.0) 63.6 (69.0) 62.0 (66.1) 63.7 (68.6) 63.7 (68.8) 60.3 (68.3) 63.4 (68.0)
BA3US [12] 70.0 (70.6) 63.3 (70.7) 58.4 (72.3) 52.9 (73.0) 46.2 (71.5) 39.1 (64.5) 55.0 (70.4)
CIDA [9] 60.1 (60.2) 54.2 (65.5) 53.9 (66.3) 50.0 (66.4) 50.0 (66.7) 48.6 (61.6) 52.8 (64.5)
ProCA (ours) 71.3 (75.3) 71.1 (75.4) 69.8 (75.4) 65.8 (74.7) 69.7 (73.9) 69.7 (74.0) 69.6 (74.8)

Cl→Rw

ResNet-50 [7] 66.7 (66.0) 65.9 (66.0) 65.6 (66.0) 64.4 (66.0) 65.5 (66.0) 66.1 (66.0) 65.7 (66.0)
DANN [5] 46.9 (46.9) 46.7 (51.7) 49.1 (54.0) 44.1 (49.1) 44.0 (51.2) 44.1 (53.4) 45.8 (51.1)
PADA [1] 62.5 (63.3) 49.2 (31.6) 43.5 (36.0) 41.2 (30.2) 34.3 (25.6) 36.3 (30.1) 44.5 (36.1)
ETN [2] 63.5 (64.0) 65.3 (65.3) 65.2 (63.5) 65.1 (62.9) 39.8 (37.7) 6.3 (0.5) 50.9 (49.0)
BA3US [12] 75.6 (74.7) 68.6 (75.6) 63.1 (74.6) 54.3 (72.5) 46.0 (68.8) 53.7 (72.9) 60.2 (73.2)
CIDA [9] 64.9 (64.2) 50.4 (63.9) 52.7 (62.8) 52.1 (62.8) 50.8 (62.9) 46.6 (56.0) 52.9 (62.1)
ProCA (ours) 71.9 (71.6) 74.6 (69.9) 74.1 (70.0) 73.2 (67.4) 76.0 (67.2) 75.3 (69.4) 74.2 (69.3)
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Table XII. Classification accuracies (%) on Office-Home-CI with Pr as the source
domain. Note that the results outside the brackets are Step-level Accuracy, while the
results in brackets represent the average accuracy of step-1 classes in each time step
(S-1 Accuracy).

Task Method Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Avg.

Pr→Ar

ResNet-50 [7] 49.1 (49.5) 50.7 (49.5) 47.7 (49.5) 50.8 (49.5) 50.5 (49.5) 52.4 (49.5) 50.2 (49.5)
DANN [5] 34.2 (31.2) 25.6 (27.9) 32.3 (35.4) 32.5 (38.4) 30.4 (36.8) 32.0 (35.9) 31.2 (34.3)
PADA [1] 52.2 (49.0) 36.4 (26.4) 26.2 (17.4) 28.1 (15.9) 25.5 (16.4) 25.9 (12.6) 32.4 (23.0)
ETN [2] 63.8 (63.9) 55.8 (60.5) 53.7 (60.7) 53.0 (61.0) 51.5 (58.7) 50.7 (61.6) 54.8 (61.1)
BA3US [12] 62.5 (59.7) 56.3 (61.0) 47.2 (60.7) 41.7 (63.8) 39.0 (62.5) 36.5 (64.6) 47.2 (62.1)
CIDA [9] 49.1 (51.9) 48.9 (52.8) 48.5 (52.6) 50.0 (52.0) 50.2 (51.7) 51.6 (52.5) 49.7 (52.2)
ProCA (ours) 62.0 (60.8) 66.0 (61.2) 60.1 (60.0) 61.3 (57.8) 60.0 (58.6) 59.9 (57.7) 61.6 (59.4)

Pr→Cl

ResNet-50 [7] 49.8 (50.3) 47.3 (50.3) 47.2 (50.3) 46.7 (50.3) 46.3 (50.3) 44.7 (50.3) 47.0 (50.3)
DANN [5] 37.5 (39.6) 33.4 (42.3) 33.1 (38.6) 30.7 (34.4) 23.3 (30.0) 29.8 (37.4) 31.3 (37.1)
PADA [1] 49.3 (46.6) 35.0 (35.0) 28.5 (33.2) 24.4 (23.2) 29.0 (37.7) 26.2 (27.5) 32.1 (33.9)
ETN [2] 47.7 (48.9) 42.4 (48.4) 38.7 (49.3) 36.3 (48.4) 38.2 (47.4) 33.8 (49.0) 39.5 (48.6)
BA3US [12] 55.4 (57.4) 44.5 (57.6) 38.0 (56.4) 32.3 (54.6) 29.5 (52.1) 24.9 (50.0) 37.4 (54.7)
CIDA [9] 50.7 (51.6) 42.8 (51.7) 39.4 (51.3) 36.2 (50.2) 36.6 (50.5) 33.5 (49.0) 39.9 (50.7)
ProCA (ours) 60.4 (61.6) 54.6 (59.6) 54.2 (58.9) 53.7 (59.0) 53.2 (57.0) 50.9 (58.2) 54.5 (59.1)

Pr→Rw

ResNet-50 [7] 70.1 (69.5) 72.0 (69.5) 72.3 (69.5) 73.1 (69.5) 74.1 (69.5) 74.0 (69.5) 72.6 (69.5)
DANN [5] 46.3 (46.0) 42.9 (43.6) 48.3 (48.8) 49.7 (50.8) 47.4 (46.4) 49.8 (49.3) 47.4 (47.5)
PADA [1] 71.6 (71.5) 62.8 (43.4) 46.1 (33.6) 53.8 (43.3) 47.4 (30.8) 53.7 (40.3) 55.9 (43.8)
ETN [2] 72.8 (73.1) 70.5 (69.6) 71.2 (71.5) 72.4 (71.0) 71.5 (69.5) 70.8 (70.2) 71.5 (70.8)
BA3US [12] 79.8 (79.3) 73.6 (78.8) 69.3 (77.8) 63.4 (76.8) 59.1 (71.9) 53.4 (65.9) 66.4 (75.1)
CIDA [9] 65.0 (64.9) 62.3 (68.0) 61.4 (67.1) 59.4 (65.9) 59.7 (65.9) 59.0 (62.3) 61.1 (65.7)
ProCA (ours) 81.3 (80.9) 83.4 (79.6) 83.2 (78.8) 85.4 (79.1) 83.3 (78.7) 84.7 (79.3) 83.6 (79.4)

Table XIII. Classification accuracies (%) on Office-Home-CI with Rw as source
domain. Note that the results outside the brackets are Step-level Accuracy, while the
results in brackets represent the average accuracy of step-1 classes in each time step
(S-1 Accuracy).

Task Method Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Avg.

Rw→Ar

ResNet-50 [7] 63.0 (65.0) 66.0 (65.0) 64.5 (65.0) 67.0 (65.0) 64.4 (65.0) 66.2 (65.0) 65.2 (65.0)
DANN [5] 37.2 (39.9) 43.9 (47.5) 39.9 (44.6) 41.7 (44.3) 44.3 (47.8) 42.4 (49.0) 41.6 (45.5)
PADA [1] 70.9 (70.1) 59.3 (37.2) 50.6 (34.0) 40.9 (24.8) 39.5 (17.9) 46.8 (32.8) 51.3 (36.1)
ETN [2] 68.6 (68.7) 68.1 (67.2) 67.3 (68.2) 66.2 (68.4) 44.4 (51.2) 3.7 (0.9) 53.1 (54.1)
BA3US [12] 65.1 (68.8) 64.3 (69.0) 58.2 (69.3) 57.4 (68.4) 55.2 (68.8) 52.2 (69.2) 58.7 (68.9)
CIDA [9] 62.3 (65.1) 63.5 (66.9) 61.9 (67.0) 62.9 (64.7) 62.4 (65.4) 64.0 (69.0) 62.8 (66.3)
ProCA (ours) 77.5 (74.0) 79.3 (74.4) 74.9 (74.0) 76.0 (73.9) 72.7 (72.0) 75.8 (73.9) 76.0 (73.7)

Rw→Cl

ResNet-50 [7] 40.1 (43.8) 48.2 (43.8) 48.0 (43.8) 48.6 (43.8) 48.7 (43.8) 47.4 (43.8) 46.8 (43.8)
DANN [5] 37.8 (42.5) 38.8 (41.5) 39.9 (45.1) 41.1 (43.2) 40.8 (43.7) 40.2 (47.1) 39.7 (43.9)
PADA [1] 50.2 (52.7) 52.2 (37.3) 38.8 (27.6) 34.9 (23.8) 38.1 (30.9) 31.4 (33.2) 40.9 (34.3)
ETN [2] 46.4 (50.6) 50.5 (50.8) 45.0 (50.9) 45.6 (49.9) 45.2 (51.4) 43.5 (51.8) 46.0 (50.9)
BA3US [12] 51.6 (55.5) 52.3 (56.6) 45.6 (54.6) 42.5 (56.2) 38.2 (54.7) 35.9 (55.0) 44.3 (55.4)
CIDA [9] 44.6 (47.3) 45.4 (46.0) 41.3 (46.5) 41.2 (49.6) 40.0 (45.0) 38.0 (46.2) 41.7 (46.8)
ProCA (ours) 45.4 (47.3) 46.7 (48.4) 47.9 (48.8) 50.8 (50.4) 51.5 (49.4) 51.0 (47.3) 48.9 (48.6)

Rw→Pr

ResNet-50 [7] 67.3 (69.2) 74.0 (69.2) 78.1 (69.2) 77.9 (69.2) 78.1 (69.2) 77.4 (69.2) 75.5 (69.2)
DANN [5] 53.5 (54.7) 55.4 (56.3) 58.7 (60.4) 57.1 (60.6) 55.5 (55.1) 55.2 (57.2) 55.9 (57.4)
PADA [1] 77.6 (80.6) 61.0 (35.9) 50.5 (22.8) 52.8 (41.3) 55.8 (42.0) 50.0 (47.4) 57.9 (45.0)
ETN [2] 70.0 (72.3) 75.9 (72.9) 74.4 (71.3) 76.5 (72.8) 76.2 (72.9) 75.1 (73.3) 74.7 (72.6)
BA3US [12] 73.4 (76.5) 75.4 (76.6) 72.8 (75.7) 71.6 (74.9) 69.0 (76.4) 65.9 (73.2) 71.3 (75.6)
CIDA [9] 71.6 (73.5) 69.6 (70.4) 68.3 (70.7) 66.4 (68.7) 66.2 (68.0) 65.1 (68.5) 67.9 (69.9)
ProCA (ours) 80.6 (85.1) 85.0 (83.9) 88.3 (82.9) 85.4 (82.7) 86.0 (82.5) 86.4 (81.8) 85.3 (83.2)
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