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A Algorithm Table

We provide an algorithm table of the proposed CroDoBo in Algorithm 1.

B Prior Online UDA approaches

In the main paper, we propose a novel cross-domain framework to implement
the right to be forgotten. However, we do not claim to have proposed the task
of online unsupervised domain adaptation, which has existed before the emer-
gence of deep learning [4,9,17]. The recent works are mostly engineered for a
specific downstream task [2,5,26,16,7] that lacks generality. Yet, we try to com-
pare to a more general but unpublished approach CONDA [23] despite its limited
availability. The setting of CONDA is different from our approach. It allows a
memory module that selectively buffers target queries in which the model can
re-access previous target samples. As a result, CONDA is less challenging com-
pared to “burn after reading”. Meanwhile, CONDA has a continual setting, in
which the model is pretrained on the source domain and then adapted to the
target domain. Without any available source code from CONDA [23], we employ
the same backbone in [23], HR-Net [25], to make a fair comparison. We devise
CroDoBoto a continual setting to make it comparable. Without simultaneous
access to the source domain, cross-domain bootstrapping is not an option. So we
employ the objectives on the target domain (see main paper Sec.3.2.2), we call it
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Algorithm 1: The CroDoBo algorithm

Input : Number of learners K, learners {wk}Kk=1, learning rate η, number of
target queries NT , confidence threshold τ , batch size B, transform
F , data DS , DT , number of class c;

for j ← 1 to NT do
Given Tj = {tb}Bb=1 from DT , {t̃b} = {F (tb)},
Sample Sk

j from DS , repeat K times;
for k ← 1 to K do

Update wk ← wk − η∇ℓks ,
Obtain pseudo-labels {ŷk

b }Bb=1 = {argmaxc(p(c|tb;wk) > τ)}Bb=1;
end
for k ← 1 to K do

for b← 1 to B do

Obtain {ℓz→k
t }K−1

z=1 = {1 (pzb ≥ τ)H
(
ŷk
b ; p

k
b̃

)
}K−1
z=1 ,

Obtain ℓself = ℓent + λℓdiv;
end

end

Update wk ← wk − η( 1
K−1

∑K−1
z=1 ∇ℓ

z→k
t +∇ℓself)

Output ŷtest = argmaxc
1

K−1

∑K
k=1 p(c|Tj ;w

k).

end

Continual CroDoBo. The results are in Table 8. We observe that, without any
buffer mechanism or re-access to the previous queries, the continual CroDoBo
still outperforms ConDA [23].

As mentioned in the main paper Sec.2, we compare to another related task–
Test-Time Domain Adaptation [24,22]. We have analyzed the differences of the
setting of Test-Time DA in the main paper Sec.2, and here we provide the results
of Tent [24] compared with the Continual CroDoBo in Table 9. We observe
that our proposed method largely outperforms Tent on VisDA-C.

C Streaming Randomness

As mentioned in the main paper Sec.4, in the online setting, each model takes
the same target sequence for fair comparison. The target sequence is randomly-
perturbed using the a fixed randomseed. Here, we discuss whether the model
will be influenced by different random sequential orders. We perturb the origi-
nal target sequence (arranged in the categorical order) using 5 different random
seeds, and report the results of each seed on VisDA-C [18] and the large-scale
Fashion-MNIST-to-DeepFashion [13] benchmark. We compare the randomness
using CDAN [15] and CroDoBo. We choose CDAN [15] since it is a bench-
mark adversarial approach, essentially different from the proposed approach.
The results are in Table 10. We observe that on VisDA-C the variance among
different sequential orders is rather small (< 0.25). On the more challenging
Fashion benchmark, the variance of CroDoBo is larger but manageable (<
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Table 8. Accuracy on VisDA-C (%) using HR-Net.

Methods (Syn → Real) plane bike bus car horse knife motor person plant skate train truck Online One-pass

ConDA [23] 97.0 90.4 80.9 50.0 95.2 95.7 80.3 81.9 94.9 94.2 91.1 63.9 N/P 84.6

Continual CroDoBo (Ours) 96.5 85.2 82.3 47.3 98.0 96.1 89.6 79.2 94.9 95.7 90.4 66.5 80.0 85.1

CroDoBo (Ours) 94.8 86.0 90.7 80.3 97.1 99.1 93.1 85.0 88.2 89.6 90.9 47.1 82.9 86.8

Table 9. Comparisons to Tent on VisDA-C using ResNet-101.

Methods (ResNet-101) plane bike bus car horse knife motor person plant skate train truck Online One-pass

Tent [24] 85.2 44.3 79.4 50.0 78.1 52.7 83.0 43.5 65.0 53.1 81.4 30.1 62.1 -

Continual CroDoBo (Ours) 93.3 75.8 83.6 70.6 92.8 21.8 86.5 80.5 86.6 90.0 79.6 43.6 74.0 75.4

Table 10. Online accuracy (%) on five different perturbations of target sequence on
VisDA-C [18] and Fashion-MNIST [27]-to-DeepFashion [13].

VisDA-C

Methods rand 0 rand 1 rand 2 rand 3 rand 4 mean var

CDAN [15] 62.3 61.0 61.9 61.6 61.9 61.7 0.21

CroDoBo 79.4 78.6 79.6 79.2 79.4 79.2 0.15

Fashion-MNIST-to-DeepFashion

Methods rand 0 rand 1 rand 2 rand 3 rand 4 mean var

CDAN [15] 45.4 47.4 46.7 46.3 46.2 46.4 0.54

CroDoBo 49.1 48.9 46.3 46.5 48.9 47.9 1.99

Table 11. Replacing main paper Eq.3 with other pseudo-labeling methods(%) on
VisDA-C.

Methods (Syn → Real) plane bike bus car horse knife motor person plant skate train truck Online

wu: MixMatch [1] wv: FixMatch [20] 93.2 80.9 85.6 67.1 94.1 10.3 88.4 77.9 92.3 91.9 85.7 35.9 74.3

wu, wv: MixMatch [1] 94.7 83.3 81.0 62.4 90.7 13.8 84.8 78.7 95.6 94.6 82.9 45.4 71.6

CroDoBo 94.8 87.5 90.5 76.0 94.9 93.7 88.7 80.1 94.8 89.4 84.6 30.7 79.4

Table 12. Performance sensitivity (%) to hyperparameter λ (weight for diversity loss)
on VisDA-C [18], τ=0.95.

Metric/λ 0.1 0.4 0.5 0.8 1.0 mean var

Online 74.9 79.4 78.7 78.5 78.4 78.0 3.1

One-pass 80.2 84.0 83.4 83.6 83.5 82.9 2.4

Table 13. Performance sensitivity (%) to hyperparameter τ (confidence threshold for
pseudo-label selection in main paper Eq.2 on VisDA-C [18], λ=0.4.

Metric/τ 0.5 0.6 0.7 0.8 0.9 0.95 mean var

Online 75.0 76.7 77.3 77.9 78.4 79.4 77.5 2.3

One-pass 80.9 81.7 82.6 82.8 83.4 84.0 82.7 2.0
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2.0). We analyze that CroDoBo relies more on the target-oriented supervision
(see main paper Sec.3.2.2) than CDAN [15], which makes it more sensitive to-
wards the changes of the target samples. This is a drawback of CroDoBo that
we will try to address in the future work.

To conclude, the randomness in forming the order of target queries will not
be a factor that influences the evaluation of the online model effectiveness.

D Other Pseudo-labeling Approaches as Co-supervision

The co-supervision in the proposed method (cf. main paper Eq.3) can be re-
placed with any other pseudo-labeling approaches. One can simply replace the
term on either/both {wu, wv} to achieve better performance. We replace on ei-
ther/both learners with another popular semi-supervised approach MixMatch [1]
and report the results in Table 11. We observe that FixMatch [20] provides bet-
ter co-supervision and the online performance drops ∼8% when replaced with
MixMatch.

E Multi-Source CroDoBo.

Since the proposed method exploits the learners’ discrepancy, a natural extension
of the proposed method is to use multiple source to obtain more discrepant co-
supervisions. We experimented on VisDA-C with one learner taking from an
additional source domain from the Youtube Bounding Box dataset [18]. For fair
comparison, we randomly select a subset of the source samples to have equal
total number of source samples for both multi-source and single-source settings.
The results are reported in Table 14. Multi-Source CroDoBo improves the
class average accuracy to a remarkable 87.8%. The result further validates the
effectiveness to increase data diversity.

F Hyperparameters

We have two hyperparameters in the proposed approach: λ for weighing the term
ℓdiv and τ for the pseudo-label selection (cf. main paper Eq.2). We used λ=0.4
and τ=0.95 in all our experiments, here we report results on more settings of
these hyperparameters. The results of λ={0.1, 0.4, 0.5, 0.8, 1.0} are shown in
Table 12. As the results suggest, CroDoBo is not sensitive to hyperparameter
λ. We observe similar performance of the model when λ is larger than 0.4.

Table 14. Accuracy on VisDA-C (%) with Multi-Source CroDoBo+.

Methods (ResNet-101) plane bike bus car horse knife motor person plant skate train truck Online Class Avg.

Multi-Source CroDoBo+ 96.2 85.4 90.8 79.7 96.6 94.6 93.3 87.5 96.3 92.4 90.2 50.6 84.0 87.8

CroDoBo+ K=2 94.8 87.5 90.5 76.0 94.9 93.7 88.7 80.1 94.8 89.4 84.6 30.7 79.4 84.0
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Sensitivity to Diversity Weight "

Fig. 7. Results of online accuracy w.r.t. sensitivity to hyperparameter λ for the diver-
sity term on VisDA-C [18] using ResNet-101.

Sensitivity to Threshold  !

Fig. 8. Results of online accuracy w.r.t. sensitivity to hyperparameter τ for pseudo-
label threshold on VisDA-C [18] using ResNet-101.

The sensitivity to τ is shown in Table 13. When τ is smaller, more samples in
each target query are selected as pseudo-labels to co-supervise the peer learner.
However, the quality of these pseudo-labels is compromised since the model is
less confident about the prediction. Thus, the co-supervision is less accurate to
depend on. We observe the performance drop when the threshold τ is smaller
than 0.6. Therefore, we suggest a larger threhold τ to achieve a more effective
model. The online accuracy of the above settings are shown in Figure 7 and
Figure 8.

G Network Architecture

We follow the network architecture in [11,12], a feature backbone followed by
a bottleneck layer with dimension=256, and a Linear layer as the output layer.
For the experiments on VisDA-C [18], COVID-DA [28] and Fashion-MNIST-to-
DeepFashion [27,13], the feature backbone is pretrained on ImageNet [3]. For the
WILDS -Camelyon17 benchmark, we followed the leaderboard to use a randomly
initialized DenseNet-121 [8]. We use Adam [10] with with an initial learning rate
of 8e-4. The query size in our experiments is set as 64. We have not observed
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Table 15. Ablation study of RandAug and the multiple forward of each target query
on VisDA-C and Fashion dataset.

Dataset
VisDA-C Fashion

No Aug RandAug+multiple use of target No Aug RandAug+multiple use of target

DAN [14] 57.8 68.4 40.7 45.2

CORAL [21] 66.7 72.1 40.4 37.1

DANN [6] 49.0 49.9 35.6 37.2

ENT [19] 55.8 46.1 31.9 31.3

MDD [29] 60.4 67.0 36.5 39.0

CDAN [15] 62.3 62.8 45.4 41.0

CroDoBo K=2 (Ours) 77.9 79.4 47.6 49.1

any major performance change using different batch-size. Results are reported
based on an average of 5 runs.

H More Ablation Study

As clarified in Sec.3.2, RandAug is only employed to increase the data diversity,
and is not required for the proposed method. We note that the use of Ran-
dAug and the multiple use of each target query in the proposed method might
lead to confusion. To better evaluate the proposed method, besides providing
CroDoBo without any augmentation in the main paper, here we further pro-
vide the augmented baseline results, and with multiple use of each target query
with two strong and two weak augmented versions. We search the best per-
forming hyperparameters for each method using grid-search. We observe that
(Table 15) either CroDoBo or CroDoBo+ outperforms the compared base-
lines.
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