
Supplementary Material on
Improving Test-Time Adaptation via

Shift-agnostic Weight Regularization and Nearest
Source Prototypes

Sungha Choi⋆ Seunghan Yang Seokeon Choi Sungrack Yun

Qualcomm AI Research†

{sunghac,seunghan,seokchoi,sungrack}@qti.qualcomm.com

This supplementary material begins with a discussion of our two proposed
approaches and then provides additional quantitative results examining hyper-
parameter impacts, the performance of the NSP classifier, the transform function
of the SWR, and the SWR variants. We also evaluate our approach on a large-scale
dataset, ImageNet-C [9], and expand the proposed SWR to support pixel-level
classification (i.e., semantic segmentation) on Cityscapes-C [4,9]. Finally, we pro-
vide further implementation details for the projector and additional information
about the experiments on the domain generalization benchmarks.

A Discussion

A.1 Shift-agnostic Weight Regularization

The intuition of SWR is to control the update of model parameters depending
on each parameter’s sensitivity to the distribution shift. If θ∗ in Eq. (1) is fixed
as source model parameters without being updated with the model parameters
from the previous step, it is difficult to adapt the model to the target data
sufficiently. Constraining the model parameters not to move away significantly
from the source model parameters is not the purpose of SWR (Instead, NSP
aligns source and target features based on the source prototypes). Updating θ∗

shows better performance than freezing θ∗, and these results are included in the
supplementary Section B.7.

We assumed color and blur as a distribution shift to find shift-agnostic and
shift-biased weights. Using too various augmentations increases the number of
shift-biased weights. This means that more parameters are largely updated,
which may result in performance degradation (Table 8). We conjecture that the
augmentations such as color and blur, which can be commonly included in various
domain gaps, are suitable for finding shift-agnostic weights.

We generated the penalty vector w in parameter-wise, output channel-wise,
and layer1-wise manners, and we chose the best method experimentally. While

⋆ Corresponding author.
† Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.
1 torch.nn.Module units defined in Pytorch.

https://orcid.org/0000-0003-2313-9243
https://orcid.org/0000-0002-0411-8407
https://orcid.org/0000-0002-1695-5894
https://orcid.org/0000-0003-2462-3854


2 S. Choi et al.

2 4 8 16 32 64 128 256 8k 20k
(Full data)

10

12

14

16

18

WRN-40-2

ResNet-50

WRN-28-10

50k

15.67

14.48

12.00
11.56

10.32

(Default setting)
1k512 4k# of source 

samples

Error rate (%
)12.52

15.70

10.37

18.99

Fig. 7: Comparison of error rate (%) according to the number of source samples
(i.e., the images in CIFAR-10 [12] train set) used to obtain the sensitivity of each
model parameter to distribution shift in the SWR. The x- and y-axes denote the
number of source samples and the error rate on CIFAR-10-C [9], respectively.

SpotTune [7] considers residual block units (16 units for ResNet-50) in terms of
where to fine-tune, we generate the penalty values on layer1 units (161 units for
ResNet-50), which is much more granular than SpotTune.

A.2 Superiority of Nearest Source Prototypes

The purpose of the NSP is twofold: (1) aligning target and source features by
leveraging the source prototypes as reference points (Fig. 5(b), Laux ent

θe
), and

(2) learning input consistency (Fig. 5(c), Laux sel
θe

). As shown in Table 2, Laux ent
θe

has more crucial contribution than Laux sel
θe

. To further validate the superiority
of NSP, we conduct experiments while keeping SWR but replacing NSP with
FixMatch [14] using this Pytorch implementation2 on settings (a) and (b) in
Table 1. FixMatch improves performance by up to 0.13% compared to using SWR
alone (up to 2.11% increase when NSP is applied). We can find that learning
only input consistency, such as applying FixMatch, is not sufficient to handle the
distribution shift between source and target.

B Further Experiments

B.1 Impact of Number of Source Samples in SWR

As described in Section 3.1, the penalty vector w is calculated by employing the
average cosine similarity between two gradient vectors g and g′ from N source

2 https://github.com/kekmodel/FixMatch-pytorch/blob/master/train.py



SWR & NSP 3

Table 7: Comparison of error rate (%) according to the changes in importance
of each loss term. Gray-colored cells denote the default value. H(p̄) ↓ denotes
entropy minimization, and H(p̄) ↑ indicates mean entropy maximization.

H(p) ↓ H(p̄) ↑ SSL Reg.
Err.

λm1 λa1 λm2 λa2 λs λr

0.2 0.8 0.25 0.25 0.1 250 35.65
0.5 0.5 0.25 0.25 0.1 250 36.05
0.8 0.2 0.25 0.25 0.1 250 36.73

0.2 0.8 0.1 0.1 0.1 250 35.85
0.2 0.8 0.25 0.25 0.1 250 35.65
0.2 0.8 0.5 0.5 0.1 250 35.92

0.2 0.8 0.25 0.25 0.01 250 35.79
0.2 0.8 0.25 0.25 0.1 250 35.65
0.2 0.8 0.25 0.25 0.5 250 36.13

0.2 0.8 0.25 0.25 0.1 10 53.01
0.2 0.8 0.25 0.25 0.1 100 36.78
0.2 0.8 0.25 0.25 0.1 250 35.65
0.2 0.8 0.25 0.25 0.1 500 36.29
0.2 0.8 0.25 0.25 0.1 1000 37.43

samples. We conduct the experiment to analyze the impact of the number of
source samples on performance. As shown in Fig. 7, the smaller the number N of
source samples, the higher the error rate. However, with more than 256 images,
performance tends to remain stable and low regardless of the number of source
samples. We use 1k source samples as the default setting for all experiments,
as mentioned in Section 4.2. This experiment shows that not all source data is
required for the SWR.

B.2 Importance of Each Loss Term

As described in Section 3, our proposed losses are defined as

Ltarget
θe,θc

= Lmain
θe,θc + Laux

θe + λr

∑
l

wl∥θl − θ∗
l ∥22

= Lmain
θe,θc + Laux ent

θe + λsLaux sel
θe + λr

∑
l

wl∥θl − θ∗
l ∥22

= λm1

1

N

N∑
i=1

H(ỹi)− λm2H(¯̃y)

}
Lmain
θe,θc

+ λa1

1

N

N∑
i=1

H(ŷi)− λa2H(¯̂y)

}
Laux ent
θe

+ λs
1

N

N∑
i=1

CE
(
ŷki , ŷ

′k
i

) }
Laux sel
θe

+ λr

∑
l

wl∥θl − θ∗
l ∥22,

(10)



4 S. Choi et al.

Table 8: Comparison of error rate (%) according to the combination of trans-
form functions. We use the following transformations in Pytorch: ColorJitter
(Color), RandomGrayscale (Gray), RandomInvert (Inve.), GaussianBlur (Blur),
RandomHorizontalFlip (H.Fli.), and RandomResizedCrop (Crop.).

Datasets Backbone Color +Gray. +Inve. +Blur. +H.Fli. +Crop.

CIFAR-100-C
WRN-40-2 [19,10] 33.23 33.04 32.99 32.71 32.79 33.31

ResNet-50 [8] 37.61 36.58 36.15 35.65 35.70 35.94

CIFAR-10-C

WRN-40-2 10.97 10.76 10.63 10.37 10.31 10.68

WRN-28-10 [19] 16.73 16.48 16.24 15.70 15.73 25.61

ResNet-50 [8] 12.47 12.38 12.76 12.52 12.55 11.81

where H(p) = −
∑C

k=1 p
k log pk and CE (p, q) = −

∑C
k=1 p

k log qk. Here, ỹ de-
notes the prediction of the main classifier, ŷ is the prediction of the NSP classifier,
symbol ¯ indicates average class probability distribution over batch samples, and
symbol ′ denotes the prediction of the transformed sample. The hyper-parameters
indicating the importance of each term are empirically set as λm1=0.2, λa1=0.8
λm2=0.25, λa2=0.25, λs=0.1, and λr=250. Table 7 shows the error rate (%)
according to the changes in importance of each term. The default settings are
indicated by gray-colored cells.

B.3 Ablation Studies on Transform Functions of SWR

As described in Section 3.1, the SWR employs the sensitivity of each model
parameter to distribution shift, and we simulate the distribution shift through
the transform functions such as color distortion and Gaussian blur. We conduct
ablation studies on transform functions to find the optimal combination of trans-
formations. Table 8 shows the experimental results by adding each transformation
in order. We use the following combinations as default setting: ColorJitter, Ran-
domGrayscale, RandomInvert, and Gaussian Blur in Pytorch. The pseudo-code
for our default setting using Pytorch is as follows.

1 from torchvision import transforms

2

3 TRANSFORMS_SWR = torch.nn.Sequential(

4 transforms.ColorJitter(0.8, 0.8, 0.8, 0.2),

5 RandomChoice(

6 transforms.RandomGrayscale(p=0.5),

7 transforms.RandomInvert(p=0.5),

8 p = 0.5

9 ),

10 RandomApply(

11 transforms.GaussianBlur((3, 3), (1.0, 2.0)),

12 p = 0.5

13 ),

14 )



SWR & NSP 5

0

0

0

(g) Linear (h) 5th Power

50 100 150
0

0.2

0.4

0.6

0.8

1

0 50 100 150
0

0.2

0.4

0.6

0.8

1

0 50 100 150
0

0.2

0.4

0.6

0.8

1

0 50 100 150
0

0.2

0.4

0.6

0.8

1

50 100
0

0.2

0.4

0.6

0.8

1

0 50 100
0

0.2

0.4

0.6

0.8

1

0 50 100
0

0.2

0.4

0.6

0.8

1

0 50 100
0

0.2

0.4

0.6

0.8

1

40 80
0

0.2

0.4

0.6

0.8

1

0 40 80
0

0.2

0.4

0.6

0.8

1

0 40 80
0

0.2

0.4

0.6

0.8

1

0 40 80
0

0.2

0.4

0.6

0.8

1

60 60 60 6020 20 20 20

(f) SWR variant
(Horizontal flipping of Ours)

(i) 10th Power

0 50 100 150
0

0.2

0.4

0.6

0.8

1

0 50 100
0

0.2

0.4

0.6

0.8

1

0 40 80
0

0.2

0.4

0.6

0.8

1

6020

(j) Horizontal Line
(Avg. value of orginal penalty)

0 50 100 150
0

0.2

0.4

0.6

0.8

1

0 50 100
0

0.2

0.4

0.6

0.8

1

0 40 80
0

0.2

0.4

0.6

0.8

1

6020

(a) Ours (SWR) (b) SWR variant
(+ Geometric aug.)

0 50 100 150
0

0.2

0.4

0.6

0.8

1

0 50 100 150
0

0.2

0.4

0.6

0.8

1

0 50 100
0

0.2

0.4

0.6

0.8

1

0 50 100
0

0.2

0.4

0.6

0.8

1

0 40 80
0

0.2

0.4

0.6

0.8

1

0 40 80
0

0.2

0.4

0.6

0.8

1

60 6020 20

(c) SWR variant
(n=1)

(d) SWR variant
(n=3)

0 50 100 150
0

0.2

0.4

0.6

0.8

1

0 50 100 150
0

0.2

0.4

0.6

0.8

1

0 50 100
0

0.2

0.4

0.6

0.8

1

0 50 100
0

0.2

0.4

0.6

0.8

1

0 40 80
0

0.2

0.4

0.6

0.8

1

0 40 80
0

0.2

0.4

0.6

0.8

1

60 6020 20

Re
sN

et
-5
0

W
RN

-4
0-
2

W
RN

-2
8-
10

(e) SWR variant
(Vertical flipping of Ours)

Re
sN

et
-5
0

W
RN

-4
0-
2

W
RN

-2
8-
10

34.48% 
(1.77)

34.99% 
(2.28)

32.82% 
(0.11)

24.68 
(10.63)

18.71% 
(2.66)

16.50% 
(0.73)

36.85% 
(1.17)

41.94% 
(6.26)

37.98% 
(2.30)

97.62% 
(61.94)

97.72% 
(65.01)

88.60% 
(72.51)

97.72% 
(65.01)

88.60% 
(72.51)

97.56% 
(61.88)

37.33% 
(4.62)

19.82% 
(3.56)

42.38% 
(6.70)

32.71% 33.31% 
(0.30)

15.70% 25.61%
(2.94)

35.65% 35.94% 
(2.72)

34.40% 
(1.69)

17.96% 
(2.10)

39.95% 
(4.27)

43.55% 
(7.87)

33.80% 
(1.09)

22.21% 
(5.08)

Fig. 8: Comparison of scatter plots of penalty vectors in various SWR variants. X-
and y-axes indicate the layer index of the model and penalty value, respectively.
Experiments using ResNet-50 and WRN-40-2 are conducted on CIFAR-100-C,
and experiments with WRN-28-10 are performed on CIFAR-10-C. The number
in each scatter plot indicates the error rate (%), and the number in parentheses
denotes the difference from the error rate of our proposed SWR.

B.4 Variations of Shift-agnostic Weight Regularization

Fig. 8 visualizes the penalty vector w in various SWR variants. X- and y-axes denote
the layer index and penalty value, respectively. We can see that the penalty vector is
different for each backbone network, and a high penalty is applied to the later layers.
(b) is the result of using the combination of all transform functions listed in Table 8.
(c) and (d) are the results of changing the exponent value of 2 in Eq. (2) into 1 and
3, respectively (i.e., w = (ν [s1, . . . , sl, . . . , sL])

1 and w = (ν [s1, . . . , sl, . . . , sL])
3). (e)

and (f) are the results of flipping the original penalty vector of our proposed SWR
vertically and horizontally, respectively. (g) to (j) are the results of employing manually
designed functions without calculating the cosine similarity between two gradient vectors
generated by back-propagation from the model’s prediction of the source samples. Our
proposed SWR outperforms the various variants of the SWR.



6 S. Choi et al.

Table 9: Comparison of error rate (%) between the main and NSP classifiers.

Datasets Backbone
Classifier

Main NSP

CIFAR-100-C
WRN-40-2 32.71 35.48

ResNet-50 35.65 36.52

CIFAR-10-C

WRN-40-2 10.37 10.41

WRN-28-10 15.70 15.75

ResNet-50 12.52 12.90

Table 10: Comparison of error rate (%) according to the methods of obtaining
the source prototypes.

Datasets Backbone
Source prototypes

z h θc

CIFAR-100-C
WRN-40-2 32.71 33.04 34.48

ResNet-50 35.65 36.34 39.89

CIFAR-10-C

WRN-40-2 10.42 10.37 11.62

WRN-28-10 16.09 15.70 15.67

ResNet-50 12.95 12.52 14.74

ProjectorEncoder

Source domain

Encoder

Source domain

ClassiferEncoder

Source domain✕
B.5 Performance of Nearest Source Prototype Classifier

The goal of the NSP classifier is to improve the performance of the main classifier by
aligning the source and target representations through its optimization, so the NSP
classifier itself is not used for the classification. Table 9 shows the performance of the
NSP classifier, and we can see that it is not as good as the performance of the main
classifier.

B.6 Source Prototypes

Table 10 shows the performance comparison according to the methods of obtaining
the source prototypes. The source prototypes can be generated and updated by an
exponential moving average of projection z or feature representation h inferred across
the source samples. Additionally, since the network weights for each class of the source
pre-trained linear classifier can be considered as a source prototype, we report the result
of employing the main classifier’s parameter vectors θc as source prototypes without
forward-propagation of the source samples.



SWR & NSP 7

Table 11: Comparison of error rate (%) between updating θ∗ and freezing θ∗ in
shift-agnostic regularization term.

Datasets Backbone Updating θ∗ Freezing θ∗

CIFAR-100-C
WRN-40-2 32.71 33.49

ResNet-50 35.65 37.00

CIFAR-10-C

WRN-40-2 10.37 10.87

WRN-28-10 15.70 18.30

ResNet-50 12.52 13.02

B.7 Freezing θ∗ as source model parameters in SWR

Recall shift-agnostic weight regularization (SWR) term in Eq. (1). We update θ∗ with
the model parameters from the previous update step during the optimization trajectory.
Alternatively, we can consider freezing θ∗ as a source pre-trained model and compare
the performance between updating θ∗ and freezing θ∗, as shown in Table 11. Although
freezing θ∗ performs worse than updating θ∗, the advantage of restricting the model
parameters not to deviate significantly from the source pre-trained model (i.e., freezing
θ∗) seems worth exploring in future work.

B.8 Experiments on ImageNet-C

We further validate our method on ImageNet-C [9] dataset. Following the ImageNet-C
experiment in TENT [18], the batch size and learning rate are set to 64 and 0.00025,
respectively. We only change the importance of the regularization term, λr, to 3000
from the default value of the hyper-parameters specified in Section 4.2 for experiments
in this section. Table 12 demonstrates that our method is superior to TENT [18].

Table 12: Comparison with other methods on ImageNet-C [9] dataset. These
results are reproduced in our environment. Source denotes the source pre-trained
model without test-time adaptation.

(a) Comparison of error rate (%) on ImageNet-C with severity level 5

Backbone Methods Avg. err Gaus. Shot Impu. Defo. Glas. Moti. Zoom Snow Fros. Fog Brig. Cont. Elas. Pixe. Jpeg

WRN-40-2
(AugMix)

[19,10]

Source 74.32 89.8 84.9 89.3 78.7 86.5 75.5 66.6 78.3 72.8 77.1 42.4 87.0 74.5 58.3 53.2

TENT [18] 51.17 66.8 63.2 63.6 64.3 65.1 47.8 42.8 45.1 52.0 40.6 31.9 60.8 40.8 37.6 45.2

Ours 48.01 59.8 56.5 58.4 61.1 62.8 44.6 41.5 41.6 47.8 38.5 30.2 58.2 39.8 36.3 43.1

ResNet-50
[8]

Source 93.34 96.1 95.9 96.3 98.3 98.3 97.2 94.1 97.1 93.5 97.0 74.5 99.9 96.1 87.3 78.6

TENT [18] 66.56 84.5 81.9 79.6 86.3 88.7 69.5 55.2 56.7 69.0 46.8 35.4 98.1 48.4 45.4 53.0

Ours 64.41 78.1 75.8 76.3 85.4 87.6 62.6 55.1 52.8 64.4 46.5 36.2 99.2 48.5 45.8 51.9

(b) Comparison of error rate (%) on ImageNet-C with all severity levels

Backbone Methods Avg. err Lv.5 Lv.4 Lv.3 Lv.2 Lv.1

WRN-40-2
TENT [18] 39.27

1.88 ↓ 51.17
3.16 ↓ 42.94

2.11 ↓ 37.36
1.65 ↓ 34.35

1.33 ↓ 30.54
1.18 ↓

Ours 37.39 48.01 40.83 35.71 33.02 29.36

ResNet-50
TENT [18] 47.93

0.54 ↓ 66.56
2.15 ↓ 54.06

2.05 ↓ 45.04
0.24 ↓ 39.82

0.57 ↑ 34.15
1.18 ↑

Ours 47.39 64.41 52.01 44.80 40.39 35.33



8 S. Choi et al.

Table 13: Test-time adaptation (TTA) performance using SWR on Cityscapes-C
dataset. DG denotes domain generalization.

Models (Cityscapes→Cityscapes-C) mIoU

DeepLabV3+ [2] (ResNet-50) 27.3%
+TTA (Main+SWR) 49.8% (↑ 22.5%)

RobustNet [3] (ResNet-50+DG) 44.4%
+TTA (Main+SWR) 55.2% (↑ 10.8%)

Table 14: Comparison of performance with and without SWR according to
the learning rate change. Test-time adaptation with the proposed SWR shows
superior performance and less sensitivity to changes in the learning rate. LR
denotes a learning rate.

Models (Cityscapes→Cityscapes-C) LR: 1e-4 LR: 1e-5 LR: 1e-6

RobustNet [3]+TTA (Main) 7.3% 28.5% 53.1%

RobustNet [3]+TTA (Main+SWR) 53.7% 55.2% 54.0%

B.9 Experiments on Cityscapes-C

Although this paper has focused on the image classification task, we further demonstrate
the scalability of our proposed method by expanding it to support the pixel-level classi-
fication (i.e., semantic segmentation). We use two pre-trained models, DeepLabV3+ [2]
and RobustNet [3], based on ResNet-50, as baseline models for test-time adaptation.
RobustNet can be a better starting point for test-time adaptation as it is more robust to
distribution shift than DeepLabV3 due to improved domain generalization. We consider
the original Cityscapes [4] dataset to be the source data and generate Cityscapes-C
dataset by applying algorithmically created corruption [9] to the original Cityscapes.
The Cityscapes-C dataset is regarded as unlabeled online test data.

We adapt the Cityscapes pre-trained models to the Cityscapes-C dataset using the
loss as

Ltarget
θe,θc

= Lmain
θe,θc + λr

∑
l

wl∥θl − θ∗
l ∥22. (11)

Note that the loss includes only SWR, not NSP. The integration of NSP into the
test-time adaptation loss for semantic segmentation is left for future work. The batch
size, learning rate, and the importance λr of the regularization term are set to 2, 1e-5,
and 40, respectively. In contrast to the test-time adaptation on the image classification
task, which discards running estimates and uses batch statistics on test data, the
running statistics of batch normalization layers are kept and updated on test data with
a momentum of 0.1 during test time, and we set the θ∗ as the parameters of the source
pre-trained model.

Table 13 and Fig. 9 show that our proposed SWR greatly outperforms its baseline
model and takes advantage of the strong baseline model, RobustNet, as a good starting
point for test-time adaptation. In addition, our proposed SWR shows stable performance
enhancement regardless of the learning rate in test-time adaptation, as shown in Table 14.



SWR & NSP 9

Input Image (Snow Corruption) DeepLabV3+ RobustNet RobustNet + Ours (SWR)

Fig. 9: Comparison of segmentation results on Cityscapes-C [4,9] (snow corruption)
between DeepLabV3+ [2], RobustNet [3], and ours

ℎ!

ℎ

𝑦! 𝑦" 𝑦#

"𝑦

$𝑦

$𝑦!
encoder

encoder

classifier

...𝑞! 𝑞" 𝑞#

Target domain

Tr
an

sf
or

m

Cosine similarity

Cosine similarity

ℎ!

ℎ

𝑧!

𝑧

𝑦! 𝑦" 𝑦#

$𝑦

encoder

encoder

classifier

projector

projector

...𝑞! 𝑞" 𝑞#

Target domain

Tr
an

sf
or

m

Cosine similarity

Cosine similarity

"𝑦

(c)

(d)

Ground truth

Source domain

ℎencoder

//classifier

𝑦! 𝑦" 𝑦#𝑦
...𝑞! 𝑞" 𝑞#

Source domain

ℎ!

ℎ

𝑧!

𝑧

𝑦! 𝑦" 𝑦#𝑦

𝑦

$𝑦

$𝑦!
//encoder

encoder

//classifier

projector

projector

...

//
Cosine similarity

Cosine similarity

𝑞! 𝑞" 𝑞#

Tr
an

sf
or

m

(1)
(2)

(4)

(3)

(5)

No
Projection

(b)

NSP classifier

Freeze Finetune

EMA update

Cross entropy loss

So
ur

ce
 p

ro
to

ty
pe

 g
en

er
at

io
n 

(B
ef

or
e 

m
od

el
 d

ep
lo

ym
en

t)
Te

st
-t

im
e 

ad
ap

ta
tio

n
(A

ft
er

 m
od

el
 d

ep
lo

ym
en

t)

(1)
(2)

(a)

Projection

No
Projection

Projection

(6)

NSP classifier

Freeze Finetune

Cross entropy loss

Entropy min.
+ Mean entropy max.

// Stop gradient operation

Fig. 10: Comparison of models with and without a projector. (a) and (c) describe
the model without the projector, and (b) and (d) demonstrate the model with
the projector. (a) The source prototypes are generated from the inferred feature
representation h without going through the projector. (b) The source prototypes
are generated from the inferred projection z through the projector. The auxiliary
task loss is applied to the feature representation (c) or the embedding space
behind the projector (d).



10 S. Choi et al.

D (=C x H x W) D D D 512C x H x W

D (=C x H x W)C x H x W D (=C x H x W)C x H x W

No Projection
512

1-layer

2-layer

Encoder Linear
Flatten

Flatten

Flatten

Encoder BN ReLU LinearLinear

Encoder

Projector

Projector

Fig. 11: Detailed architecture of the projector.

C Further Implementation Details

C.1 Detailed Projector Design

As described in Section 3.3, we attach and train a projector behind the encoder to
map the feature representation h to the projection z. The projector minimizes the
misalignment between the source and target embeddings by enabling transformation-
invariant mapping and bringing the projections belonging to the same class closer
together in the new embedding space. However, in Section 4.5, we showed that applying
auxiliary task loss directly to feature representation h without the projector may
perform better on datasets with fewer classes (e.g., CIFAR-10-C). Fig. 10 shows the
architectural differences between our proposed methods with and without the projector.
If there is no projector, only steps (1) and (2) are repeated to obtain the prototype for
each class by averaging over the feature representations h inferred across the source
samples, as shown in Fig. 10(a). Also, the auxiliary task loss is applied to the feature
representation h that is the encoder’s output without using the projector, as shown in
Fig. 10(c). Fig. 11 shows the detailed architecture of the projector.

C.2 Experimental Setup for Domain Generalization Benchmarks

As described in Section 4.7, our implementation uses DomainBed3 [6] and T3A4 [11]
framework to conduct the experiments on four domain generalization benchmarks such
as PACS [13], OfficeHome [17], VLCS [5], and TerraIncognita [1]. Following T3A [11],
we first train ResNet-50 backbone networks on each dataset by using ERM [16] and
CORAL [15]. For this pre-training, we conduct a random search of five trials over the
hyper-parameter distribution and repeat this procedure three times independently with
a different random seed. Then, we apply our proposed method to each pre-trained
model. Our method has two hyper-parameters: learning rate (LR) and projector. We
set the search space for LR to LR ∈ {5e-5, 1e-6} and provide two projector options:
the model with or without the projector, as described in Section 4.5 and C.1. Note
that the hyper-parameter selection is completed before deployment to the test domain
according to leave-one-domain-out cross-validation [6]. We use a batch size of 200, and
the other hyper-parameters described in Section 4.2 are set the same as the experiments
on CIFAR datasets.

3 https://github.com/facebookresearch/DomainBed
4 https://github.com/matsuolab/T3A



SWR & NSP 11

References

1. Beery, S., Van Horn, G., Perona, P.: Recognition in terra incognita. In: European
Conference on Computer Vision (ECCV) (2018) 10

2. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with
atrous separable convolution for semantic image segmentation. In: Proceedings of
the European conference on computer vision (ECCV). pp. 801–818 (2018) 8, 9

3. Choi, S., Jung, S., Yun, H., Kim, J.T., Kim, S., Choo, J.: Robustnet: Improving
domain generalization in urban-scene segmentation via instance selective whitening.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
8, 9

4. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2016) 1, 8, 9

5. Fang, C., Xu, Y., Rockmore, D.N.: Unbiased metric learning: On the utilization of
multiple datasets and web images for softening bias. In: International Conference
on Computer Vision (ICCV) (2013) 10

6. Gulrajani, I., Lopez-Paz, D.: In search of lost domain generalization. In: International
Conference on Learning Representations (ICLR) (2020) 10

7. Guo, Y., Shi, H., Kumar, A., Grauman, K., Rosing, T., Feris, R.: Spottune: transfer
learning through adaptive fine-tuning. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2019) 2

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
4, 7

9. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common
corruptions and perturbations. In: International Conference on Learning Represen-
tations (ICLR) (2018) 1, 2, 7, 8, 9

10. Hendrycks, D., Mu, N., Cubuk, E.D., Zoph, B., Gilmer, J., Lakshminarayanan, B.:
Augmix: A simple data processing method to improve robustness and uncertainty.
In: International Conference on Learning Representations (ICLR) (2019) 4, 7

11. Iwasawa, Y., Matsuo, Y.: Test-time classifier adjustment module for model-
agnostic domain generalization. Advances in Neural Information Processing Systems
(NeurIPS) (2021) 10

12. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009) 2

13. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain
generalization. In: International Conference on Computer Vision (ICCV) (2017) 10

14. Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C.A., Cubuk,
E.D., Kurakin, A., Li, C.L.: Fixmatch: Simplifying semi-supervised learning with
consistency and confidence. Advances in Neural Information Processing Systems
(NeurIPS) (2020) 2

15. Sun, B., Saenko, K.: Deep coral: Correlation alignment for deep domain adaptation.
In: European Conference on Computer Vision (ECCV) (2016) 10

16. Vapnik, V.N.: An overview of statistical learning theory. IEEE transactions on
neural networks (1999) 10

17. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing
network for unsupervised domain adaptation. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2017) 10



12 S. Choi et al.

18. Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: Tent: Fully test-time
adaptation by entropy minimization. In: International Conference on Learning
Representations (ICLR) (2020) 7

19. Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision
Conference (BMVC) (2016) 4, 7


