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A Second derivatives of softmax cross-entropy loss

Here, we show the vanishing behavior of the Hessian of the softmax cross-entropy
loss. Let us consider a probabilistic classification model p(y|x) where x ∈ RM is
the input to the softmax layer. The model is defined as,

p(y = k|x) = exk∑
m exm

. (15)

Assuming that the target label is t, the cross-entropy loss is,

L(x) = − log p(y = t|x) = −xt + log
∑
m

exm . (16)

Then, the second derivatives of the softmax cross-entropy is,
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The diagonal entries of the Hessian where j = i is,
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And the off-diagonal entries where j ̸= i is,
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Now, let us consider the limiting case when the model converges to the target,
p(y = t|x) → 1, i.e., if and only if exm−xt → 0 for all m ̸= t. Then, it can be seen
from Eq. (20) and Eq. (21) that all the entries of the Hessian matrix converges
to zero.
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B Implementation of linearized neural network

Here, we provide implementation details for linearized nerual network. We con-
sider a network with pre-trained parameter θ0. We denote the neural network
as f(x; θ0). Then we apply first-order Taylor approximation with respect to the
parameters to linearize the network around θ0 as,

f(x; θ0 +∆θ) ≃ f(x; θ0) +Dθf(x; θ0) ·∆θ, (22)

where Dθf(x; θ0) is the Jacobian of the network evaluated at (x, θ0). For most
neural networks, the Jacobian matrix is prohibitively expensive to compute and
store due to the size of parameter dimension. To compute the forward pass, we
use the modified forward pass method proposed in [1] based on forward-mode
automatic differentiation algorithm, which efficiently computes Jacobian-vector
products (JVP). Unlike backpropagation, the algorithm does not require extra
memory footprint to compute the derivatives.

B.1 Augmented forward propagation

We implemented the modified forward pass by subclassing the layers in Py-
Torch [2] library.1 The inputs and outputs of the custom layers are a tuple of
hidden state and augmented state, such that the forward pass jointly computes
the activations and the JVP.

Table 4 shows the formulas for the custom layer implementation. We use the
same notation as [1] and denote the augmented state for JVP as ∂rxl. The JVP
for full neural network is computed by feeding a zero-initialized vector having
the same shape of the input as the incoming augmented input to the first layer.
Finally, upon the completion of the forward pass, the computed hidden state
and augmented state are summed to obtain the output of the linearized neural
network.

Table 4: Formulas for the augmented forward pass implementation. 1{x > 0}
indicates a mask vector that has value 1 where the condition is satisfied and 0 oth-
erwise. Max pooling layer is decomposed into MaxPoolIndices(·) and Gather(·)
operations which gives the indices of the pooled values and aggregates the values
using the indices.

Layer Type Hidden State Augmented State

Identity xl ∂rxl

Linear, Conv f(xl;W ; b) f(xl;∆W,∆b) + f(∂rxl;W, 0)
ReLU xl ⊙ 1{xl > 0} ∂rxl ⊙ 1{xl > 0}

LeakyReLU xl ⊙ 1{xl > 0}+ αxl ⊙ 1{xl ≤ 0} ∂rxl ⊙ 1{xl > 0}+ α∂rxl ⊙ 1{xl ≤ 0}
MaxPool Gather(xl,MaxPoolIndices(xl)) Gather(∂rxl,MaxPoolIndices(xl))

AveragePool AvgPool(xl) AvgPool(∂rxl)

1 https://github.com/pytorch/pytorch

https://github.com/pytorch/pytorch
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C Additional experiments on vanishing curvature

Here, we show the curvature behavior during training using CIFAR-100 dataset.
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(a) Curvature of SCE loss
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Fig. 7: Maximum eigenvalue of the FIM during training using CIFAR-100
dataset.

D Comparison of curvature methods on data-IL

Here, we demonstrate the performance impact when combined with different
curvature approximations. We highlight that the proposed method leads to per-
formance gain in all types.

Table 5: Performance comparison of curvature methods on data-IL using Seq-
CIFAR-100 with 10 tasks.

Curvature Nonlinear+SCE Linear+MSE

EWC 78.88 82.17
K-FAC 79.23 81.95
TK-FAC - 82.70

E Backward transfer evaluations on task-IL

Here, we provide task-IL performance measured in Backward transfer (BWT)
metric. Note that our method is on par with LwF and significantly outper-
forms other parameter regularization methods. Moreover, our method outper-
forms LwF in average accuracy (ACC) metric.
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Table 6: Average accuracy (ACC) and backward transfer (BWT) on task-IL
using Seq-CIFAR-100 with 10 tasks.

Method ACC BWT

LWF 92.16 0.04
EWC 77.44 -21.63
OSLA 81.03 -18.21

DLCFT (Ours) 95.79 -0.58
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E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32,
pp. 8024–8035. Curran Associates, Inc. (2019), http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf

https://openreview.net/forum?id=BkeoaeHKDS
https://openreview.net/forum?id=BkeoaeHKDS
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

	Supplementary Material for DLCFT: Deep Linear Continual Fine-Tuningfor General Incremental Learning

