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S1 Verification of Prototype-based Transformation
In Section 3.2, we introduced the cycle transformation consisting of two cross-
domain feature transformations, which are implemented by searching the most
similar samples across domains in the whole feature space. However, such a
vanilla nearest-neighbor-based scheme is time-consuming and noisy (due to the
large intra-class variation). Therefore, in Section 3.3, we propose prototype-based
cross-domain feature transformations to reduce the computation cost and noise
of the vanilla scheme. Since we calculate the feature similarity only |Cs|/K times
(rather than ns/nt times) in one feature transformation, the computation cost
is naturally reduced. Besides, as shown in Fig. S1, the prototype-based transfor-
mation widens the gap of ACCs (accuracy gap of cycle transformations between
samples in shared class and samples in outlier classes) compared with the vanilla
scheme, which verifies that the prototype-based scheme reduces the noise of the
vanilla scheme for accurate weight assignment.
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Fig. S1. Empirical verification of prototype-based cross-domain feature transforma-
tions using source-only models as feature extractors on three real-world datasets. We
conduct cross-domain feature transformations by searching the most similar prototypes
across domains and calculate the accuracy (ACC) of cycle transformations as that
in Fig. 1b. In the figures, we compare the prototype-based scheme with the vanilla
nearest-neighbor-based scheme in terms of the gap of ACCs, i.e., Gap of ACCs = ACC
of samples in shared classes − ACC of samples in outlier classes. Best viewed in color.

♢ indicates equal contributions and ‡ indicates the corresponding author.
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(b) The number of target prototypes K
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(c) λctr for center losses
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(d) λw for mixed strategy

Fig. S2. Hyperparameter analysis of our method on (a) momentum λm, (b) the number
of target prototypes K, (c) λctr for center losses and (d) λw for mixed strategy. Best
viewed in color.

S2 Hyperparameter Analysis

In this section, we analyze the sensitivity of our method to four hyperparameters,
namely momentum λm for updating prototypes, the number of prototypes K in
the target domain, λctr for center losses and the weighting coefficient λw for the
mixed strategy. We conduct quantitative analysis on the Office-Home datasest.
- Momentum λm. As shown in Fig. S2a, a value of λm close to 1 (e.g., 0.99)
is usually appropriate, since the update rate of prototypes should be low. This
is because there are usually only one or two samples for each class within each
batch and a large update rate harms the prototype update due to the intra-class
variation.
- The number of target prototypes K. As shown in Fig. S2b, a moderate
value of K (e.g., 45, 65) is appropriate, which keeps a balance between abstract-
ing the dataset and reducing noise caused by the large intra-class variation.
Usually, setting K = |Cs| (|Cs| = 65 in Office-Home) is appropriate in PDA
scenarios (since the number of target classes in unknown).
- λctr for center losses. As shown in Fig. S2c, our method with a small value
of λctr (e.g., 0.1, 0.2) improves the performance of that without center losses.
However, the value of λctr cannot be too large (larger than 1) otherwise negative
effects are triggered, since a very large λctr disrupts the feature distributions
within individual domains and thus the performance drops significantly.
- λw for mixed strategy. As shown in Fig. S2d, a mixed strategy with differ-
ent values of λw consistently improves the performance of a cycle-inconsistency-
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Fig. S3. Visualization of the cycle transformation process on VisDA-2017. Black trian-
gle and star markers denote source and target prototypes, respectively. Besides, triangle
and star markers in other colors denote the source and target samples, and different
colors denote different classes. Best viewed in color.

based strategy, which shows that our method is not sensitive to the hyperpa-
rameter λw.

S3 Cycle Transformation Visualization

In Fig. S3, we show examples for visualizing the proposed prototype-based
cycle transformation process. We directly show the feature distribution of a
source-only model on the VisDA-2017 dataset by setting the features to be
two-dimensional (rather than by t-SNE). For clearer visualization, we select six
classes (four shared and two outlier classes). As shown in the figure, a source
sample of the green class (the boxed black circle, of shared classes) falls close to
the target prototype in the green region after the source-to-target transforma-
tion. By contrast, a source sample of the pink class (the circled black rectangle,
of outlier classes) falls close to the target prototype in the orange region. Af-
ter cycle transformations, the source sample of the green class falls close to the
green source prototype, while the source sample of the pink class falls close to
the orange source prototype. The examples show that, compared with source
samples of shared classes, source samples of outlier classes more likely alter their
categories after the proposed cycle transformations. According to the difference
in cycle transformations, we distinguish outlier classes from shared classes for
PDA. Also, in the figure, we find that the cross-domain feature transformation
functions based on soft nearest neighbor improves the representation power of
transformed features, i.e., the transformed data points have many possible po-
sitions in the feature space (more than |Cs|/K).

S4 Grad-CAM Visualization

In this section, we qualitatively show the effectiveness of our model by Grad-
CAM [1]. As shown in Fig. S4, our model focuses on similar visual cues across the
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Fig. S4. Grad-CAM visualization of the source-only model and our model. In each
row, we show a group of samples from the same category, where we show samples in
both the source and target domains for both models. Best viewed in color.

source and target domains, compared with the source-only model. For example,
as shown in the first row, the source-only model focuses on the base of the lamp
in the target domain, which is different from that in the source domain. By
contrast, our model focuses on the cap and base of the lamps in both the source
and target domains. The results indicate that our model aligns the shared classes
well across domains.
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