
1

A Implementation Details

We use PyTorch [35] to implement all experiments on NVIDIA A100-40GB
GPUs.

A.1 Classification Experiments

VPT. We use val set of each dataset to find best prompt length p, see Sec. 3.2.
The prompt length is the only VPT-specific hyper-parameter that we tune. For
Transformer backbones, the range of p is {1, 5, 10, 50, 100, 200} and {1, 5, 10, 50}
for ViT and Swin, respectively. The maximum choice of p is approximately close
to the number of image patch tokens within each MSA for both architectures
(ViT: 196, Swin: 49). We also apply a dropout of 0.1 for VPT-deep. For Con-
vNets, the range of p is {1, 3, 5, 7, 9, 11}. Each prompt is randomly initialized
with xavier uniform initialization scheme [11]. We follow the original backbone’
design choices, such as the existence of the classification tokens [CLS], or whether
or not to use the final [CLS] embeddings for the classification head input.

Adapter. Adapters [16] insert extra lightweight modules inside each Trans-
former layer. One adapter module generally consists of a linear down-projection
(with a reduction rate r), followed by a nonlinear activation function, and a linear
up-projection, together with a residual connection. [36,37] exhaustively searched
all possible configurations and found that only inserting adapters after the FFN
“Add & LayerNorm” sub-layer works the best. Therefore we also use this setup
in our own implementation. We sweep the reduction rate r in {8, 64, 256}.

Augmentation and other hyper-parameters. We adopt standard image
augmentation strategy during training: normalize with ImageNet means and
standard deviation, randomly resize crop to 224×224 and random horizontal
flip for five FGVC datasets, and resize to 224×224 for the VTAB-1k suite.1

Table 1. Implementation details for each fine-tuning method evaluated. ⋆: we observe
that for VPT-shallow sometimes benefit from a larger base LR for 6 out of 24 tasks
evaluated, where we search from {1000.0, 500.0, 250.0, 100.0}

Full,Partial,Bias,Adapter Linear,Sidetune, Mlp, VPT

Optimizer AdamW [29] SGD
Optimizer momentum - 0.9
base lr range {0.001, 0.0001, 0.0005, 0.005} {50., 25., 10., 5., 2.5, 1.,0.5, 0.25, 0.1, 0.05}⋆

Weight decay range {0.01, 0.001, 0.0001, 0.0}
Learning rate schedule cosine decay
Warm up epochs 10
Total epochs 100 (ViT-B, Swin-B), 50 (ViT-L/H)

1Following the default settings in VTAB, we don’t adopt other augmentations

https://github.com/google-research/task_adaptation/blob/master/task_adaptation/data_loader.py

2

Table 2. Specifications of the various datasets evaluated. ⋆: we randomly sampled the
train and val sets since there are no public splits available

Dataset Description # Classes Train Val Test

Fine-grained visual recognition tasks (FGVC)

CUB-200-2011 [40] Fine-grained bird species recognition 200 5,394⋆ 600⋆ 5,794
NABirds [38] Fine-grained bird species recognition 55 21,536⋆ 2,393⋆ 24,633
Oxford Flowers [33] Fine-grained flower species recognition 102 1,020 1,020 6,149
Stanford Dogs [19] Fine-grained dog species recognition 120 10,800⋆ 1,200⋆ 8,580
Stanford Cars [9] Fine-grained car classification 196 7,329⋆ 815⋆ 8,041

Visual Task Adaptation Benchmark (VTAB-1k) [44]

CIFAR-100 [21]

Natural

100

800/1000 200

10,000
Caltech101 [24] 102 6,084
DTD [4] 47 1,880
Flowers102 [33] 102 6,149
Pets [34] 37 3,669
SVHN [32] 10 26,032
Sun397 [43] 397 21,750

Patch Camelyon [39]

Specialized

2

800/1000 200

32,768
EuroSAT [15] 10 5,400
Resisc45 [3] 45 6,300
Retinopathy [18] 5 42,670

Clevr/count [17]

Structured

8

800/1000 200

15,000
Clevr/distance [17] 6 15,000
DMLab [1] 6 22,735
KITTI/distance [10] 4 711
dSprites/location [31] 16 73,728
dSprites/orientation [31] 16 73,728
SmallNORB/azimuth [22] 18 12,150
SmallNORB/elevation [22] 9 12,150

Table 3. Specifications of different pre-trained backbones used in the paper. Param-
eters (M) are of the feature extractor. “Batch size” column reports the batch size for
Linear / Partial / {Full, Bias, Adapter} / VPT (p < 100) / VPT (p ≥ 100). All
backbones are pre-trained on ImageNet [6] with resolution 224×224

Backbone
Pre-trained
Objective

Pre-trained
Dataset

params

(M)
Feature dim
d Batch Size

Pre-trained
Model

ViT-B/16 [7]
Supervised ImageNet-21k

85 768 2048 / 1280 / 128 / 128 / 64 checkpoint
ViT-L/16 [7] 307 1024 2048 / 640 / 64 / 64 / 32 checkpoint
ViT-H/14 [7] 630 1280 1024 / 240 / 28 / 28 / 14 checkpoint

ViT-B/16 [7] MoCo v3 [2]
ImageNet-1k 85 768 2048 / 1280 / 128 / 128 / 64

checkpoint
ViT-B/16 [7] MAE [13] checkpoint

Swin-B [27] Supervised ImageNet-21k 88 1024 1024 / 1024 / 128 / 80 / - checkpoint

ConvNeXt-Base [28] Supervised ImageNet-21k 88 1024 1024 / 1024 / 128 / 128 / - checkpoint
ResNet-50 [14] Supervised ImageNet-1k 23 2048 2048 / 2048 / 384 / 256 / - checkpoint

https://storage.googleapis.com/vit_models/imagenet21k/ViT-B_16.npz
https://storage.googleapis.com/vit_models/imagenet21k/ViT-L_16.npz
https://storage.googleapis.com/vit_models/imagenet21k/ViT-H_14.npz
https://dl.fbaipublicfiles.com/moco-v3/vit-b-300ep/linear-vit-b-300ep.pth.tar
https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_base.pth
https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth
https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth
https://pytorch.org/vision/stable/models.html

3

VT
AB
-S
tru
ct
ur
ed

VT
AB
-N
at
ur
al

VT
AB
-S
pe
ci
al
iz
ed

FG
VC

Fig. 1. Dataset examples for all classification tasks evaluated

4

Tab. 1 summarizes the optimization configurations we used. Following [30], we
conduct grid search to find the tuning-specific hyper-parameters, learning rate,
and weight decay values using val set of each task. Following the linear scaling
rule [20,12,2,13], the learning rate is set as base lr×b/256, where b is the batch
size used for the particular model, and base lr is chosen from the range specified
in Tab. 1. The optimal hyper-parameter values for each experiment can be found
in Appendix D.

Datasets and pre-trained backbones specifications. Tabs. 2 and 3 sum-
marize the statistics and details of the evaluated classification datasets and all
the pre-trained backbones used in the paper. Fig. 1 includes image examples of
all 24 classification tasks evaluated.

A.2 Semantic Segmentation Experiments

ADE20K [46] is a challenging scene parsing benchmark with 150 fine-grained
labels. The training and validation sets contain 20,210 and 2,000 images respec-
tively. We utilize the public codebase MMSegmentation [5] in our implementa-
tion.2 The ViT-L backbone is supervisely pre-trained on ImageNet-21k.3

SETR [45] is a competitive segmentation framework using ViT as the en-
coder. PUP is a progressive upsampling strategy consisting of consecutive con-
volution layers and bilinear upsampling operations. Among multiple decoder
choices, PUP works the best according to MMSegmentation’s reproduction there-
fore we also use it as in our implementation.4

When applying VPT to SETR-PUP, we only insert prompts into SETR’s ViT
encoder backbone. For the decoder, only image patch embeddings are used as
inputs and prompt embeddings are discarded. Same as recognition tasks, only
the PUP decoder head and prompts are learned during training and the ViT
backbone is frozen.

For full fine-tuning, we use the same hyper-parameters as in MMSegmenta-
tion. For HeadOnly, Bias, and VPT, we use the hyper-parameter sweep on
learning rate {0.05, 0.005, 0.0005, 0.001}. The optimal learning rate is 0.005 for
all methods. We sweep prompt length p ∈ {1, 5, 10, 50, 100, 200}. For VPT, we
also change the learning rate multiplier to 1.0 instead of the default 10.0, so the
decoder head and prompts share the same learning rate. Other hyper-parameters
remain the same as full fine-tuning.

B Extended Analysis

Effect of expanding input sequence length. As shown in Tab. 1, by ex-
panding the input sequence with learnable prompts, VPT achieves better perfor-
mance than Full on the 20 out of 24 tasks evaluated. To investigate whether the

2See the MMSegmentation GitHub page
3ViT-L/16 checkpoint
4MMSegmentation’s reproduction on SETR

https://github.com/open-mmlab/mmsegmentation
https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_strong1-wd_0.1-do_0.0-sd_0.0.npz
https://github.com/open-mmlab/mmsegmentation/tree/master/configs/setr

5

Embed

Prompt-Learned (default)

C
LS

Embed

Prompt-Fixed

C
LS

Embed

[CLS]-Learned

C
LS

Embed

Prompt-Learned (p=1)

C
LSTuned

Frozen

40 60 80 100

68.9 (1)

70.5 (2)
72.6 (2)
68.7 (1)
76.8 (4)

56.7 (0)
78.5

75.9

Linear

Learnedp = 1
[CLS] Learned
Fixed
Learned (default)

Fixed
Learned (default)

Full (a)

(b)

VPT
Deep

VPT
Shallow

VTAB-Natural (7)

60 70 80 90 100

77.2 (1)

78.4 (0)
78.3 (0)
77.9 (1)
79.7 (0)

77.5 (1)
82.4 (4)

83.4

Linear

Learnedp = 1
[CLS] Learned
Fixed
Learned (default)

Fixed
Learned (default)

Full (a)

(b)

VPT
Deep

VPT
Shallow

VTAB-Specialized (4)

20 40 60 80 100

26.8 (0)

34.1 (0)
35.1 (0)
29.3 (0)
47.0 (4)

27.6 (0)
55.0

47.6

Linear

Learnedp = 1
[CLS] Learned
Fixed
Learned (default)

Fixed
Learned (default)

Full (a)

(b)

VPT
Deep

VPT
Shallow

VTAB-Structured (8)

Fig. 2. Effect of expanding input sequence. Illustration of different strategies is included
at top, and results of those are presented at the bottom section. For easy comparison,
two dark and light blue lines represent the performance of default VPT-deep and
VPT-shallow, respectively

advantage of VPT is due to its enlarged input sequence length, we experiment
on two more variants: (1) the prompts are kept frozen during fine-tuning stage
(Prompt-Fixed). (2) only tuning the [CLS] token ([CLS]-Learned). From Fig. 2
we can see that, updating prompt embeddings (Prompt-Learned) offers signif-
icant gains, while Prompt-Fixed yields comparable results w.r.t. Linear. This
suggests that the final performance of VPT is mainly contributed by the learned
prompt embeddings instead of the enlarged sequence length. Updating the [CLS]
token performs similarly as updating 1 prompt ([CLS] vs. Learnedp=1), but still
lags behind the default setting where we manually select the best number of
prompt tokens based on the val set.

Sharing prompts. We examine the effect of sharing parameters of prompts
in Fig. 3 by setting the same prompt embedding within Transformer layers
(Shared-intra), among all layers (Shared-inter), and for all prompts inserted
in the Transformer (Shared-all). We can observe that: (1) Sharing prompts
within layer (Shared-intra) performs competitively or slightly outperforms
the performance of using one prompt (Defaultp=1), further demonstrating the
value of expanding input sequence. (2) Although Shared-intra under-performs
Default in general, surprisingly, Shared-inter slightly outperforms our default
VPT-deep while using similar number of trainable parameters (total number of
parameters for all VTAB tasks: 1.14× vs. 1.13× for Shared-inter vs. Default,
respectively). Closer examination reveals that the optimal prompt length p for
Shared-inter is in general larger than Default, i.e., average prompt length
on all VTAB tasks: 64.58 vs. 60.94, for Shared-inter vs. Default, respec-
tively. (3) Sharing the same prompt embedding both among and within layers

6

Transformer Layer

Transformer Layer !!"#

!!
!!"## !!"#$

!!" !!#

Default

Transformer Layer

Transformer Layer !!"#

!!

Shared (all)

! !

Transformer Layer

Transformer Layer !!"#

!!
!!"# !!"#

Shared (intra-layer)

!! !!

Transformer Layer

Transformer Layer !!"#

!!

!" !#

Shared (inter-layer)

!" !#

! !

Tuned
Frozen

60 70 80 90

68.9 (1)

71.2 (2)
70.5 (2)
76.8 (4)

77.9 (4)
78.9 (6)
78.1 (5)
78.3 (5)
78.5 (6)

75.9

Linear

Shared-intra
Defaultp = 1
Default

Shared-all
Shared-inter
Shared-intra
Defaultp = 1
Default

Full (a)

(b)

VPT
Deep

VPT
Shallow

VTAB-Natural (7)

70 80 90 100

77.2 (1)

79.5 (0)
78.4 (0)
79.7 (0)

82.1 (2)
83.7 (2)
82.0 (1)
80.7 (0)
82.4 (2)

83.4

Linear

Shared-intra
Defaultp = 1
Default

Shared-all
Shared-inter
Shared-intra
Defaultp = 1
Default

Full (a)

(b)

VPT
Deep

VPT
Shallow

VTAB-Specialized (4)

20 40 60 80

26.8 (0)

37.0 (0)
34.1 (0)
47.0 (4)

39.0 (3)
55.3 (7)
47.6 (4)
45.6 (3)
55.0 (8)

47.6

Linear

Shared-intra
Defaultp = 1
Default

Shared-all
Shared-inter
Shared-intra
Defaultp = 1
Default

Full (a)

(b)

VPT
Deep

VPT
Shallow

VTAB-Structured (8)

Fig. 3. Effect of sharing prompts. Illustration of different strategies is included at top,
and results of those are presented at the bottom section. For easy comparison, the blue
dashed line represents the performance of default VPT-deep

(Shared-all) deteriorates performance, but still surpass the linear probing re-
sults across three VTAB subgroups.

Prompt initialization. In NLP, prompt tuning could benefit from more so-
phisticated prompt initialization, as shown in [23]. We investigate if this is the
case for visual prompting as well. We utilize prototype representations for down-
stream target classes so that the prompts are initialized with embeddings that
enumerate the output space. Since we want the model to produce an output
embedding that is close to one of these prototype representations given a test
example, initializing prompts in this manner might give the model some hints
about the target categories thus help improve the optimization process.

Concretely, we use the averaged final [CLS] embeddings whithin each target
class of the down-stream dataset train split. Given the pre-trained ViT with N
layers, and the down-stream train set with c target classes, for each training
example, we compute the final [CLS] embeddings, xN ∈ Rd. Then we average
these embeddings within each target class to get {x̂k

N ∈ Rd | k ∈ N, 1 ≤ k ≤ c}.5
Setting prompt length p = c,6 we initialize P with {x̂k

N}k=c
k=1 for VPT-shallow

, and initialize each Pi with {x̂k
N}k=c

k=1, where i = 0, 1, . . . , N −1, for VPT-deep.
We compare the fine-tuning performance using the above initialization strat-

egy (CLS) against the default random initialization (Random) in Fig. 4. We also
report results when we fix the prompts during the fine-tuning stage (·-fixed).

5if c > 200, we further apply k-means (k = 200) to class-averaged embeddings and
use the corresponding 200 centroid embeddings as {x̂k

N ∈ Rd}k=200
k=1 .

6if c > 200, we set p = 200 so that prompt length won’t be too large. In fact, for
VTAB, only the Sun397 task in the Natural subgroup has over 200 classes. See Tab. 2.

7

20 40 60 80 100

68.9 (1)

64.0 (1)
75.1 (4)
68.7 (1)
76.8 (4)

51.4 (0)
77.5 (4)
56.7 (0)
78.5 (6)

75.9

Linear

CLS-fixed
CLS
Random-fixed
Random (default)

CLS-fixed
CLS
Random-fixed
Random (default)

Full (a)

(b)

VP
T

 D

ee
p

VP
T

Sh

al
lo

w

VTAB-Natural (7)

50 60 70 80 90 100

77.2 (1)

76.8 (0)
79.1 (0)
77.9 (1)
79.7 (0)

79.2 (1)
78.8 (3)
77.5 (1)
82.4 (2)

83.4

Linear

CLS-fixed
CLS
Random-fixed
Random (default)

CLS-fixed
CLS
Random-fixed
Random (default)

Full (a)

(b)

VP
T

 D

ee
p

VP
T

Sh

al
lo

w

VTAB-Specialized (4)

0 20 40 60 80

26.8 (0)

28.4 (0)
40.0 (1)
29.3 (0)
47.0 (4)

27.9 (0)
48.4 (6)
27.6 (0)
55.0 (8)

47.6

Linear

CLS-fixed
CLS
Random-fixed
Random (default)

CLS-fixed
CLS
Random-fixed
Random (default)

Full (a)

(b)

VP
T

 D

ee
p

VP
T

Sh

al
lo

w

VTAB-Structured (8)

Fig. 4. Effect of prompt initialization. For easy comparison, the two blue dashed line
represents the performance of default VPT-deep and VPT-shallow, respectively

9 12 6 12 3 12 1 12

1 1 3 1 6 1 9 1 12
72

74

76

78
Full fine-tuning

VTAB-Natural (7)
9 12 6 12 3 12 1 12

1 1 3 1 6 1 9 1 12
78

80

82

84 Full fine-tuning

VTAB-Specialized (4)
9 12 6 12 3 12 1 12

1 1 3 1 6 1 9 1 12

40

50 Full fine-tuning

VTAB-Structured (8)

Te
st

 a
cc

ur
ac

y
(%

)

Prompt depth

bottom top (best) bottom top top bottom (best) top bottom

Fig. 5. Sensitivity to prompt length for the prompt depth experiments. We select the
best prompt length for each variant with val sets. We also include the same prompt
length for all depth choices. i → j indicates the Transformer layer indices that prompts
are inserted into. The 1-st layer refers to the one closest to input. ViT-B has a total of
12 layers

As shown in Fig. 4, it’s quite surprising that our default random initializa-
tion (Random) works the best in general, consistently across different subgroups
of VTAB without extra pre-processing steps described above (CLS). CLS works
comparably in Natural and Specialized subgroups.7

Prompt depth vs. prompt length. In Fig.7, we ablate the number of layers
we insert prompts in. For each prompt depth variant, Fig.7 reports the results
using the best prompt length for each task (“· → · (best)” in Fig. 5). Here we
adopt another setting where the best prompt length from 1 → 12 are used for
all other prompt depth variants. Comparing both “· → · (best)” and “· → ·”, we

7Utilizing the per-class averaged [CLS] features, we also tried several other different
implementation variants, including using per-layer [CLS] embeddings for VPT-deep
instead of only the final output [CLS] vector. They perform either the same as or even
much worse than the CLS strategy above, and none of them is able to out-perform the
default Random.

8

Table 4. Combining VPT with Bias with a pre-trained ViT-B in Sec.4.2. For each
method and each downstream task group, we report the average test accuracy score
and number of wins in (·) compared to Full. The difference between the hybrid
methods and their VPT counterpart are color coded

Bias VPT-shallow VPT-shallow + Bias VPT-deep VPT-deep + Bias

VTAB-Natural 73.30 (3) 76.81 (4) 79.78 (5) ↑2.97 78.48 (6) 77.64 (6) ↓0.84
VTAB-Specialized 78.25 (0) 79.66 (0) 81.38 (0) ↑1.72 82.43 (2) 82.22 (2) ↓0.21
VTAB-Structured 44.09 (2) 46.98 (4) 45.89 (3) ↓1.09 54.98 (8) 53.87 (6) ↓1.11

Natural

Specialized

Structured

Full
Linear
Partial

MLP
Sidetune

BIAS
Adapter

VPT-Shallow
VPT-Deep

75.7 83.6 46.7
68.8 77.1 26.6
69.5 78.8 34.1
67.9 74.9 30.4
45.0 69.4 23.0
73.1 78.4 44.2
70.8 77.1 33.1
76.7 79.3 47.5
78.6 82.9 54.9

Average

Natural

Specialized

Structured

76.5 84.3 49.2
69.2 77.9 27.3
70.0 79.5 36.0
68.4 76.7 31.8
53.4 76.5 26.1
74.2 79.6 46.3
71.2 78.8 34.9
77.1 80.0 49.8
79.9 83.8 57.8

Best

Natural

Specialized

Structured

78.8 85.2 50.2
69.2 77.7 27.4
71.7 80.6 37.4
68.9 77.0 31.8
52.3 77.5 23.7
78.0 83.3 50.4
73.2 81.0 36.6
78.1 80.5 52.1
81.1 85.4 59.6

Ensemble

Natural

Specialized

Structured

3.1 1.7 3.6
0.4 0.6 0.8
2.1 1.8 3.2
1.0 2.1 1.3
7.3 8.1 0.6
4.9 4.9 6.2
2.4 3.9 3.5
1.3 1.1 4.6
2.5 2.5 4.7

Ensemble - Average

min

max

Fig. 6. Performance of a five-run ensemble. We report the averaged, the best among
five runs as well. Best performance is bolded in each column

observe that there are varied sensitivities to prompt length for different depths,
especially if we insert prompts in nine layers only (3 →12, 12 → 3).

Combine VPT with Bias Tuning. Our experiments in the main paper reveal
that Bias is a competitive parameter-efficient tuning baseline (e.g ., Tab.1(c)).
Based on this observation, we explore another protocol where we update both
prompts and the bias terms of the pre-trained backbone, keeping everything
else in the backbone frozen (VPT+Bias). As shown in Tab. 4, to our surprise,
incorporating Bias with VPT does not yield superior results in general, even
undermines VPT-deep for all 3 task subgroups. This suggests that these two
methods are not necessarily complementary to each other.

Prompt ensembling. [23] demonstrated prompt’s efficiency in the context of
model ensembling. For an ensemble of k models, we only need to store the learnt
prompt vectors instead of k copies of the whole fine-tuned model parameters
(e.g ., k×2.5GB for ViT-H). Furthermore, given one test example during inference
time, only one forward pass is executed with a specially-designed batch with
replicated original data but varied prompts.

Given such advantages, we also investigate VPT’s effectiveness on prompt
ensembling. We train 5 different prompts for each VTAB task with different
random seeds, using the same pre-trained ViT-B backbone and hyper-parameters
as in Tab.1. Fig. 6 shows that the ensembledVPT-deep outperforms the average

9

Table 5. Non-parametric paired one-tailed t-test (the Wilcoxon signed-rank test) on
whether VPT-deep’s performance is greater than other methods on 19 VTAB tasks.
Results show that, VPT-deep is indeed statistically significantly better than other
fine-tuning protocols (p < 0.05)

(a) (b) (c) (ours)

Full Linear Mlp-3 Partial-1 Sidetune Bias Adapter VPT-shallow

Is VPT-deep statistically
significantly better? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
p-value 1.2e-03 2.7e-05 1.9e-06 1.9e-05 1.9e-06 1.9e-06 3.8e-06 2.7e-05

Full
Lin

ear
MLP-

2

Par
tial

-1

Sidetu
ne

Bias

Adapter

VPT-
shallo

w

CIFAR-100
Caltech101

DTD
Flowers102

Pets
SVHN

Sun397
Patch Camelyon

EuroSAT
Resisc45

Retinopathy
Clevr/count

Clevr/distance
DMLab

KITTI/distance
dSprites/location

dSprites/orientation
SmallNORB/azimuth

SmallNORB/elevation

VT
AB

 ta
sk

s

6e-07 2e-06 3e-06 4e-06 2e-08 3e-05 8e-04 4e-01
2e-05 4e-07 2e-06 3e-06 2e-11 6e-06 2e-06 7e-05
5e-02 3e-04 2e-05 2e-04 3e-07 6e-05 1e-03 5e-05
1e-02 5e-05 1e-03 2e-04 3e-02 4e-03 6e-03 2e-03
1e-03 2e-07 1e-09 3e-05 1e-07 2e-06 5e-07 8e-07
1e+00 8e-05 5e-05 8e-05 6e-05 2e-03 8e-05 1e-01
5e-06 2e-01 2e-02 1e-01 6e-02 2e-01 1e-01 3e-01
3e-01 1e-03 1e-04 1e-03 4e-02 5e-02 8e-04 3e-05
1e-01 1e-04 9e-09 2e-08 7e-09 6e-06 2e-06 5e-06
5e-01 2e-09 3e-09 2e-08 6e-10 4e-09 1e-08 2e-07
1e+00 1e+00 3e-02 1e+00 1e-01 2e-01 6e-01 1e+00
3e-04 1e-05 3e-05 5e-06 3e-05 7e-03 4e-06 4e-05
2e-01 3e-11 1e-06 3e-05 7e-11 1e-03 1e-05 1e-02
6e-06 1e-08 3e-09 2e-10 1e-09 4e-10 1e-06 1e-04
9e-03 1e-05 5e-06 1e-05 1e-06 7e-06 1e-06 5e-02
4e-04 2e-06 3e-07 2e-07 2e-08 6e-03 6e-06 8e-02
1e-01 2e-07 6e-08 2e-06 1e-05 2e-04 1e-08 7e-07
2e-03 6e-05 2e-04 3e-04 2e-06 1e-04 1e-04 8e-04
6e-05 6e-06 2e-05 3e-05 2e-05 3e-06 8e-06 2e-02

4e-01

5e-02

1e+00 1e-01
2e-01 1e-01 6e-02 2e-01 1e-01 3e-01

3e-01 5e-02
1e-01
5e-01
1e+00 1e+00 1e+00 1e-01 2e-01 6e-01 1e+00

2e-01

5e-02
8e-02

1e-01

p-values for un-paired one-tailed t-test with unequal variances

Not Significant

Significant

Fig. 7. Un-paired one-tailed t-test with unequal variances (Welch’s t-test) on whether
VPT-deep’s performance is greater than other methods for each VTAB task. Results
show that, VPT-deep is statistically significantly better than other fine-tuning proto-
cols (p < 0.05) in most instances

or even the best single-prompt counterparts, as well as other ensembled fine-
tuning methods including Full.

Test of statistical significance. We conduct non-parametric paired one-tailed
t-test (the Wilcoxon signed-rank test [42]) on whether VPT-deep’s performance
is greater than other fine-tuning methods across 19 VTAB tasks (the null hy-
pothesis H0 states that the mean VTAB performance difference between VPT-
deep and alternate baseline method is zero. The alternative hypothesisH1 states
that VPT-deep outperforms the baseline method on VTAB). Tab. 5 presents
the p-values of each test, with the number of observations equal to 19 for each
method compared (we use the averaged accuracy scores among 5 runs for 19
VTAB tasks and all fine-tuning methods). For all of the fine-tuning protocols
compared, VPT-deep’s improvements are statistically significant (p < 0.05).

10

Fig. 8. Effect of different fine-tuning hyperparameters. Evaluated on the VTAB-
Specialized : KITTI/Distance task. Other tuning methods are shaded in gray

We also conduct un-paired one-tailed t-test with unequal variances (Welch’s
t-test [41]), comparing the individual runs (the number of observations = 5) for
each VTAB task (H0 states that VPT-deep and the other baseline perform the
same for a specific VTAB task, while H1 states that VPT-deep outperforms
the other baseline for a specific VTAB task). Fig. 7 presents the p-values for
each <VPT-deep, baseline method> pair on each task. We reject H0 on 127
out of 19 × 8 = 152 cases (p < 0.05). Compared to Full, VPT-deep achieves
statistically significant better performance on 11 out of 19 tasks.

Effect of different fine-tuning hyper-parameters. In Fig. 8, we present
different tuning protocol’s performance on different fine-tuning hyper-parameters
including learning rate and weight decay. For our proposed VPT-deep, we also
ablate different choices of prompt length p, which is the only hyper-parameter
that needs to be manually tuned. All experiments are evaluated on the val

set of KITTI/Distance task (VTAB-Specialized). We observe different behaviors
between Linear and VPT. Both methods freeze backbone parameters during
fine-tuning stage. Linear probing is more sensitive to weight decay values in
general, whereas VPT is influenced by both learning rate and weight decay
values. VPT with larger prompt length is also less sensitive to the choice of
learning rate.

11

Table 6. ViT-B/16 pre-trained on supervised ImageNet-21k, fine-tuned with resolution
384×384. We also includeVPT with image resolution 224×224, p = 380, so the effective
image resolution is 384×384. For each method and each downstream task group, we
report the average test accuracy score and number of wins in (·) compared to Full.
“Total params” denotes total parameters needed for all 24 downstream tasks. Best
results among all methods except Full are bolded

ViT-B/16 Fine-tune Total VTAB-1k
(85.8M) Resolution params Natural Specialized Structured

Total # of tasks 7 4 8

(a)
Full 384 19.07× 72.57 83.05 50.86
Full 224 19.07× 75.88 83.36 47.64

(b)

Linear 1.01× 66.30 (2) 76.77 (0) 27.86 (0)
Mlp-3 384 1.27× 66.45 (3) 77.77 (0) 38.03 (0)
Partial-1 2.58× 67.91 (4) 76.94 (0) 37.16 (0)

Sidetune 3.12× 47.08 (1) 40.34 (0) 24.18 (0)
(c) Bias 384 1.03× 70.30 (4) 76.06 (0) 45.35 (1)

Adapter 1.11× 69.42 (6) 77.11 (0) 30.62 (0)

(ours)

VPT-shallow (p ∈ {1, 5, 10, 50, 100, 200}) 384 1.02× 75.30 (4) 78.50 (0) 46.56 (2)
VPT-deep (p ∈ {1, 5, 10, 50, 100, 200}) 384 1.19× 79.37 (6) 82.86 (2) 56.36 (7)

VPT-shallow (p = 380) 224 1.07× 75.07 (3) 79.03 (0) 46.21 (2)
VPT-deep (p = 380) 224 1.78× 74.20 (4) 82.30 (2) 54.50 (6)

Effect of image resolution. The original ViT paper [7] found that fine-tuning
with higher image resolutions (384×384) is beneficial to downstream recognition
tasks. All recognition experiments presented in the main paper are fine-tuned
on 224×224 resolution. As shown in Tab. 6, we re-run the VTAB experiments
with the same setup as in Tab.1 but in the 384 resolution instead of the default
224. We can see that, VPT-deep still achieves the best performance among all
parameter-efficient tuning protocols, and even outperforms full fine-tuning on
15 out of 19 tasks. Although the increase of image resolutions doesn’t lead to
better full fine-tuning performance in general, it indeed slightly boosts VPT-
deep’s performance.

Another interesting observation from Tab. 6 is that with 224 fine-tune res-
olution and a larger value of p = 380, VPT could achieve similar or better
performance compared to Full with 384 resolution, while using the same input
sequence length yet significantly less trainable parameters.

Empirical computational cost. One possible limitation of VPT is the extra
input sequence length for Transformers. In theory the complexity of MSA is
quadratic w.r.t. the input sequence length, but this might not be the case for
real-world speed due to hardware details like lane widths and cache sizes [7].
In Tab. 7 and Fig. 9, we study the empirical computational cost, i.e., latency,
and peak GPU memory usage at both training and inference times, for all the
fine-tuning protocols studied. All experiments use the same A100 GPU with a
batch size 64 for both training and inference. We can see that the theoretical

12

Table 7. Cost analysis using a ViT-B/16 pre-trained on supervised ImageNet-21k. For
each method and each downstream task group, we report the latency (ms/img) and
peak GPU memory usage (GB) at both training and inference time. “Tuned params”
denotes the fraction of learnable parameters needed. “Scope” denotes the tuning scope
of each method. “Extra params” denotes the presence of additional parameters besides
the pre-trained backbone and linear head. All experiments use the same A100 GPU

ViT-B/16 Tuned Scope Extra Train Test
(85.8M) params Input Backbone Head params Latency Memory Latency Memory

(ms/img) (GB) (ms/img) (GB)

(a) Full 100% ✓ ✓ 358.7 11.7 69.7 0.87

(b)

Linear 0.09% 148.9 0.9 64.4 0.87
Partial-1 8.35% ✓ 193.2 1.4 66.1 0.87
Mlp-3 1.45% ✓ 164.3 0.9 64.4 0.87

(c)

Sidetune 10.09%

✓

✓ 164.6 1.2 66.9 0.91
Bias 0.21% 296.9 10.1 65.6 0.87
Adapter (r = 8) 2.12% ✓ 293.4 9.9 68.2 0.87
Adapter (r = 64) 0.36% ✓ 294.4 9.8 68.3 0.87
Adapter (r = 256) 0.17% ✓ 271.4 9.8 68.0 0.87

(ours)

VPT-shallow (p = 1) 0.09%

✓ ✓

205.9 10.3 68.1 0.88
VPT-deep (p = 1) 0.10% 213.6 10.3 69.4 0.88
VPT-shallow (p = 200) 0.27% 350.6 25.8 138.8 1.84
VPT-deep (p = 200) 2.19% 360.1 25.8 140.8 1.85

10 15 20 25
Peak GPU memory (GB)

200

250

300

350

La
te

nc
y

(m
s /

 im
g)

p = 1
p = 50

p = 100

p = 200

Fu
ll

fin
e-

tu
ni

ng

Train

0.8 1.0 1.2 1.4 1.6 1.8
Peak GPU memory (GB)

80

100

120

140

La
te

nc
y

(m
s /

 im
g)

p = 1
p = 50

p = 100

p = 200

Fu
ll

fin
e-

tu
ni

ng
Test

Fig. 9. Peak GPU memory and latency (ms/img) during both training (left) and in-
ference time (right). For easy comparison, the gray dashed lines represent latency and
memory of full fine-tuning

quadratic scaling w.r.t. sequence length barely happens to VPT. For instance,
doubling the length (p = 200 vs. m = 198) basically only lead to 2× (instead of
4×) inference latency and peak GPU memory w.r.t. full fine-tuning. For training,
the latency would be largely reduced with less number of prompts.

An equivalent implementation of VPT during test time is directly prepend
the parameters to the key and value arrays inside the self-attention module of
Transformer [25] (VPT-prefix). While we found that such implementation does
not lead to accuracy improvement on VTAB datasets, it reduces the computation
cost during inference. Figure 10 shows the comparison with different values of
p. VPT-prefix reduces test-time latency and peak GPU memory with a large
margin especially when p becomes large.

13

0 50 100 150 200
Values of p

80

100

120

Full fine-tuning

Latency (ms / img)
VPT-deep
VPT-prefix

0 50 100 150 200
Values of p

1.00

1.25

1.50

1.75

Full fine-tuning

Peak GPU memory (GB)
VPT-deep
VPT-prefix

Fig. 10. VPT-deep vs. VPT-prefix: peak GPU memory (left) and latency (right) dur-
ing inference time. For easy comparison, the gray dashed lines represent latency and
memory of full fine-tuning

C Further Discussion

VPT vs. Adversarial Reprogramming (AR). The differences are: (1) the
number of learnt parameters injected in the input space in AR literature [8]
is nearly 20 times larger than ours (264k vs. 13k). VPT is significantly more
parameter-efficient; (2) AR has shown its effectiveness in ConvNet, while VPT
can be applied to broader architectures, including ViT, Swin. Furthermore, VPT
is more general with the option of diving into deeper layers of pre-trained back-
bone (Fig. 2), whereas AR strictly applies to the first input layer of ConvNets.
(3) another distinction is that our setting update both prompts and classification
head, while AR [8] directly use the pre-trained classification head. Our setup is
more general and could be applied to models with a broader range of pre-training
objectives (e.g ., MAE [13], which does not include a pre-trained classification
head) and broader vision tasks (e.g ., segmentation).

Visual prompt vs. textual prompt. Our paper also discover discrepancies
between visual and textual prompts: we show that VPT could even outperform
full-model fine-tuning on 20 out of 24 cases, which is in contract to the NLP’s
related work [23]. We also found that random initialized prompts works better
(Fig. 4), and prompts at earlier layers matters more (Figs. 7 and 14), which are
also different from observation on the NLP side [23,26]. These discrepancies indi-
cate that visual prompting might be fundamentally different from text prompts
thus in need of further investigation.

D Supplementary Results

Numerical results of Table 1. Tabs. 8 and 9 present per-task results for 24
classification tasks evaluated in Tab. 1.

Per-task results on training data ablations. Fig. 11 presents the per-task
results for five FGVC datasets. We observe a similar trend in Fig.3: while all

14

10 1 100

60

70

80

90

VPT vs. Linear
CUB

10 1 100

60

70

80

90

VPT vs. Adapter
CUB

10 1 100

60

70

80

90

VPT vs. Bias
CUB

10 1 100

60

70

80

NABirds

10 1 100

60

70

80

NABirds

10 1 100

60

70

80

NABirds

10 1 100
70

80

90

100
Flowers102

10 1 100
70

80

90

100
Flowers102

10 1 100
70

80

90

100
Flowers102

10 1 100

80

85

90
StanfordDogs

10 1 100

80

85

90
StanfordDogs

10 1 100

80

85

90

StanfordDogs

10 1 100
20

40

60

80
StanfordCars

10 1 100
20

40

60

80
StanfordCars

10 1 100
20

40

60

80
StanfordCars

Te
st

 a
cc

ur
ac

y
(%

)

Fraction of downstream training dataset (in log scale)

VPT-Deep VPT-Shallow Full Linear Adapter Bias

Fig. 11. Effect of downstream data size, for each of FGVC tasks. The size of markers
are proportional to the percentage of tunable parameters in log scale

parameter-efficient methods outperform full fine-tuning in small-to-medium data
regime, VPT-deep consistently surpasses Full across data scales for five FGVC
tasks.

More t-SNE visualizations. In Fig. 12, We presents more t-SNE visualiza-
tions, similar to Fig.9, for all VTAB datasets with less than or equal to 20 target
classes.

15

Patch Camelyon (VTAB-Specialized) Retinopathy (VTAB-Specialized) Clevr/distance (VTAB-Structured)

dSprites/location (VTAB-Specialized) dSprites/orientation (VTAB-Specialized) SmallNORB/azimuth (VTAB-Structured)

SmallNORB/elevation (VTAB-Specialized) DMLab (VTAB-Specialized) KITTI/distance (VTAB-Structured)

Fig. 12. More t-SNE visualization of the final [CLS] embedding xN of more VTAB
tasks. We include tasks that have less or equal to 20 target classes for visualization

16

Table 8. Per-task fine-tuning results from Tab.1 for VTAB-1k with a pre-trained ViT-
B/16

C
IF

A
R
-1

0
0

C
a
lt
e
c
h
1
0
1

D
T
D

F
lo
w
e
r
s
1
0
2

P
e
t
s

S
V
H

N

S
u
n
3
9
7

M
e
a
n

P
a
t
c
h

C
a
m

e
ly

o
n

E
u
r
o
S
A
T

R
e
s
is
c
4
5

R
e
t
in

o
p
a
t
h
y

M
e
a
n

C
le
v
r
/
c
o
u
n
t

C
le
v
r
/
d
is
t
a
n
c
e

D
M

L
a
b

K
IT

T
I/

d
is
t
a
n
c
e

d
S
p
r
it
e
s
/
lo

c
a
t
io

n

d
S
p
r
it
e
s
/
o
r
ie
n
t
a
t
io

n

S
m

a
ll
N

O
R
B
/
a
z
im

u
t
h

S
m

a
ll
N

O
R
B
/
e
le
v
a
t
io

n

M
e
a
n

(a) Full 68.9 87.7 64.3 97.2 86.9 87.4 38.8 75.88 79.7 95.7 84.2 73.9 83.36 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 47.64

Head-oriented

(a)

Linear 63.4 85.0 63.2 97.0 86.3 36.6 51.0 68.93 (1) 78.5 87.5 68.6 74.0 77.16 (1) 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 26.84 (0)
Partial-1 66.8 85.9 62.5 97.3 85.5 37.6 50.6 69.44 (2) 78.6 89.8 72.5 73.3 78.53 (0) 41.5 34.3 33.9 61.0 31.3 32.8 16.3 22.4 34.17 (0)
Mlp-2 63.2 84.8 60.5 97.6 85.9 34.1 47.8 67.70 (2) 74.3 88.8 67.1 73.2 75.86 (0) 45.2 31.6 31.8 55.7 30.9 24.6 16.6 23.3 32.47 (0)
Mlp-3 63.8 84.7 62.3 97.4 84.7 32.5 49.2 67.80 (2) 77.0 88.0 70.2 56.1 72.83 (0) 47.8 32.8 32.3 58.1 12.9 21.2 15.2 24.8 30.62 (0)
Mlp-5 59.3 84.4 59.9 96.1 84.4 30.9 46.8 65.98 (1) 73.7 87.2 64.8 71.5 74.31 (0) 50.8 32.3 31.5 56.4 7.5 20.8 14.4 20.4 29.23 (0)
Mlp-9 53.1 80.5 53.9 95.1 82.6 24.4 43.7 61.90 (1) 78.5 83.0 60.2 72.3 73.49 (0) 47.5 27.9 28.9 54.0 6.2 17.7 10.8 16.2 26.15 (0)

Backbone-oriented

(b)

Sidetune 60.7 60.8 53.6 95.5 66.7 34.9 35.3 58.21 (0) 58.5 87.7 65.2 61.0 68.12 (0) 27.6 22.6 31.3 51.7 8.2 14.4 9.8 21.8 23.41 (0)
Bias 72.8 87.0 59.2 97.5 85.3 59.9 51.4 73.30 (3) 78.7 91.6 72.9 69.8 78.25 (0) 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 44.09 (2)
Adapter-256 74.1 86.1 63.2 97.7 87.0 34.6 50.8 70.50 (4) 76.3 88.0 73.1 70.5 76.98 (0) 45.7 37.4 31.2 53.2 30.3 25.4 13.8 22.1 32.39 (0)
Adapter-64 74.2 85.8 62.7 97.6 87.2 36.3 50.9 70.65 (4) 76.3 87.5 73.7 70.9 77.10 (0) 42.9 39.9 30.4 54.5 31.9 25.6 13.5 21.4 32.51 (0)
Adapter-8 74.2 85.7 62.7 97.8 87.2 36.4 50.7 70.67 (4) 76.9 89.2 73.5 71.6 77.80 (0) 45.2 41.8 31.1 56.4 30.4 24.6 13.2 22.0 33.09 (0)

Visual-Prompt Tuning

(ours)

VPT-shallow 77.7 86.9 62.6 97.5 87.3 74.5 51.2 76.81 (4) 78.2 92.0 75.6 72.9 79.66 (0) 50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1 46.98 (4)
Prompt length (p) 100 5 1 200 50 200 1 79.4 5 50 50 10 28.7 100 200 100 100 100 100 200 200 137.5
Tuned / Total (%) 0.18 0.10 0.04 0.27 0.08 0.19 0.36 0.17 0.01 0.05 0.09 0.01 0.04 0.10 0.18 0.09 0.09 0.10 0.10 0.19 0.19 0.13

VPT-deep 78.8 90.8 65.8 98.0 88.3 78.1 49.6 78.48 (6) 81.8 96.1 83.4 68.4 82.43 (2) 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 54.98 (8)
Prompt length (p) 10 10 10 1 1 50 5 12.4 100 100 10 1 52.8 50 200 100 50 10 50 200 200 107.5
Tuned / Total (%) 0.20 0.20 0.15 0.10 0.04 0.54 0.41 0.23 1.06 1.07 0.15 0.02 0.57 0.54 2.11 1.07 0.54 0.12 0.55 2.12 2.11 1.14

Table 9. Per-task fine-tuning results from Tab.1 for five FGVC tasks, with a pre-
trained ViT-B/16

CUB-200-2011 NABirds Oxford Flowers Stanford Dogs Stanford Cars Mean

(a) Full 87.3 82.7 98.8 89.4 84.5 88.54

Head-oriented

(a)

Linear 85.3 75.9 97.9 86.2 51.3 79.32 (0)
Partial-1 85.6 77.8 98.2 85.5 66.2 82.63 (0)
Mlp-2 85.7 77.2 98.2 85.4 54.9 80.28 (0)
Mlp-3 85.1 77.3 97.9 84.9 53.8 79.80 (0)
Mlp-5 84.2 76.7 97.6 84.8 50.2 78.71 (0)
Mlp-9 83.2 76.0 96.2 83.7 47.6 77.31 (0)

Backbone-oriented

(b)

Sidetune 84.7 75.8 96.9 85.8 48.6 78.35 (0)
Bias 88.4 84.2 98.8 91.2 79.4 88.41 (3)
Adapter-256 87.2 84.3 98.5 89.9 68.6 85.70 (2)
Adapter-64 87.1 84.3 98.5 89.8 68.6 85.67 (2)
Adapter-8 87.3 84.3 98.4 88.8 68.4 85.46 (1)

Visual-Prompt Tuning

(ours)

VPT-shallow 86.7 78.8 98.4 90.7 68.7 84.62 (1)
Prompt length (p) 100 50 100 100 100 90
Tuned / Total (%) 0.31 0.54 0.23 0.20 0.26 0.31

VPT-deep 88.5 84.2 99.0 90.2 83.6 89.11 (4)
Prompt length (p) 10 50 5 100 200 73
Tuned / Total (%) 0.29 1.02 0.14 1.17 2.27 0.98

17

References

1. Beattie, C., Leibo, J.Z., Teplyashin, D., Ward, T., Wainwright, M., Küttler, H.,
Lefrancq, A., Green, S., Valdés, V., Sadik, A., et al.: Deepmind lab. arXiv preprint
arXiv:1612.03801 (2016) 2

2. Chen*, X., Xie*, S., He, K.: An empirical study of training self-supervised vision
transformers. In: ICCV (2021) 2, 4

3. Cheng, G., Han, J., Lu, X.: Remote sensing image scene classification: Benchmark
and state of the art. Proceedings of the IEEE (2017) 2

4. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., , Vedaldi, A.: Describing textures
in the wild. In: CVPR (2014) 2

5. Contributors, M.: MMSegmentation: Openmmlab semantic segmentation toolbox
and benchmark. https://github.com/open-mmlab/mmsegmentation (2020) 4

6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR (2009) 2

7. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth
16x16 words: Transformers for image recognition at scale. In: ICLR (2020) 2, 11

8. Elsayed, G.F., Goodfellow, I., Sohl-Dickstein, J.: Adversarial reprogramming of
neural networks. In: ICLR (2019) 13

9. Gebru, T., Krause, J., Wang, Y., Chen, D., Deng, J., Fei-Fei, L.: Fine-grained car
detection for visual census estimation. In: AAAI (2017) 2

10. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The kitti
dataset. International Journal of Robotics Research (2013) 2

11. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: AISTATS (2010) 1

12. Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tul-
loch, A., Jia, Y., He, K.: Accurate, large minibatch sgd: Training imagenet in 1
hour. arXiv preprint arXiv:1706.02677 (2017) 4

13. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are
scalable vision learners. In: CVPR. pp. 16000–16009 (2022) 2, 4, 13

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. pp. 770–778 (2016) 2

15. Helber, P., Bischke, B., Dengel, A., Borth, D.: Eurosat: A novel dataset and deep
learning benchmark for land use and land cover classification. IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing (2019) 2

16. Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Ges-
mundo, A., Attariyan, M., Gelly, S.: Parameter-efficient transfer learning for nlp.
In: ICML. pp. 2790–2799. PMLR (2019) 1

17. Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Lawrence Zitnick, C.,
Girshick, R.: Clevr: A diagnostic dataset for compositional language and elemen-
tary visual reasoning. In: CVPR (2017) 2

18. Kaggle, EyePacs: Kaggle diabetic retinopathy detection (July 2015) 2

19. Khosla, A., Jayadevaprakash, N., Yao, B., Fei-Fei, L.: Novel dataset for fine-grained
image categorization. In: First Workshop on Fine-Grained Visual Categorization,
IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs,
CO (June 2011) 2

20. Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks.
arXiv preprint arXiv:1404.5997 (2014) 4

https://github.com/open-mmlab/mmsegmentation

18

21. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009) 2

22. LeCun, Y., Huang, F.J., Bottou, L.: Learning methods for generic object recogni-
tion with invariance to pose and lighting. In: CVPR (2004) 2

23. Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-efficient
prompt tuning. In: Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing. pp. 3045–3059. Association for Computational
Linguistics, Online and Punta Cana, Dominican Republic (Nov 2021) 6, 8, 13

24. Li, F.F., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE
TPAMI (2006) 2

25. Li, X.L., Liang, P.: Prefix-tuning: Optimizing continuous prompts for generation.
In: Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers). pp. 4582–4597. Association for Computational
Linguistics, Online (Aug 2021) 12

26. Liu, X., Ji, K., Fu, Y., Du, Z., Yang, Z., Tang, J.: P-tuning v2: Prompt tuning can
be comparable to fine-tuning universally across scales and tasks. arXiv preprint
arXiv:2110.07602 (2021) 13

27. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin trans-
former: Hierarchical vision transformer using shifted windows. In: ICCV (2021)
2

28. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for
the 2020s. CVPR (2022) 2

29. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017) 1

30. Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe,
A., Van Der Maaten, L.: Exploring the limits of weakly supervised pretraining. In:
ECCV (2018) 4

31. Matthey, L., Higgins, I., Hassabis, D., Lerchner, A.: dsprites: Disentanglement
testing sprites dataset. https://github.com/deepmind/dsprites-dataset/ (2017) 2

32. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning. In: NIPS Workshop on Deep
Learning and Unsupervised Feature Learning 2011 (2011) 2

33. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number
of classes. In: 2008 Sixth Indian Conference on Computer Vision, Graphics & Image
Processing. pp. 722–729. IEEE (2008) 2

34. Parkhi, O.M., Vedaldi, A., Zisserman, A., Jawahar, C.V.: Cats and dogs. In: CVPR
(2012) 2

35. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch. In:
NeurIPS Autodiff Workshop (2017) 1

36. Pfeiffer, J., Kamath, A., Rücklé, A., Cho, K., Gurevych, I.: Adapterfusion: Non-
destructive task composition for transfer learning. arXiv preprint arXiv:2005.00247
(2020) 1

37. Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K.,
Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP 2020): Systems Demonstrations. pp. 46–54. Association for Computa-
tional Linguistics, Online (2020) 1

19

38. Van Horn, G., Branson, S., Farrell, R., Haber, S., Barry, J., Ipeirotis, P., Perona,
P., Belongie, S.: Building a bird recognition app and large scale dataset with citizen
scientists: The fine print in fine-grained dataset collection. In: CVPR. pp. 595–604
(2015) 2

39. Veeling, B.S., Linmans, J., Winkens, J., Cohen, T., Welling, M.: Rotation equiv-
ariant cnns for digital pathology. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention (2018) 2

40. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd birds-
200-2011 dataset. Tech. Rep. CNS-TR-2011-001, California Institute of Technology
(2011) 2

41. Welch, B.L.: The generalization of ‘student’s’problem when several different pop-
ulation varlances are involved. Biometrika 34(1-2), 28–35 (1947) 10

42. Wilcoxon, F.: Individual comparisons by ranking methods. In: Breakthroughs in
statistics, pp. 196–202. Springer (1992) 9

43. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: Large-scale
scene recognition from abbey to zoo. In: CVPR (2010) 2

44. Zhai, X., Puigcerver, J., Kolesnikov, A., Ruyssen, P., Riquelme, C., Lucic, M., Djo-
longa, J., Pinto, A.S., Neumann, M., Dosovitskiy, A., et al.: A large-scale study of
representation learning with the visual task adaptation benchmark. arXiv preprint
arXiv:1910.04867 (2019) 2

45. Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., Fu, Y., Feng, J., Xiang, T.,
Torr, P.H., et al.: Rethinking semantic segmentation from a sequence-to-sequence
perspective with transformers. In: CVPR. pp. 6881–6890 (2021) 4

46. Zhou, B., Zhao, H., Puig, X., Xiao, T., Fidler, S., Barriuso, A., Torralba, A.:
Semantic understanding of scenes through the ade20k dataset. IJCV 127(3), 302–
321 (2019) 4

