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A Appendix

A.1 Openness Analysis

Since the relation between the number of seen and unseen classes could be un-
certain in reality, it is necessary to further verify that our proposed AMS can
\gtl‘ To achieve this, we
set up three different configurations of task P—R, in which the number of seen
classes is 3, 6, and 10, respectively, and the corresponding number of unseen
classes is 14, 11, and 7. Therefore, the openness value in each scenario is 0.82,
0.64, and 0.41. For performance on open-set domain adaptation, we take the
recent SR-OSDA framework and the state-of-the-art OSDA method BCA as
baselines. As is shown in Fig. 0 (a), (b), and (c¢), AMS achieves superior or
competitive results on OS*, OS°, and H; under all openness values. For per-
formance on semantic recovery, we only compare with SR-OSDA since BCA
is a pure OSDA method. Fig. M (d), (e), and (f) show that our method still
consistently outperforms SR-OSDA by a notable margin in terms of all metrics.

perform robustly under different openness: O = 1 —

A.2 Qualitative Evaluation of Semantic Recovery

We qualitatively evaluate the capability of AMS to interpret novelties by show-
casing its semantic recovery results in Fig. B. To emphasize the interpretation
of unseen novelties, we test a model trained in task R—A with samples from
the unseen classes in the AwA2 dataset. Moreover, the rightmost two images
in the last row are from classes outside the R and A domains, which are used
to further confirm that AMS can reasonably interpret completely new novelties
encountered in deployment. From Fig. B we can see that AMS can not only
correctly recover salient attributes of unseen classes (notes in black), but also
reasonably and flexibly predict attributes for individual samples (notes in green),
which corroborates that AMS is a practical step towards interpretable OSDA.
We also compare the semantic recovery results of AMS and SR-OSDA by
visualizing their confusion matrices in task R—A. From Fig. B we can observe
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Fig. 1: Performance in task P—R under three different openness values: 0.82, 0.64, and
0.41, with the number of seen classes set to 3, 6, and 10, respectively. Best viewed in
color.

that AMS is better at recovering semantic attributes for both seen and unseen
classes, indicating that it is more capable of object interpretation.

A.3 Parameter Analysis

Since the functionality of AMS is the joint result of partial alignment, angular
margin separation, and visual-semantic projection, it is desirable for us to inves-
tigate the role and behavior of each component separately. In this regard, we con-
duct parameter analysis for our 4 hyper-parameters: A1, Ao, A3, and m, respec-
tively. To fully disentangle different factors, when testing each hyper-parameter,
we keep the other ones fixed at the values specified in section 4.1.

Fig. @ (a) shows that the performance on all metrics is stable when A; is no
greater than 0.1. When \; is larger than 0.1, both the recognition result O.S°
and semantic recovery result U of unseen class start to drop rapidly. We argue
that when partial alignment becomes too potent, it could forcefully align unseen
classes with seen classes, damaging the performance of the former who have no
explicit supervision information.

Fig. @ (b) shows that the performance is relatively stable when Az is between
0.05 and 0.3. Out of that range, diverse unseen classes are either under-separated

or over-separated, leading to an accuracy drop in their semantic recovery result
U.
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Fig. 2: Selected samples from the AwA2 dataset and attributes recovered by our model
trained in task R—A. The black ones are correctly recovered attributes, green ones are
reasonable predictions, and red ones are incorrect predictions. X/Y denotes predicted
value/ class-prototypical value. Best viewed in color.

Table 1: Davies—Bouldin index (DBI) on D2AwA and I2AwA (calculated using
cosine distance).

tasks —] —.
method _[[C5] 1 1[Gl + 1G] [OANICS + L [Cx] + [Ca] [CHIICaT + 1 [Ca] + Gl GG & 1 1G] + O] [CIICH] + 1 [Os] + [Ce] IGTICA + 1 ICaI ¥ G [CAICH] + 1 1G] 1O 1]
7.95 6.78 5.85] 4.13 3.41 220 3.41 2.88 1.59] 4.11 343 2.22| 341 2.88 1.59 7.82 6.74
5.32 5.24 5.46| 2.36 2.46 1.99| 2.33 229 1.55| 2.42 2.49 2.02] 1.94 1.95 1.44| 4.55 443

w/o fine-tuning|
fine-tuning

514 3.69
438 2.69

Fig. @ (c) shows that semantic recovery result on unseen classes U first rises
as A3 increases from 0.01 to 0.8, and starts to drop when A3 surpasses 1.5.
We analyze that such phenomenon is because when A3 is small, the semantic
recovery objective is insufficiently optimized, while when A3 is too large, the
visual-semantic projection ¢ is overfitting to seen classes. Interestingly, when
A3 becomes too large, recognition result on unseen classes OS® also drops. We
argue that this is because in multi-modality training, the performance on the
semantic modality could also affect that on the visual modality, and vice versa.

Fig. @ (d) shows that performance on all metrics remains stable when the
angular margin m is no greater than 0.1. Otherwise, performance on both the
recognition result OS¢ and semantic recovery result U of unseen class begins to
drop due to brute-force alignment with seen classes.

The above parameter analysis not only unveils the role and behavior of each
constituent of our proposed AMS but also demonstrates that it can perform
stably and robustly with each relevant hyper-parameter varying in a range, which
confirms that its superior performance is the result of algorithmic novelty but
hyper-parameters tuning.



4 Li et al.

(a) (b)

Fig. 3: Confusion matrix in task R—A. (a) SR-OSDA. (b) AMS. The unseen classes
are zoomed in for better visualization. Best viewed in color.
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Fig.4: Parameter analysis in task P—R. (a) A1. (b) A2. (¢) As. (d) Margin m.
Best viewed in color.

A.4 Cluster Property Analysis

After the proposed fine-tuning phase, the features of seen classes tend to become
angularly discriminative and intra-class compact, and we could also expect the
features of unseen classes to have better clustering properties as well and not
fall into the area of seen classes. By this, we primarily mean that the overall
unseen class composed of all unseen classes is more compact and separate from
seen classes, compared with under naive Softmax. On top of that, we could also
expect different unseen classes inside the overall unseen class to also cluster bet-
ter. Conceptually speaking, thanks to the angular prototype regularization, the
decision boundary is less overfitting to seen classes, leaving out an open space,
wherein rather than falling dispersedly into areas of seen classes, unseen classes
are tightly bounded and better stay together. Hence, the overall unseen class
is more compact and farther away from all seen classes. Besides, experimental
evidence in the metric-based few-shot learning literature shows that optimizing
prototype-based metrics could facilitate class-discriminative features when gen-
eralizing to unseen classes. Thus, we could expect that our angular prototype
objective also brings such merit. For concrete evidence, we compare the Davies—
Bouldin index (DBI), a popular metric for cluster quality evaluation, between
with and without our fine-tuning phase in table [, where we achieve smaller (bet-
ter) DBI in terms of target domain “seen classes+1 overall unseen class”, “seen



Interpretable Open-Set Domain Adaptation via Angular Margin Separation 5

classesfunseen classes”, “unseen classes”, verifying that indeed the overall un-
seen class clusters better against seen classes, and different unseen classes also
cluster better against each other.

A.5 More Implementation Details

In addition to the specifications of neural network architecture and hyper-parameter
values mentioned in our paper, we set the initial learning rate 79 of the back-
bone to 0.001 and all other networks to 0.01, and the learning rate is adjusted
by np = no(1 + ap)™? | where p is the training progress changing from 0 to 1,
and a = 10, f = 0.75. We adopt mini-batch SGD using momentum 0.9, weight
decay 0.001, and Nesterov accelerated gradient. We implement our codes with
PyTorch on two NVIDIA GeForce RTX 2080Ti GPUs and average results from 5
random runs. Please note that [2] reports OS: Avg Acc on |Cs|+1 classes rather
than the H; in our work which is more appropriate according to [0]. OS simply
regards all unseen classes as one class, whose Acc is averaged into many seen
classes, and thus fails to give unseen classes discovery due significance. That’s
one reason for seeing different figures in our report to those in [2]. For OS, our
method is also notably superior for generally higher Acc on both seen and un-
seen classes. Besides, [2] has not released code, and our re-implementation in
fact achieves higher or comparable H; in 5 out of 7 tasks, Hy in 6 out of 7 tasks
(we use classwise rejection for fair comparison with our method), which makes
this baseline even stronger. Codes for our paper and our re-implementation of
[?] are available at AMS.


https://github.com/LeoXinhaoLee/AMS
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