Contrastive Vicinal Space for Unsupervised
Domain Adaptation: Supplementary Material

Jaemin Na! @2, Dongyoon Han? (9, Hyung Jin Chang® (2, and Wonjun
Hwang!

! Ajou University, Korea 2NAVER Al Lab ®University of Birmingham, UK
osial46@ajou.ac.kr, dongyoon.han@navercorp.com,
h.j.chang@bham.ac.uk, wjhwang@ajou.ac.kr

A. Additional Experimental Results

A.1. Effects of our components with a different baseline.

In the main paper, we provided the effect of our components with baseline,
MSTN [18]. We further investigate our method using DANN (Ganin et al., JMLR
2016) [2] as a baseline, which is one of the simplest methods in unsupervised
domain adaptation. As in Table A.1., we observed that each component is still
effective even with the light baseline DANN. Note that we only obtain the initial
weights from the baseline and do not use any losses from the baseline when
training our method.

Baseline|Remp | Ret|Res || A=>W|D-W|W—-D|A—-D|D—-A|W—A|Avg.
v 82.0 | 96.9 | 99.1 | 79.7 | 68.2 | 67.4 |82.2
v v 94.5 | 99.0 | 100.0 | 94.2 | 75.6 | 75.2 |89.8
v v |V 95.5 | 99.2 | 100.0| 94.4 | 76.0 | 76.3 |90.2
v v vV | v || 95.6 | 99.2 [100.0|95.8|76.9| 78.3 [91.0

Table A.1. Ablation results (%) of investigating the effects of our components
with baseline DANN on Office-31.

A.2. Empirical visualization of vicinal space.

We computed the entropy of vicinal instances in task A—W on Office-31 to
support the demo Figure 1 in the main paper. As in Figure A.2.a, we observed
that the entropy maximization point (i.e., EMP) is biased toward the target
domain before adaptation. Here, we define contrastive space within a certain
margin from EMP. On the other hand, after applying our method, we observed
that the EMP is formed near the center of the source and target domains (see
Figure A.2.b).

A.3. The equilibrium collapse of labels in other scenarios.

As discussed in Section 4.3, the equilibrium collapse of labels problem occurs
before adaptation by dominant-source and recessive-target vicinal instances. We

https://orcid.org/0000-0002-8604-2839
https://orcid.org/0000-0002-9130-8195
https://orcid.org/0000-0001-7495-9677
https://orcid.org/0000-0001-8895-0411

2 J. Na et al.

mmm Contrastive Space
mmm Consensus Space

= Contrastive Space
mmm Consensus Space

00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10
Mixup Ratio Mixup Ratio

(b) Before adaptation (b) After adaptation
Fig. A.2. Empirical visualization of vicinal space.

analyzed whether this problem still exists after applying other UDA methods
in Figure A.3.a. In this experiment, we use DANN as a baseline, which has
relatively low accuracy (82.2%). We observe that there is still the problem of
the equilibrium collapse of labels in some tasks. On the other hand, FixBi (Na
et al., CVPR 2021) (91.4%) achieved an equilibrium similar to the supervised
learning method in all tasks. In addition, we experimented on both single-source
and multi-source scenarios in Office-Home and PACS datasets, respectively. As
shown in Figure A.3.b, we discovered that the problem of equilibrium collapse
of labels occurs in both cases.

Methods
@ Source-only

Methods
@ DANN Office-Home: P-R

3 FixBi @ CoVi (Ours)

@ Supervised @ Supervised
PACS: [C,S,P]-A
PACS: [A,S,P]-C
PACS: [A,C,P]-S
PACS: [A,C,S]-P

00 01 02 03 04 05 06 07 08 09 10 0.0 01 0.2 03 04 05 06 0.7 08 09 10
EMP EMP
(a) Comparison by methods (b) Comparison by dataset

Fig. A.3. Ablation studies on the ‘equilibrium collapse of labels’.

B. Implementation Details

B.1. Network Architectures

We describe the details of network architectures according to the dataset. As
introduced in the main paper, our model consists of three subcomponents: an
encoder, a classifier, and an EMP-learner.

Encoder. Following the standard architecture of previous studies on un-
supervised domain adaptation [11,16], we adopt an ImageNet [6]-pretrained

Contrastive Vicinal Space for Unsupervised Domain Adaptation 3

ResNet [4,3] for the encoder. We use ResNet-50 for Office-31 [14] and Office-
Home [17], and ResNet-101 for VisDA-C [13] dataset. For multi-source domain
adaptation, we use ResNet-18 for PACS [7] dataset.

EMP-learner. We introduce a small network to produce entropy maxi-
mization points (EMPs) according to the convex combinations of the source
and target instances. We design the EMP-learner with four convolutional layers,
regardless of the dataset. We construct the EMP-learner with three 3x3 convolu-
tional layers with stride one followed by Batch Normalization [5] and ReLU [12].
For the last layer, instead of the fully connected layer, we adopt 1x1 convolu-
tion [9]. The output channel of the last 1x1 convolutional layer is 11, yielding a
ratio A € {0.0, 0.1, ..., 1.0}.

Classifier. We adopt only one fully connected layer for the classifier. The
input feature size of the fully connected layer is decided by the output feature
size of the encoder. The output feature size of the fully connected layer depends
on the number of categories in each dataset.

B.2. Data Configurations

We implement our algorithm using PyTorch. The code runs with Python 3.7+,
PyTorch 1.7.1, and Torchvision 0.8.2. In this section, we provide our training
recipes for Office-31, Office-Home, VisDA-C, and PACS dataset.

Office-31 and Office-Home. In Configs 1, we describe our default config-
uration for Office-31 and Office-Home. The default configs for Office-Home are
almost identical to Office-31, except for the resize factor of test transform that
uses a scaling factor of 256 instead of 224.

Configs 1 PyTorch-style configs for Office-31 and Office-Home.

train_transforms = torch.nn.Sequential(
transforms.Resize (256),
transforms.RandomCrop (224),
transforms.RandomHorizontalFlip (),
transforms.ToTensor (),
transforms.Normalize (
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]))
test_transforms = torch.nn.Sequential(
transforms.Resize (224),
transforms.CenterCrop(224),
transforms.ToTensor (),
transforms.Normalize (
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]))

VisDA-C. We provide the configurations for VisDA-C in Configs 2. We use
a stochastic gradient descent optimization (SGD) with a training batch size of
128, a momentum of 0.9, and a learning rate of le-4. The end-to-end pipeline is

4 J. Na et al.

trained for 100 epochs. We use the center crop instead of the random crop for
image transformations in the training process. It is worth noting that we do not
use the ten-crops ensemble technique used in [19,1,10] during evaluation for a
fair comparison.

Configs 2 PyTorch-style configs for VisDA-C.

train_transforms = torch.nn.Sequential(
transforms.Resize (256),
transforms.CenterCrop (224),
transforms.RandomHorizontalFlip (),
transforms.ToTensor (),
transforms.Normalize (
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]))
test_transforms = torch.nn.Sequential(
transforms.Resize (256),
transforms.CenterCrop(224),
transforms.ToTensor (),
transforms.Normalize (
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]1))

PACS. Following the previous protocols [8,15] for multi-source domain adap-
tation, we train on any three of the four domains (i.e., source domains) and then
test on the remaining one domain (i.e., target domain). The total epoch is 100,
with a batch size of 32 for the PACS dataset. The training details are described
in Configs 3.

Configs 3 PyTorch-style configs for PACS.

train_transforms = torch.nn.Sequential(
transforms.Resize (256) ,
transforms.RandomCrop (224),
transforms.RandomHorizontalFlip (),
transforms.ToTensor (),
transforms.Normalize (
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
test_transforms = torch.nn.Sequential(
transforms.Resize (224),
transforms.CenterCrop(224),
transforms.ToTensor (),
transforms.Normalize (
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]))

Contrastive Vicinal Space for Unsupervised Domain Adaptation 5

C. Pseudocode

In Pseudo-code 1, 2, and 3, we provide PyTorch-like pseudo-codes for the EMP-
Mixup, contrastive loss, and consensus loss, respectively. The entire code has
been released at https://github.com/NaJaeMin92/CoVi.

Pseudo-code 1 PyTorch-like style pseudocode for EMP-Mixup.

x_s, y-s: Source image and label
x_t: Target image

f: An encoder

h: A classifier

g: An EMP-learner

ce_loss: Cross entropy loss

compute embeddings except for avgpool in f
zs, zt = f(x_s), f(x_t)

concat representations along the channel dimension
z_c = torch.cat([z_s, z_t], dim=1)

Produce entropy maximization points
emp = torch.argmax(g(z_c), dim=1) * 0.1

construct vicinal instances with EMP
xemp = emp * xs + (1 - emp) * x_t
z_emp = h(f(x_emp))

compute entropy loss
entropy_-loss = -Entropy(z_emp)

optimization step
entropy_loss.backward()
update(g.params)

compute cross-entropy loss
y-t = torch.argmax(h(f(x_t)), dim=1)
mixup_loss = emp * ce_loss(z_emp, y.s) + (1 - emp) * ce_ loss(z_emp, y_t)

optimization step
mixup_loss.backward()
update (f .params)
update (h.params)

https://github.com/NaJaeMin92/CoVi

6 J. Na et al.

Pseudo-code 2 PyTorch-like style pseudocode for contrastive loss.

z.s, y-s: Source wmage and label

z_t: Target image

f: An encoder

h: A classifier

emp: Entropy mazimization point

w: Margin of ratio

alpha: Confidence threshold

space_sd: Source-dominant space constraint

space_td: Target-dominant space constraint

ce_loss: Cross entropy loss

In practice, we replace top2_.sd with y_hat in swap prediction to take
advantage of the higher accuracy topl label. Also, we replace top2_td
with y_s because we can access source labels.

HOH R W R W OWH R R R W

construct space

sd_ratio, td_ratio = emp - w, emp + W
sd_cont = torch.ge(sd _ratio, space_sd)
td_cont = torch.le(td_ratio, space_td)

compute threshold mask

zt = £(x_t)

topl_prob = torch.topk(F.softmax(z_t, dim=1), k=1)[0].t().squeeze()
probmean, prob_std = topl_prob.mean(), topl_prob.std()

threshold = probmean - alpha * prob_std

thmask = topl_prob.ge(threshold)

construct vicinal instances

mask_idx = torch.nonzero(th mask & td_cont & sd_cont).squeeze()

x-sd = empl[mask_idx] * x_s[mask_idx] + (1 - emp[mask_idx]) * x_t[mask_idx]
x_td = emp[mask_idx] * x_s[mask_idx] + (1 - emp[mask_idx]) * x_t[mask_idx]

compute representations
z_sd, z_td = h(f(x_sd)), h(f(x_td))

predict top-2 labels
topl_sd, top2_sd = torch.topk(F.softmax(z.sd, dim=1), k=2)[1].t(Q
topl_td, top2.td = torch.topk(F.softmax(z_td, dim=1), k=2)[1].t()

swap predictions and compute contrastive loss

y-hat = torch.argmax(h(f(x_t)), dim=1)

sd_loss = sd.ratio * ce_loss(z_sd, top2.sd) + (1 - sd_ratio) *
ce_loss(z_sd, topl_td)

td_loss = td_ratio * ce_loss(z_td, top2.td) + (1 - td.ratio) *
ce_loss(z_td, topl_sd)

contrastive_loss = sd_loss + td_loss

optimization step
contrastive_loss.backward()
update (f .params)

update (h.params)

Contrastive Vicinal Space for Unsupervised Domain Adaptation

Pseudo-code 3 PyTorch-like style pseudocode for consensus loss.

z_s: Source image

z_t: Target image

f: An encoder

h: A classifier

w: Margin of ratio

beta: Confidence threshold
ce_loss: Cross entropy loss

R R R R R R

construct two perturbed versions
shuffle_idx = torch.randperm(batch_size)

xvl = lam * x.s + (1 - lam) * x_t

xv2 = lam * x_s[shuffle_idx] + (1 - lam) * x_t

construct representations
zvl = h(f(xv1))
zv2 = h(f(xv2))

compute threshold mask

zt = f(x_t)

topl_prob = torch.topk(F.softmax(z_t, dim=1), k=1)[0].t().squeeze()
prob_mean, prob_std = topl_prob.mean(), topl_prob.std()

threshold = prob_mean - beta * prob_std

th_mask = topl_prob.ge(threshold)

mask_idx = torch.nonzero(th mask) .squeeze()

Aggregate softmax probabilities
p = F.softmax(z_vl, dim=1) + F.softmax(z_v2, dim=1)

compute consensus loss

y-hat = torch.argmax(p, dim=1)

loss = ce_loss(z_vl[mask_idx], y-hat[mask_idx]) + ce_loss(z_v2[mask_idx],
y-hat [mask_-idx])

optimization step
loss.backward()
update (f .params)
update (h.params)

8

J. Na et al.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Cao, Z., Ma, L., Long, M., Wang, J.: Partial adversarial domain adaptation. In:
Proceedings of the European Conference on Computer Vision (ECCV). pp. 135—
150 (2018) 4

. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation.

In: International conference on machine learning. pp. 1180-1189. PMLR (2015) 1
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770-778 (2016) 3

He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks.
In: European conference on computer vision. pp. 630-645. Springer (2016) 3
Toffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: International conference on machine learning.
pp. 448-456. PMLR (2015) 3

Krizhevsky, A., Sutskever, 1., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems 25,
1097-1105 (2012) 2

Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain
generalization. In: Proceedings of the IEEE international conference on computer
vision. pp. 5542-5550 (2017) 3

Li, R., Jia, X., He, J., Chen, S., Hu, Q.: T-svdnet: Exploring high-order prototypical
correlations for multi-source domain adaptation. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 9991-10000 (2021) 4

Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400
(2013) 3

Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adap-
tation. arXiv preprint arXiv:1705.10667 (2017) 4

Na, J., Jung, H., Chang, H.J., Hwang, W.: Fixbi: Bridging domain spaces for
unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 1094-1103 (2021) 2

Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: Icml (2010) 3

Peng, X., Usman, B., Kaushik, N., Hoffman, J., Wang, D., Saenko, K.: Visda: The
visual domain adaptation challenge. arXiv preprint arXiv:1710.06924 (2017) 3
Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to
new domains. In: European conference on computer vision. pp. 213-226. Springer
(2010) 3

Seo, S., Suh, Y., Kim, D., Kim, G., Han, J., Han, B.: Learning to optimize domain
specific normalization for domain generalization. In: Computer Vision—-ECCV 2020:
16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part
XXII 16. pp. 68-83. Springer (2020) 4

Tang, H., Chen, K., Jia, K.: Unsupervised domain adaptation via structurally regu-
larized deep clustering. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. pp. 8725-8735 (2020) 2

Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing
network for unsupervised domain adaptation. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. pp. 5018-5027 (2017) 3

Xie, S., Zheng, Z., Chen, L., Chen, C.: Learning semantic representations for un-
supervised domain adaptation. In: International conference on machine learning.
pp. 5423-5432. PMLR (2018) 1

Contrastive Vicinal Space for Unsupervised Domain Adaptation 9

19. Xu, R., Li, G., Yang, J., Lin, L.: Larger norm more transferable: An adaptive
feature norm approach for unsupervised domain adaptation. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 1426-1435 (2019)
4

	Contrastive Vicinal Space for Unsupervised Domain Adaptation: Supplementary Material

