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Abstract. Source-free Domain Adaptation (SFDA) aims to adapt a
pre-trained source model to the unlabeled target domain without ac-
cessing the well-labeled source data, which is a much more practical
setting due to the data privacy, security, and transmission issues. To
make up for the absence of source data, most existing methods intro-
duced feature prototype based pseudo-labeling strategies to realize self-
training model adaptation. However, feature prototypes are obtained
by instance-level predictions based feature clustering, which is category-
biased and tends to result in noisy labels since the visual domain gaps
between source and target are usually different between categories. In
addition, we found that a monocentric feature prototype may be inef-
fective to represent each category and introduce negative transfer, espe-
cially for those hard-transfer data. To address these issues, we propose
a general class-Balanced Multicentric Dynamic prototype (BMD) strat-
egy for the SFDA task. Specifically, for each target category, we first
introduce a global inter-class balanced sampling strategy to aggregate
potential representative target samples. Then, we design an intra-class
multicentric clustering strategy to achieve more robust and representa-
tive prototypes generation. In contrast to existing strategies that up-
date the pseudo label at a fixed training period, we further introduce a
dynamic pseudo labeling strategy to incorporate network update infor-
mation during model adaptation. Extensive experiments show that the
proposed model-agnostic BMD strategy significantly improves represen-
tative SFDA methods to yield new state-of-the-art results. The code is
available at https://github.com/ispc-lab/BMD.

Keywords: Domain Adaptation, Source-free, Class-balanced Sampling,
Multicentric Prototype Pseudo-labeling

1 Introduction

Deep neural networks have achieved remarkable success in various visual tasks
at the expense of massive data collections and annotations [10,17,12,57,4] but

https://github.com/ispc-lab/BMD
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Fig. 1. Comparison between existing prototype strategy (left) and our BMD prototype
strategy (right). During SFDA model adaptation, existing prototype strategies are
monocentric and class-biased, which often lead to negative transfers for those hard-
transfer instances, while our class-balanced multicentric dynamic prototype (BMD)
strategy can effectively address the issue.

still often generalized poorly to the unseen new domains due to the inter-domain
discrepancy. To reduce the annotation burden when dealing with new domain
data, unsupervised domain adaptation (UDA) methods have been developed by
aligning the well-labeled source data and the unlabeled target data distribution,
which have achieved promising results in object recognition [52,13,46,63], object
detection [5,55,37], and semantic segmentation [64,65,61,60,14].

However, most existing UDA methods require to access the source and target
data simultaneously during model adaptation, which is often impractical due to
the concerns about data privacy, data security and data transmission efficiency.
Therefore, current frontiers have emerged a few works [24,44,29,26,27,59,58,1]
seeking to realize source-free domain adaptation (SFDA), where only a source
pretrained model is available. To make up for the absence of source data, existing
methods can be divided into two main categories: GAN based methods [24,44,29]
and self-training based methods [26,27,59,58,1]. For those self-training methods,
pseudo-labeling strategies based on feature prototypes are popular and offer
promising results. [26,27,1] introduce a weighted k-means clustering based fea-
ture prototype generation strategy. However, existing strategies are implemented
with instance-level prediction results, which are category-biased and tend to in-
troducing noisy labels, since the visual (e.g. scale, appearance, etc) domain gaps
between source and target are usually different between categories [64,65]. In
addition, we argue that due to the domain gap, a rough monocentric feature
prototype for each category could not effectively represent the target data and
would introduce negative transfer, especially for those hard-transfer data.

In light of the above issues, in this paper, we focus on existing self-training
based SFDAmethods and propose a general class-BalancedMulticentricDynamic
(BMD) prototype strategy. Specifically, to avoid the gradual dominance of easy-
transfer classes on prototype generation, for each target category we first intro-
duce a novel inter-class balanced sampling strategy to aggregate the potential
and representative data samples. Even though we can obtain category balanced
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feature prototype with above strategy, it is still inferior for those hard transfer
data samples. Therefore, we then introduce an intra-class multicentric cluster-
ing strategy to generate multiple feature prototypes for each category to assign
more robust and precise pseudo labels. In addition, we conjecture that existing
strategies that update the pseudo label bank at a fixed training period, may
not effectively exploit the dynamic information of network optimization. Thus,
we further introduce a dynamic pseudo-labeling strategy to incorporate network
update information during model adaptation. We compare our BMD strategy
with existing methods in Fig. 1.

To evaluate the effectiveness and generality of our model agnostic strategy, we
have applied our strategy to four existing representative methods (SHOT [26],
SHOT++ [27], G-SFDA [59] and NRC [58]). Extensive experiments on four
benchmark datasets (VisDA-C [40], Office-Home [53], Office-31 [45] and PointDA-
10 [43]) show that our BMD strategy significantly improves these methods to
yield new state-of-the-art performance.

Our contribution can be summarized as follows:

– We propose a general class-balanced multicentric dynamic prototype strat-
egy BMD for SFDA tasks that is model-agnostic and can be applied to
existing self-training based SFDA methods.

– To avoid the gradual dominance of easy-transfer classes on prototype gener-
ation, we propose a novel inter-class balanced sampling strategy to aggregate
potential and representative data samples.

– To reduce the noisy labels for those hard-transfer data samples, we introduce
an intra-class multicentric prototype strategy for each category to assign
more robust and precise pseudo labels.

– We conducted extensive experiments to evaluate the effectiveness of our
BMD strategy. The results show that the proposed strategy can significantly
boost existing methods, e.g., improving SHOT [26] from 82.9% to 85.8% on
VisDA-C and NRC [58] from 52.6% to 57.0% on PointDA-10.

2 Related Work

2.1 Unsupervised Domain Adaptation

In pursuit of transfering knowledge from a different but well-labeled source
dataset to an unlabeled but relevant target dataset, unsupervised domain adap-
tation (UDA) has received considerable interests in recent years. Existing meth-
ods can be broadly classified into three categories: discrepancy based, reconstruc-
tion based, and adversarial based. Discrepancy based methods usually introduce
a divergence criterion to measure the distance between the source and target data
distributions, and then achieve model adaptation by minimizing the correspond-
ing criterion, e.g. the maximum mean discrepancy (MMD) [31], the wasserstein
metric [6], and the contrastive domain discrepancy [21]. Reconstruction based
methods [15,2,35] typically introduce an auxiliary image reconstruction task that
guides the network to extract domain-invariant features for model adaptation.
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Inspired by GAN, there are also approaches [13,30,47] that introduce domain
discriminators to learn domain-invariant features in an adversarial manner. De-
spite of effectiveness, these methods require access to the source data, which is
often impractical due to data privacy or security concerns.

2.2 Source-free Domain Adaptation

Currently, there have been several works [24,44,29,26,27,59,58,1] attempting to
realize source-free domain adaptation, where only a pre-trained source model
and unlabeled target data are available. In these approaches, [24,44,29] intro-
duce generative networks to generate pseudo-data similar to sources or targets,
which are difficult and inefficient. Instead, self-training based on feature proto-
type could be a promising direction [26,27,49,1]. The most relevant papers to our
BMD are SHOT [26] and SHOT++ [27], which introduce a weighted k-means
clustering algorithm to generate feature prototype and then assign pseudo-labels
based on prototype matching. However, their feature prototype generation pro-
cess is category-biased and prone to introducing negative transfer for those hard-
transfer data. In contrast, our BMD can obtain more robust and stable feature
prototypes by introducing inter-class balanced sampling and intra-class multi-
centric prototypes generation. Our strategy may share some similarities in other
fields approaches [16,41]. However, our methods are fundamentally different. Un-
like these works which apply the labeled data to train a network to recognize
the multimodal classes by introducing the multicentric prototypes, we explore
the multicentric idea to assign preciser pseudo labels for those unlabeled data,
especially those hard-transfer data, to achieve source-free model adaptation.

2.3 Imbalanced Learning

Massive studies [62] have been proposed for long-tail vision tasks to maintain
diversity and balance predictions for minority categories. One straightforward
idea is to perform category-balanced sampling [48,20,54] using prior knowledge
about the category distributions. However, these strategies are not applicable to
the UDA task because we do not have access to knowledge of the target distri-
bution. For DA methods, [7,8] introduce a nuclear-norm regularization item to
achieve balanced learning, and [64,65] design a self-training framework to realize
class-balance segmentation adaptation. In the absence of labeled data, Deep-
Cluster [3], one of the best self-supervised and class-balanced learning methods,
generates pseudo-labels via k-means clustering and utilizes them to re-train the
current model. Considering domain shift and absence of source data and leverag-
ing advantages of existing methods, we design a novel and general class-balanced
multicentric prototype strategy for SFDA.

3 Preliminary

In this paper, we consider the K-way object (2D images and 3D point cloud)
recognition task. In the conventional UDA task, we are given two domain data,
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the labeled source domain with ns samples as Ds = {(xi
s, y

i
s)}

ns
i=1 where xi

s ∈ Xs,
yis ∈ Ys and yis is the corresponding label of data sample xi

s, and the unlabeled
target domain with nt samples as Dt = {(xi

t)}
nt
i=1 where xi

t ∈ Xt. The goal of
UDA is to predict the labels {yit}

nt
i=1 of Dt where yit ∈ Yt with the well-labeled

source domain Ds. It is commonly assumed that the data space of Ds and Dt

are distinct but label space are identical, i.e., Xs ̸= Xt, Ys = Yt. But under
the SFDA setting, the Ds is inaccessible and it is replaced by the source model.
Assume that the source model fs has been well-trained and it consists of two
parts: a feature extractor gs: Xs → Rd and a classifier hs: Rd → RK , i.e.,
fs(x) = hs(gs(x)). Here d is the dimension of the extracted feature. Therefore,
the goal for SFDA is to learn the target model ft: Xt → Yt with only access to
the source model fs and the unlabeled target domain Dt.

To transfer the knowledge from the pre-trained source model, feature proto-
type based pseudo-labeling strategy is a promising direction. Inspired by Deep-
Cluster [3], existing feature prototype based pseudo-labeling strategies [26,27,1]
first attain the prototype ck for each class similar to weighted k-means clustering
as follows:

ck =

∑
xt∈Xt

δk(f̂t(xt))ĝt(xt)∑
xt∈Xt

δk(f̂t(xt))
, (1)

where f̂t = ĝt ◦ ĥt denotes the previously learned target model and δk(f̂t(xt))
denotes the softmax probability of target instance xt belonging to the k-th class.
Then one can obtain the pseudo label ŷt of target xt via the nearest prototype
classifier as:

ŷt = argmin
k

Df (ĝt(xt), ck), (2)

where Df (a, b) measures the distance between a and b. One may iterate above
process to obtain more stable prototype and pseudo labels like:

ck =

∑
xt∈Xt

1(ŷt = k) ĝt(xt)∑
xt∈Xt

1(ŷt = k)
,

ŷt = argmin
k

Df (ĝt(xt), ck).

(3)

where 1(·) is an indicator function.Thereafter, based on the obtained pseudo
labels, one can realize self-training based model adaptation with the categorical
cross-entropy (CE) loss as follows:

Lst = −
1

nt

nt∑
i=1

K∑
k=1

1[k=ŷt] log δk(ft(x
i
t))). (4)

4 BMD Strategy

4.1 Inter-class Balanced Prototype

The visual domain gaps between source and target are typically different be-
tween categories, resulting in relatively higher prediction confidence scores for
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Fig. 2. A toy example compares the existing class-biased strategy (left) with BMD
class-balanced strategy (right). To better understand the difference, we illustrate the
decision direction of these two sampling strategies. In the presence of large domain
gaps, existing strategy is prone to aggregating class-biased data instances.

those easy-transfer classes in target domain [64,65]. Therefore, we conjecture
that existing strategies are category-biased and tend to generating noisy labels
for those hard data. To avoid the gradual dominance of easy-transfer classes
on prototype generation, we propose a novel global inter-class balanced sam-
pling strategy to aggregate those potential data samples. Different from existing
methods that decide whether to sample instances based on the instance-level
prediction results, we formulate this as a multiple instance learning (MIL) prob-
lem [11,25]. In MIL, individual samples are grouped in two bags, i.e., positive
and negative bags. A positive bag contains at least one positive instance and a
negative bag contains no positive instance. For a specific class k, we treat the
target domain Dt as a combination of a positive bag and a negative bag, where
each data instance xt is represented by a feature vector ĝt(xt) and a classifica-

tion result p(xt) = δ(f̂t(xt)). Thus, the feature prototype for the k-th class is a
representative of the positive bag. Since the top instances are most likely to be
positive, we then aggregate the top-M δk(f̂t(xt)) scores represented instances
along all target domain Dt for the k-th class as potential instances. After that
we can average them to build the class-balanced feature prototype ck and assign
the pseudo label ŷt as:

Mk = argmax
xt∈Xt

|Mk|=M

δk(f̂t(xt)),

ck =
1

M

∑
i∈Mk

ĝt(x
i
t),

ŷt = argmin
k

Df (ĝt(xt), ck).

(5)

where M = max{1, ⌊ nt

r×K ⌋}, r is a hyperparameter denoting the top-M selection
ratio, and K is the number of object classes in the target domain. For simplicity,
we refer to this class-balanced sampling based feature prototype pseudo-labeling
strategy as BP. It is worth noting that our BP strategy is not based on lo-
cal instance-level prediction results to decide whether to sample instances, but
rather to select the top-M most likely instances to construct feature prototypes
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from a global perspective. Therefore, we argue that our strategy is inter-class
balanced. We compare our class-balanced strategy with existing class-biased
strategy in Fig. 2 with a toy example. We may iterate this process like existing
methods to obtain more stable prototypes and pseudo labels as:

Mk = argmax
xt∈Xt

|Mk|=M

exp (ĝt(xt) · ck)∑K
j=1 exp (ĝt(xt) · cj)

,

ck =
1

M

∑
i∈Mk

ĝt(x
i
t),

ŷt = argmin
k

Df (ĝt(xt), ck).

(6)

4.2 Intra-class Multicentric Prototype

Even though with the above strategy we can obtain class-balanced feature proto-
type and assign more robust pseudo labels, we found that a coarse monocentric
feature prototype may be not effectively represent those ambiguous data and
even introduce negative transfer. In contrast to [60] that introduces uncertainty
for pseudo labels to mitigate the negative transfer caused by monocentric pro-
totype, in this paper, we aim to assign more robust and precise label for each
instance. Therefore, we propose an intra-class multicentric prototype strategy
for each category to obtain more robust and precise pseudo label. We compare
our multicentric strategy with existing monocentric strategy in Fig. 3.

Clustering is an essential data analysis technique for grouping unlabeled data
in unsupervised learning [18]. In our implementations, assume the sampled data
instances for k-th class as X k

t , the predefined multiple feature prototype number
is S. We represent each data instance xt as the extracted ĝt(xt), and apply the
classical k-means [33] algorithm to realize intra-class clustering. Then for sim-
plicity, we directly denote the S cluster centroids {cik}Si=1 as intra-class multiple
feature prototypes for the k-th class. After obtaining multiple feature prototypes

a) monocentric prototype strategy b) multicentric prototype strategy

Decision boundary
Class B feature
Class A feature

Class B feature prototype
Class A feature prototype

Fig. 3. Comparison between existing monocentric prototype strategy (left) and our
proposed multicentric prototype strategy (right). We can conclude that with multicen-
tric prototype strategy we would obtain more robust and precise decision boundaries
during pseudo labels generation.



8 Sanqing et al.

for all categories, we can assign the pseudo-labels as follows:

ŷt = argmax
k

max
1≤i≤S

(exp(ĝt(xt) · cik))∑K
j=1 max

1≤i≤S
(exp(ĝt(xt) · cij))

, (7)

where cik is the i-th feature prototype of class k. For simplicity, we refer to this
class-balanced sampling based multicentric pseudo-labeling strategy as BMP.
We may also iterate this process like before to obtain more stable prototype and
pseudo labels as:

Mk = argmax
xt∈Xt

|Mk|=M

max
1≤i≤S

(exp(ĝt(xt) · cik))∑K
j=1 max

1≤i≤S
(exp(ĝt(xt) · cij))

,

{cik}Si=1 = Kmeans
n∈Mk

(ĝt(x
n
t )),

ŷt = argmax
k

max
1≤i≤S

(exp(ĝt(xt) · cik))∑K
j=1 max

1≤i≤S
(exp(ĝt(xt) · cij))

.

(8)

4.3 Dynamic Pseudo Label

Existing strategies update the pseudo label bank at a fixed training period, which
may not effectively exploit the updated network during optimization. Thus, we
further explore a dynamic pseudo-labeling strategy to improve the target model
performance. At the beginning of each epoch, we first update the multiple feature
prototype for each class and the corresponding pseudo labels for each instance
from a global perspective. And then, for each iteration step we update the fea-
ture prototypes as the exponentially moving average (EMA) [50] of the cluster
centroids in mini-batches. Specifically, we obtain the dynamic pseudo labels ŷdt
and update the feature prototypes as follows:

ŷdt =

max
1≤i≤S

(exp(ĝt(xt) · cik))∑K
j=1 max

1≤i≤S
(exp(ĝt(xt) · cij))

,

pik(x
n
t ) =

exp(ĝt(x
n
t ) · cik)∑K

j=1

∑S
s=1 exp(ĝt(x

n
t ) · csj)

,

ĉik =

∑N
n=1 ĝt(x

n
t ) · pik(xn

t )∑N
n=1 p

i
k(x

n
t )

,

cik ← λcik + (1− λ)ĉik.

(9)

where pik(xt) denotes the similarity of instance xt with existing feature proto-
types, ĉik represents the i-th feature prototype of class k calculated with current
training minibatch, and λ is the momentum coefficient of EMA which we set to
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0.9999. With the obtained dynamic pseudo labels ŷdt , instead of using a standard
cross-entropy loss, following [60], we adopt a more robust variant, symmetric
cross-entropy loss (SCE) [56] to further enhance the noise-tolerance. Formally,
the dynamic pseudo label loss is defined as follows:

Ldym = − 1

N

N∑
i=1

K∑
k=1

ŷdt,k log δk(ft(x
i
t)))−

1

N

N∑
i=1

K∑
k=1

δk(ft(x
i
t))) log ŷ

d
t,k,

(10)

However, the dynamic pseudo label did not take into account the potential for
a large domain shift and may lead to less informative class prototypes, especially
when many samples are misclassified, as it is updated based on the features of
the local minibatch. Therefore, we combine the static pseudo label based self-
training loss with the dynamic loss to achieve more stable results as :

Lbmd = αLst + βLdym. (11)

where α and β are hyper-parameters to balance the two losses. Overall, we denote
the combination of the class-balanced multicentric pseudo-labeling and dynamic
pseudo labeling strategies as BMD.

5 Experiment

5.1 Experimental Setup

We conduct extensive experiments to evaluate the effectiveness of our BMD
strategy covering several popular benchmarks and representative methods below.

Datasets We evaluate our BMD strategy on three 2D image and one 3D point
cloud recognition benchmarks. Office-31 [45] is a standard benchmark that con-
tains three domains (Amazon (A), DSLR (D), and Webcam (W)) and each do-
mains contains 31 object classes under the office environment.Office-Home [53]
is a challenging medium-sized benchmark that contains 4 domains (Real (Rw),
Clipart (Cl), Art (Ar) and Product (Pr)) with 65 classes and a total of 15,500
images. VisDA-C [40] is a more challenging large-scale benchmark, which focus
on 12-class synthetic-to-real object recognition tasks. Its source domain contains
about 152k synthetic 3D object images while the target domain consists of 55k
real object images sampled from Microsoft CoCo [28]. PointDA-10 [43] is the
first 3D dataset designed for domain adaptation on point cloud, which contains
three domains (ModelNet-10, ShapeNet-10 and ScanNet-10). There are about
27.7k training and 5.1k testing frame point clouds.



10 Sanqing et al.

Table 1. Classification accuracies (%) on small-sized Office-31 dataset with ResNet-50
as backbone. SF denotes source-free.

Method Venue SF A→D A→W D→A D→W W→A W→D Avg

DANN [13] JMLR 2016 ✗ 79.7 82.0 68.2 96.9 67.4 99.1 82.2

CDAN [30] NeurIPS 2018 ✗ 92.9 94.1 71.0 98.6 69.3 100.0 87.7

MDD [63] ICML 2019 ✗ 93.5 94.5 74.6 98.4 72.2 100.0 88.9

GVB-GD [9] CVPR 2020 ✗ 95.0 94.8 73.4 98.7 73.7 100.0 89.3

SHOT [26] ICML 2020
✓

94.0 90.1 74.7 98.4 74.3 99.9 88.6
SHOT w/ BMD ours 95.6 93.0 75.6 97.5 75.0 99.8 89.4

SHOT++ [27] TPAMI 2021
✓

94.3 90.4 76.2 98.7 75.8 99.9 89.2
SHOT++ w/ BMD ours 96.2 94.2 76.0 98.0 76.0 100.0 90.1

Table 2. Accuracies (%) on medium-sized Office-Home dataset with ResNet-50 as
backbone.[* using our reproduced performance]

Methods Venue SFAr→ Cl Ar→Pr Ar→ReCl→Ar Cl→Pr Cl→Re Pr→Ar Pr→Cl Pr→ReRe→ArRe→Cl Re→PrAvg

CDAN [30] NeurIPS 2018 ✗ 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

CDAN+BNM [7] CVPR 2020 ✗ 56.2 73.7 79.0 63.1 73.6 74.0 62.4 54.8 80.7 72.4 58.9 83.5 69.4

GVB-GD [9] CVPR 2020 ✗ 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4

Fixbi [36] CVPR 2021 ✗ 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7

SHOT* [26] ICML 2020
✓

54.3 78.1 80.3 68.3 79.1 80.1 68.7 54.1 82.0 73.1 57.0 83.0 71.5
SHOT w/ BMD ours 55.9 77.8 80.8 69.7 79.3 79.9 69.6 56.6 82.6 73.3 59.5 85.1 72.5

G-SFDA* [59] ICCV 2021
✓

55.2 77.6 80.1 67.7 75.6 79.1 66.3 54.8 81.6 72.5 58.1 84.0 71.0
G-SFDA w/ BMD ours 56.0 78.2 80.4 69.1 79.0 79.4 67.5 55.8 82.4 73.7 58.7 83.8 72.0

SHOT++* [27] TPAMI 2021
✓

55.9 79.1 81.8 69.9 81.3 81.0 70.3 56.2 83.6 72.9 59.0 84.3 72.9
SHOT++ w/ BMD ours 58.1 79.7 82.6 69.3 81.0 80.7 70.8 57.6 83.6 74.0 60.0 85.9 73.6

Baselines We inject our BMD strategy to four existing SFDA methods to verify
its versatility. SHOT [26] proposes to freeze the source classifier and fine-tunes
the source features extraction module by maximizing the mutual information and
feature prototype based pseudo labels. SHOT++ [27] extends the SHOT [26] by
introducing self-supervised learning for fine-tuning the feature extraction module
and employing semi-supervised learning strategy to further improve the target
domain performance. Different from SHOT and SHOT++ that introduce pseudo
labeling strategy to realize model adaptation, G-SFDA [59] and NRC [58]
explore the local neighborhood structure of the target data in feature space
to realize model adaptation. Although these two approaches do not introduce
pseudo labeling, we find that our BMD strategy still fits seamlessly with these
methods and consistently improves their performance.

Implementation Details For a fair comparison, we adopt the same network ar-
chitecture and training recipe with baselines. Specifically, we adopt the ResNet-
50 [17] pretrained on ImageNet [10] as backbone for Office-31 and Office-Home
benchmarks, and the ResNet-101 for VisDA-C benchmark. As for PointDA-10,
we utilize the PointNet [42] with local node aggregation network proposed in [43]
as feature extraction backbone. To prepare the pretrained source model, follow-
ing SHOT and NRC, we utilize the label smoothing [34] to increase the discrim-
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inability of the source model and facilitate the following target data alignment.
During target model adaptation, to achieve source and target domain alignment,
we fix the target classifier ht = hs and update only the target feature extractor
gt initialized from gs. Following previous methods, we apply the SGD optimizer
with momentum 0.9 and the Adam optimizer for PointDA-10. The batch size is
set to 64 for all benchmark datasets. We set the learning rate to 1e-2 for Office-31
and OfficeHome, 1e-3 for VisDA-C, and 1e-6 for PointDA-10. We train 30 epochs
for all 2D image datasets and 50 epochs for PointDA. We set the hyperparamter
r to 3 for all datasets, and S = 4 for Office-Home and VisDA-C, S = 2 for
PointDA-10 and Office-31. We set α = 2 and β = 0.5 for VisDA-C, α = 0.3 and
β = 0.1 for Office-31 and Office-Home, and α = 1.0 and β = 0.1 PointDA-10.
All experiments are conducted on a RTX-3090 GPU with PyTorch-1.7.

5.2 Results

2D Image Recognition We first evaluate the effectiveness of our strategy
with existing methods on three 2D image recognition datasets. The results are
summarized in Table 1-3, the top part illustrates results for the traditional UDA
methods with access to source data during model adaptation, and the bottom
part presents results for the SFDA methods. As shown in Table 1, on Office-31,
our BMD strategy can consistently improve SHOT and SHOT++ to yield new
state-of-the-art performance, especially on the challenging A→ D task, our BMD
strategy can improve SHOT from 90.1% to 93.0% and SHOT++ from 90.4% to
94.2 %, respectively. As excepted in Table 2, on the medium-sizedOffice-Home,
our BMD strategy can also consistently improve existing state-of-the-art meth-
ods. Specifically, by injecting BMD strategy, we can improve SHOT from 71.5%
to 72.5%, G-SFDA from 71.0% to 72.0%, SHOT++ from 72.9% to 73.6%. For
the large-scale synthetic-to-real VisDA-C dataset in Table 3, our BMD strategy
can also significantly improve existing methods by a large margin, especially,
we can improve SHOT from 82.9% to 85.7%, G-SFDA from 84.8% to 86.5%,
NRC from 85.9% to 86.9% and SHOT++ from 87.3% to 88.7%. With our BMD
strategy, SHOT++ can even achieve a performance comparable to the target su-
pervised approach (88.7% vs 89.6%). In addition, on VisDA-C, we can find that
with our strategy above methods can achieve more class-balanced performance.
Especially for the challenging class ‘truck’, we can significantly improve SHOT
from 58.2% to 70.8%, G-SFDA from 44.8% to 59.7%, and SHOT++ from 28.8%
to 45.9%. We also report the standard deviation σ of the accuracy achieved by
our method. The σ of SHOT w/BMD on Office-31 is 0.07, while the σ of SHOT
w/BMD on VisDA-C is 0.11, showing that the improvement of using BMD in
SHOT is significant. Beyond closet-set SFDA, we further evaluate BMD with
SHOT on two other DA scenarios, multi-source [38] and multi-target [39]. Due
to space limitations, we will present these experiments in the Appendix.

3D Point Cloud Recognition In addition to 2D images, to verify the gen-
erality of our BMD strategy, we also conducted experiments on the 3D point



12 Sanqing et al.

Table 3. Per-class accuracy (%) on large-scale VisDA-C validation set with ResNet-
101 as backbone.

Methods Venue SF plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg

CDAN [30] NeurIPS 2018 ✗ 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9

SWD [22] CVPR 2019 ✗ 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4

MCC [19] ECCV 2020 ✗ 88.7 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8

STAR [32] CVPR 2020 ✗ 95.0 84.0 84.6 73.0 91.6 91.8 85.9 78.4 94.4 84.7 87.0 42.2 82.7

FixBi [36] CVPR 2021 ✗ 96.1 87.8 90.5 90.3 96.8 95.3 92.8 88.7 97.2 94.2 90.9 25.7 87.2

SHOT [26] ICML 2020
✓

94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
SHOT w/ BMD ours 96.2 87.8 81.4 61.7 95.0 97.5 87.9 82.9 92.6 88.8 87.4 70.8 85.8

G-SFDA [59] ICCV 2021
✓

95.9 88.1 85.4 72.5 96.1 93.7 88.5 80.6 92.3 92.2 87.6 44.8 84.8
G-SFDA w/ BMD ours 95.9 87.5 83.9 75.7 96.5 96.6 91.4 81.8 95.9 88.4 85.1 59.7 86.5

NRC [58] NeurIPS 2021
✓

96.8 91.3 82.4 62.4 96.2 95.9 86.1 80.6 94.8 94.1 90.4 59.7 85.9
NRC w/ BMD ours 96.7 87.2 85.0 75.6 96.8 97.0 91.6 84.9 94.7 89.0 88.6 55.6 86.9

SHOT++ [27] TPAMI 2021
✓

97.7 88.4 90.2 86.3 97.9 98.6 92.9 84.1 97.1 92.2 93.6 28.8 87.3
SHOT++ w/ BMD ours 96.9 87.8 90.1 91.3 97.8 97.8 90.6 84.4 96.9 94.3 90.9 45.9 88.7

Target-Supervised 97.0 86.6 84.3 88.7 96.3 94.4 92.0 89.4 95.5 91.8 90.7 68.7 89.6

Table 4. Accuracies (%) on PointDA-10 dataset with PointNet [42] as backbone.

Method Venue SF M→SC M→SH SC→M SC→SH SH→M SH→SC Avg.

ADDA [52] CVPR 2017 ✗ 30.5 61.0 48.9 51.1 40.4 29.3 43.5

MCD [46] CVPR 2018 ✗ 31.0 62.0 46.8 59.3 41.4 31.3 45.3

PointDAN [43] NeurIPS 2019 ✗ 33.0 64.2 49.1 64.1 47.6 33.9 48.7

VDM [51] Arxiv 2021 ✓ 30.9 58.4 45.3 61.8 61.0 40.8 49.7

SHOT [26] ICML 2020
✓

31.8 62.1 67.6 56.9 75.8 24.3 53.1
SHOT w/ BMD ours 32.8 66.1 75.0 62.0 81.5 24.4 57.0

NRC [58] NeurIPS 2021
✓

25.8 64.8 70.1 68.1 59.8 26.9 52.6
NRC w/ BMD ours 33.8 66.7 70.8 62.6 83.4 24.8 57.0

cloud PointDA-10 dataset. As shown in Table 4, our BMD strategy can also
significantly improve existing methods by a large margin. Specifically, by inject-
ing BMD strategy, we can improve SHOT from 53.1% to 57.0% and NRC from
52.6% to 57.0%. Especially on the challenging task, SH → M, we can improve
SHOT from 75.8% to 81.5% and NRC from 59.8% to 83.4%.

5.3 Performance Analysis

Ablation Study As we presented before, the core components of our BMD
strategy are inter-class balanced sampling and intra-class multicentric proto-
type based pseudo label generation. In order to incorporate the network dy-
namic optimization information, we further introduce the EMA based dynamic
pseudo label strategy. To study the advantage of each part of our BMD strat-
egy, we conduct the ablation study on Office-Home, VisDA-C and PointDA-10
with SHOT, the results are summarized in Table 5. To verify the superiority of
our BMD strategy, we also introduce two existing strategies, the naive argmax
based pseudo label [23] strategy, and the monocentric prototype based pseudo
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Table 5. Ablation study on three UDA
datasets.

Methods/Datasets Office-Home VisDA-C PointDA-10

Source-model 59.6 46.6 39.4
SHOT w/ naive PL [23] 70.3 82.9 51.0
SHOT w/ mono PL [26] 71.5 82.9 53.1
SHOT w/ BP (ours) 72.0 83.8 55.0
SHOT w/ BMP (ours) 72.5 84.7 56.4
SHOT w/ BMD (ours) 72.5 85.7 57.0

Table 6. Statistics of class-wise perfor-
mance on VisDA-C.

Methods Acc avg µ ↑ Acc std σ ↓ Acc cv cv ↓

SHOT [26] 82.9 12.857 0.155
SHOT w/ BMD 85.8 10.127 0.118

G-SFDA [59] 84.8 14.279 0.168
G-SFDA w/ BMD 86.5 10.766 0.124

SHOT++ [27] 87.3 19.027 0.218
SHOT++ w/ BMD 88.7 14.146 0.159

label [26] strategy. As expected, the results show that the simple BP strategy
can outperform existing strategies, which indicates the importance of the class-
balanced sampling strategy for pseudo label generation. When we incorporate
the intra-class multicentric prototype strategy with BP strategy, i.e. the BMP,
the performance is further significantly boosted. We attribute this to the fact
that the MP strategy introduce more fine-grained feature prototypes for each
class, which allows the model to assign more accurate pseudo-labels for those
hard-transfer data. As for the dynamic strategy, we find that it is not as effective
as BP and BMP on the Office-Home and PointDA datasets. We suspect it may
be due to the relatively small size of the datasets, thus the EMA-based dynamic
feature prototypes cannot effectively utilize the information during training. Due
to space limitations, we presented more ablation experiments in the Appendix.

Does our strategy really achieve more class-balanced results? To ver-
ify whether our BMD strategy is really helpful in achieving the class-balanced
results, in this part, we introduce the coefficient of variation (also known as the
relative standard deviation) cv as metric to evaluate the inter-class balance per-
formance, which is a standardized measure of dispersion of a probability distri-
bution or frequency distribution. Formally, the coefficient of variation is defined
as cv = σ

µ , where σ and µ are the standard deviation and expected mean of the
data distribution, respectively. We conduct experiments on VisDA-C dataset, the
results are summarized in Table 6. As shown in this table, for all methods by in-
jecting our BMD strategy we can arrive higher accuracy mean µ, lower standard
deviation σ and lower coefficient of variation cv, which demonstrates that our
BMD strategy indeed facilitates existing methods to achieve more class-balanced
performance. To verify the robustness, we also conducted the cv experiments on
PointDA, on task SC→M, SHOT gets 0.291, SHOT w/BMD is 0.186; NRC gets
0.464, NRC w/BMD is 0.301. These results further demonstrate that our BMD
strategy can improve the existing methods to achieve class-balanced results.

Visualization To demonstrate the superiority of our BMD strategy, we present
the t-SNE feature and confusion matrix on PointDA-10 (SC→M), and the pseudo
and predicted label accuracy curves on VisDA-C in Fig. 4. From Fig. 4a, we
can see that after model adaptation by SHOT w/ BMD, the target features
are more compactly clustered. The confusion matrix in Fig. 4b demonstrates
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c

pseudo label accuracy

predicted label accuracy

a

 t-SNE: source-only t-SNE: SHOT t-SNE: SHOT w/ BMD 

b

Confusion Matrix: source-only Confusion Matrix: SHOT Confusion Matrix: SHOT w/BMD

Fig. 4. a: The t-SNE visualization of target features for source model, SHOT, and
SHOT w/ BMD on PointDA-10 (SC→M). b: The Confusion Matrix visualization for
source model, SHOT, and SHOT w/BMD on PointDA-10 (SC→M). c: The pseudo
and predicted label accuracy curves for SHOT, and SHOT w/BMD on VisDA-C.

that our BMD strategy can achieve more class-balanced accuracy compared to
the vanilla SHOT. In particular, when there is severe class bias in the source
model, e.g., for the hard-transfer ‘sofa’ class, SHOT cannot achieve good model
adaptation due to the severe domain gap, while BMD strategy can overcome this
well by our inter-class balanced sampling. The accuracy curves in Fig. 4c further
support that our BMD strategy can facilitate existing methods to achieve more
superior pseudo labels and predicted labels during model adaptation.

6 Conclusion

In this paper, we present a general class-balanced multicentric dynamic (BMD)
prototype strategy for source-free domain adaptation, which is model agnostic
and can be applied to existing self-training based SFDA methods. Specifically,
our BMD strategy consists of a novel inter-class balanced sampling strategy,
an intra-class multicentric prototype strategy, and a dynamic feature prototype
based pseudo-labeling strategy. We have injected our strategy into four exist-
ing representative methods and conducted experiments on both 2D images and
3D point cloud datasets. The results demonstrate that our BMD strategy can
consistently and significantly boost existing methods to yield new state-of-the-
art performance. For future work, we will extend our BMD strategy to those
source-free dense prediction tasks.
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