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Our supplementary material consists of:

1. Implementation Details.
2. Additional Quantitative Results.

1 Implementation Details

Here, we provide more details related to the (i) long memory module and (ii)
temporal boundary localization module of our TallFormer model.

1.1 Long Memory Module

The implementation details of the proposed Long Memory Module (LMM) and
Temporal Consistency Module (TCM) are as shown in Alg. 1. The inputs are
first participate into Nc clips. Among these clips, we sample Ns clips to be
processed by the Short-term Transformer Encoder and the remaining Nc − Ns

clips by LMM. The clip features extracted by the encoder is also used to update
the LMM. All the clips features are fed to the TCM to generate more consistent
features. The output features of TCM are the input to the temporal boundary
localization module.

1.2 Temporal Boundary-Localization Module

Given the refined features fr ∈ RCc×L, the Temporal Boundary-Localization
Module (TBLM) aims to produce the action boundaries and categories for each
action instance. We use different TBLMs for THUMOS14 [2] and ActivityNet [1].

THUMOS14. The detailed architecture is shown in Fig. 1. The TBLM is
composed of a Feature-Pyramid Network (FPN) and a Detection Head. The De-
tection Head is taken from DaoTAD [6]. In the FPN, the features are downsam-
pled (bottom to up) using 1D kernel-3, stride-2 convolutions and are upsampled
(up to bottom) by linear interpolation along the temporal dimension. We use
Focal loss [4] for the sigmoid-activated classification branch and DIoU loss [7]
for the regression branch. The weights are 1 for both losses. We refer readers to
[6] for more details.
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Algorithm 1 Pseudocode of short-term feature extraction and feature sampling
from long-term memory.

1 # encoder: short-term Transformer encoder.

2 # clips: video clips (N_c x L_c x H x W x 3).

3 # long_memory: the pre-extracted features for this video (N_c x L_f x

C_f).

4 # r: sampling rate (float).

5

6 # sample clips processed by encoder

7 sampled_idx = uniform_sample(N_c, r)

8 remaining_idx = [idx for idx in range(N_c) if idx not in sampled_idx]

9 sampled_clips = clips[sampled_idx]

10

11 # Short-term Transformer Encoder

12 sampled_features = encoder.forward(sampled_clips) # shape: [N_s, L_f,

C_f]

13

14 # Long-term Memory Module

15 mem_features = long_memory[remaining_idx]. # shape: [N_c-N_s, L_f,

C_f]

16 long_memory[sampled_idx] = sampled_features.detach()

17

18 # Temporal Consistent Module

19 ## gather features

20 features = zeros(N_c,*sampled_features.shape[1:])

21 features[sampled_idx] = sampled_features

22 features[remaining_idx] = mem_features

23 features = features.reshape(N_c*L_f, C_f) #shape: [N_c*L_f, C_f]

24 ## refine features

25 for i in range(L):

26 features = TransformerLayer(features) #shape: [N_c*L_f, C_f]

ActivityNet-1.3. The detailed architecture is shown in Fig. 2. We use the
same Long Memory Module, Temporal Consistency Module, Feature Pyramid
Network as in THUMOS14. We adopt the Detection Head design from AFSD
[3]. Additionally, after the Temporal Consistency Module, we also add a video-
level classifier composed of a global average pooling layer, dropout layer with
drop-rate 0.5 and a linear layer with a dimensionality equal to the number of
action classes. AFSD Detection Head is a two-stage detector. First, it uses a
Basic Prediction Module to predict the coarse action boundaries and action-
agnostic classes (background or not). Then a Saliency-based Refinement Module
is used to refine the predicted boundaries and action-agnostic classes. Finally, we
assign each predicted action proposal with the action category predicted by the
video-level classifier. We use Cross-entropy loss for video-level classifier, Focal
loss [4] for classification branches in the detection head, tIoU loss [3] for the
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Fig. 1: Network structure for THUMOS14.
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Fig. 2: Network structure for ActivityNet-1.3. The same Long Memory Module,
Temporal Consistency Module and Feature Pyramid Network are used as in
THUMOS14.

regression of Basic Prediction Module and L1 loss for the boundary refinement
in the Saliency-based Prediction Module. The weights are 1 for all the losses. We
refer the readers to [3] for more specific details related to the Detection Head.

2 Additional Results

2.1 Importance of Temporal Consistency Module

In addition to the quantitative results in the main paper, we visualize the features
before and after Temporal Consistency Module (TCM) as in Fig. we extracted
four sets of features: features from short-term feature extractor (1) before, and
(2) after the TCM, and features from the Long Memory Module (3) before, and
(4) after the TCM. We then applied PCA and plotted the first two principal
components as shown Fig. 3. We observe that the features from the short-term
feature extractor and long-term memory are more similar after the TCM than
they were before the TCM. This suggests that TCM effectively reduces the
inconsistency between features from the short-term feature extractor and long
memory module.
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Fig. 3: Network structure for THUMOS14.

Table 1: Ablating different short-term transformer encoders within our
TallFormer framework on THUMOS14 [2].

Transformer Encoder mAP(%)

0.3 0.4 0.5 0.6 0.7 Avg.

Swin-T [5] 72.7 69.0 60.8 48.3 34.3 57.0
Swin-S [5] 74.9 70.3 62.1 48.9 34.3 58.1
Swin-B [5] 76.0 71.5 63.2 50.9 34.5 59.2

2.2 Ablating Different Short-term Transformer Encoders

The flexibility of our TallFormer model allows us to use any short-term trans-
former encoder as our clip-level backbone. To demonstrate TallFormer’s gen-
eralization with different backbones, we experiment with different variations of
Swin Transformers [5], i.e. Swin-tiny, Swin-small and Swin-base. As shown in
Tab. 1, TallFormer achieves pretty high average mAPs on all the backbones.

2.3 Ablating Temporal Support

Due to long actions (e.g., 30 seconds in length), our model needs to span long
temporal extent. Thus, here, we evaluate TallFormerwhen using different tem-
poral support (measured in seconds). Based on the results in Tab 2, we observe
that longer temporal supports leads to consistently higher average mAP.
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