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Abstract. Recently, MLP-Like networks have been revived for image
recognition. However, whether it is possible to build a generic MLP-
Like architecture on video domain has not been explored, due to com-
plex spatial-temporal modeling with large computation burden. To fill
this gap, we present an efficient self-attention free backbone, namely
MorphMLP, which flexibly leverages the concise Fully-Connected (FC)
layer for video representation learning. Specifically, a MorphMLP block
consists of two key layers in sequence, i.e., MorphFCs and MorphFCt, for
spatial and temporal modeling respectively. MorphFCs can effectively cap-
ture core semantics in each frame, by progressive token interaction along
both height and width dimensions. Alternatively, MorphFCt can adap-
tively learn long-term dependency over frames, by temporal token aggre-
gation on each spatial location. With such multi-dimension and multi-
scale factorization, our MorphMLP block can achieve a great accuracy-
computation balance. Finally, we evaluate our MorphMLP on a number
of popular video benchmarks. Compared with the recent state-of-the-
art models, MorphMLP significantly reduces computation but with bet-
ter accuracy, e.g., MorphMLP-S only uses 50% GFLOPs of VideoSwin-
T but achieves 0.9% top-1 improvement on Kinetics400, under Ima-
geNet1K pretraining. MorphMLP-B only uses 43% GFLOPs of MViT-B
but achieves 2.4% top-1 improvement on SSV2, even though MorphMLP-
B is pretrained on ImageNet1K while MViT-B is pretrained on Ki-
netics400. Moreover, our method adapted to the image domain out-
performs previous SOTA MLP-Like architectures. Code is available at
https://github.com/MTLab/MorphMLP.
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1 Introduction

Since the seminal work of Vision Transformer (ViT) [14], attention-based archi-
tectures have shown the great power in a variety of computer vision tasks, rang-
ing from image domain [40, 13, 65, 73] to video domain [3, 46, 41, 45, 75]. However,
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Fig. 1: Visualization of spa-
tial feature in 3rd layer.

Transformer CNNOurs

Fig. 2: Our MorphMLP vs. other SOTA Trans-
formers and CNNs for video classification. Left:
Kinetics400 [6]; Right: SthV2 [21].

recent studies have demonstrated that, self-attention maybe not critical and it
can be replaced by simple Multiple Layer Perceptron (MLP) [55]. Following this
line, a number of MLP-Like architectures have been developed on image-domain
tasks with promising results [24, 8, 39, 72, 56, 55].

A natural question is that, is it possible to design a generic MLP-Like ar-
chitecture for video domain? Unfortunately, it has not been explored in the
literature, to our best knowledge. Motivated by this fact, we analyze the main
challenges of using MLP on spatial-temporal representation learning. First, from
the spatial perspective, we find that the current MLP-Like models lack progres-
sive understanding of semantic details. This is mainly because that, they often
operate MLP globally on all the tokens in the space, while ignoring hierarchical
learning of visual representation. For illustration, we visualize the feature map
of the well-known MLP-like model (i.e., ViP [24]) in Fig.1. Clearly, it suffers
from difficulty in capturing key details, even in the shallow layer. Hence, how
to discover semantics in each frame is important for designing spatial operation
of MLP-like video backbone. Second, from the temporal perspective, the criti-
cal challenge is to learn long-range dependencies over frames. As shown in Fig.
2, the current video-based transformers can leverage self-attention to achieve
this goal, but with huge computation cost. Hence, how to efficiently replace
self-attention for long-range aggregation is important for designing temporal op-
eration of MLP-like video backbone.

To tackles these challenges, we propose an effective and efficient MLP-like
architecture, namely MorphMLP, for video representation learning. Specifically,
it consists of two key layers, i.e., MorphFCs and MorphFCt, which leverage the con-
cise FC operations on spatial and temporal modeling respectively. Our MorphFCs
can effectively capture core semantics in the space, as shown in Fig. 1. The main
reason is that, we gradually expand the receptive field of visual tokens along
both height and width dimensions as shown in Fig. 3. Such progressive token
design brings two advantages in spatial modeling, compared with the existing
MLP-like models, e.g., ViP [24]. First, it can learn hierarchical token interactions
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Fig. 3: Overview of progressive token construction in MorphMLP.

to discover the discriminative details, by operating FC from small to big spa-
tial regions. Second, such small-to-big token construction can effectively reduce
computation of FC operation for spatial modeling.

Moreover, our MorphFCt can adaptively capture long-range dependencies over
frames. Instead of exhausting token comparison in self-attention, we concatenate
the features of each spatial location across all frames into a temporal chunk. In
this way, each temporal chunk can be processed efficiently by FC, which adap-
tively aggregates token relations in the chunk to model temporal dependencies.
Finally, we build up a MorphMLP block by arranging MorphFCs and MorphFCt in
sequence, and stack these blocks into our generic MorphMLP backbone for video
modeling. On one hand, such hierarchical manner can enlarge the cooperative
power of MorphFCs and MorphFCt to learn complex spatial-temporal interactions
in videos. On the other hand, such multi-scale and multi-dimension factoriza-
tion allows our MorphMLP to achieve a preferable balance between accuracy
and efficiency.

To our best knowledge, we are the first to build efficient MLP-Like architec-
ture for video domain. Compared with the recent state-of-the-art video models,
MorphMLP significantly reduces computation but with better accuracy.

We further apply our architecture to an image classification task on ImageNet-
1K[12] and a semantic segmentation task on ADE20K[76], by simply removing
the temporal dimension of the video. Our method adapted to the image domain
achieves competitive results compared to previous SOTA MLP-Like architec-
tures.

2 Related Work

Self-Attention based backbones. Vision Transformer (ViT) [14] firstly ap-
plies Transformer architecture to a sequence of image tokens. It utilizes multi-
head self-attention to capture long-range dependencies, thus achieving surprising
results on image classification. Following works[40, 68, 13, 73, 65, 51] make a se-
ries of breakthroughs to achieve state-of-art performance on several image tasks,
i.e., semantic segmentation [69, 29] and object detection [5, 77]. In video domain,
a couple of woks [46, 3, 75, 71, 41, 16] explore space-time self-attention to model
spatial-temporal relation and achieve state-of-the-art performance. It seems that
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self-attention based architectures have been gradually dominating the computer
vision community.

In this paper, we aim to explore a simple yet effective self-attention free ar-
chitecture, which builds upon the FC layer to extract features. Our comparisons
show that MorphMLP can achieve competitive results compared with Trans-
formers not only in images but also in videos without self-attention layers.

CNN based backbones. CNNs [26, 25, 49, 47, 70, 34, 33] have dominated vision
tasks in the past few years. In image domain, beginning with AlexNet[31], more
effective and deeper networks, VGG[50], GoogleNet[52], ResNet[23], DenseNet[27]
and EfficentNet[53] are proposed and achieve great success in computer vision.
In the video domain, several works[59, 7, 61, 19] explore how to utilize convo-
lution to learn effective spatial-temporal representation. However, the typical
spatial and temporal convolution are so local that they struggle to capture long-
range information well even if stacked deeper. A series of works propose efficient
modules (e.g., Non-local[66], Double Attention[9]) to enhance local features via
integrating long-range relation. The improvement of these methods can not be
achieved without the supplement of self-attention layers.

In contrast, we propose the MorphMLP, which is self-attention free but not
limited to capture local structure. The FC filter of MorphFC operates from small
to big spatial regions. Meanwhile, the MorphFCt can capture long-term temporal
information.

MLP-Like based backbones. Recent works[56, 39, 55, 72] try to replace self-
attention layer with FC layer to explore the necessity of self-attention in Trans-
former architecture. But they suffer from dense parameters and computation.
[24, 22, 54] apply FC layer along horizontal, vertical, and channel directions, re-
spectively, in order to reduce the number of parameters and computation cost.
However, the parameters of FC layer are still determined by the input reso-
lution, so it is hard to handle different image scales. CycleMLP [8] addresses
such problem with padding, but it only focuses on global information, ignoring
local inductive bias. Meanwhile, the ability of MLP-Like architecture for video
modeling has not been explored.

On the contrary, our MorphMLP can cope with diverse scales via splitting
the sequence of tokens into chunks. Furthermore, it is able to effectively capture
local to global information by gradually expanding chunk length. More impor-
tantly, we are the first to build MLP-Like architecture on videos to explore its
generalization ability as a new paradigm of versatile backbone.

3 Method

In this section, we present our MorphMLP. We first introduce the two critical
components of MorphMLP, MorphFCs and MorphFCt. Then, we illustrate how to
build efficient spatial-temporal MorphMLP block. Finally, the overall spatial-
temporal network architecture and its adaption to image domain are provided.
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Fig. 4: MorphFCs on the spatial dimen-
sion. Note that chunk length L hierar-
chically expands as network goes deeper.

"#$$%&'

"#$$%&'

X

Shared Weight Matrix

# ()&*)+,-%)&

X

. /)0"ℎ2(

Weight Matrix
-!"#$ ∈ /%×'

012312
45312

45312 012312

-(! ∈ /%×%
0

0

Fig. 5: Comparison with the typi-
cal convolution.

3.1 MorphFC for Spatial Modeling

As discussed above, mining core semantics is critical to video recognition. Typical
CNN and previous MLP-Like architectures only focus on either local or global
information modeling thus they fail to do that. To tackle this challenge, we
propose a novel MorphFCs layer that can hierarchical expand the receptive field
of FC and make it operate from small to big regions. Our MorphFCs processes
each frame of video independently in horizontal and vertical pathways. We take
the horizontal one (blue chunks in Fig. 4) for example.

Specifically, given one frame of input videos X ∈ RHW×C that has been
projected into a sequence of tokens, we first split X along horizontal direction.
We set chunk length to L and thus obtain Xi ∈ RL×C , where i ∈ {1, ...,HW/L}.
Furthermore, to reduce computation cost, we also split each Xi into multiple
groups along channel dimension, where each group has D channels. Thus we
get split chunks, and each single chunk is Xk

i ∈ RLD, where k ∈ {1, ..., C/D}.
Next, we flatten each chunk into 1D vector and apply a FC weight matrix W ∈
RLD×LD to transform each chunk, yielding

Yk
i = Xk

iW. (1)

After feature transformation, we reshape all chunks Yk
i back to the original di-

mension Y ∈ RH×W×C . The vertical way (green chunks in Fig. 4) does likewise
except splitting the sequence of tokens along vertical direction. To make com-
munication among groups along channel dimension, we also apply a FC layer
to process each token individually. Finally, we get the output by element-wise
summing horizontal, vertical, and channel features together. The chunks length
L hierarchically increases as the network deepens, thereby enabling the FC filter
to discover more core semantics progressively from small to big spatial region.
Difference between our MorphFCs and convolution. (i) Typical convo-
lution utilizes fixed small kernel size (e.g., 3×3), which only aggregates local
context. On the contrary, the chunks lengths in MorphFCs hierarchically increase
as the network deepens, which can model short-to-long range information pro-
gressively. (ii) Convolution uses sliding windows to obtain overlapping tokens,
which requires cumbersome operations, including unfold, reshape and fold. In
contrast, we simply reshape the feature map to obtain our chunks with non-
overlapping tokens. (iii) As shown in Fig. 5, given a 1×3 input, to get the 1×3
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Fig. 6: MorphFCt on the temporal dimension.

output, the convolution kernel of 1×3 window size needs to slide three times, and
each 1×1 output is generated by the shared weight matrix Wconv ∈ R3×1. In
contrast, FC layer applies weight matrix Wfc ∈ R3×3 to the input yielding 1×3
ouput. Each 1×1 output is equivalent to being generated by non-shared weight
matrix W ∈ R3×1, which brings more flexible spatial encoding than convolution.
Comparisons with ViP [25]. Our design is related to the well-known ViP
designed for image domain, which also leverages the multi-branch features in
spatial modeling. Hence, we further discuss the differences. (i) The FC filters
of whole ViP network have the fixed size and receptive field, thus they only
capture global information. On the contrary, our FC filters are morphable, as
shown in Fig. 3. In shallow layers, they have small size to model local structure,
while in deeper layers, they gradually change to large size to model long-range
information. Hence, ours can discover more detailed semantics by progressively
operating FC from small to big spatial region. (ii)As shown in Fig. 8, at the
network level, ours have hierarchical downsampling after each stage but ViP
does not. (iii) As ViP paper said, ViP is hard to transfer to downstream tasks
i.e. segmentation with spatial resolution 2048×512, since its filter size is always
equal to the height/weight of features. But it is easy for ours, because the filter
size is equal to pre-defined chunk size in the pre-training.

3.2 MorphFCt on Temporal Modeling

In addition to the horizontal and vertical pathways in MorphFCs, we introduce
another temporal pathway MorphFCt. It aims at capturing long-term temporal
information using the simple FC layer with low computation cost. Specifically, as
shown in Fig. 6, given an input video clip tokens X ∈ RH×W×T×C , we first split
X into a couple of groups along channel dimension (D channels in each group)
to reduce computation cost and get Xk ∈ RH×W×T×D, where k ∈ {1, ..., C/D}.
For each spatial position s, we concatenate features across all frames into a chunk
Xk

s ∈ RTD, where s ∈ {1, ...,HW}. Then we apply a FC matrix W ∈ RTD×TD,
to transform temporal features and get

Yk
s = Xk

sW. (2)

Finally, we reshape all chunks Yk
s ∈ RTD back to original tokens dimension and

output Y ∈ RH×W×T×C . In this way, the FC filter can simply aggregate token
relations along time dimension in the chunk to model temporal dependencies.
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Spatial-Temporal MorphMLP block. Based on the MorphFCs and MorphFCt,
we propose a factorized spatial-temporal MorphMLP block in the video domain
for efficient video representation learning. As shown in Fig. 7, our MorphMLP
block contains MorphFCt, MorphFCs and MLP [62] modules in a sequential order.
On one hand, it is difficult for joint spatial-temporal optimization [3]. On the
other hand, factorizing spatial and temporal modeling is able to reduce the com-
putation cost significantly. Therefore, we place temporal and spatial MorphFCs
layers in the sequential style. The LN [2] layer is applied before each module,
and the standard residual connections are used after MorphFCt and MLP mod-
ule. Instead of applying a standard residual connection [23] after MorphFCs, we
add a skip residual connection (red line) between the original input and out-
put features from MorphFCs layer. We found that such a connection can make
training more stable.

3.3 Network architecture

For video recognition, as shown in Fig. 8, we hierarchically stack spatial-temporal
MorphMLP blocks to build up our network. Given an video sequence X ∈
RH×W×T×3, taking H=W=224 for example, our MorphMLP backbone first
performs patch embedding on the video clip and gets a sequence of tokens with
dimension 56×56×T/2 × C1. Then, we have four sequential stages and each
of them contains a couple of MorphMLP blocks. The feature size remains un-
changed as passing through layers inside the same stage. At the end of each stage
excluding the last one, we expand the channel dimension and downsample the
spatial resolution of features by ratio 2.

Note that we set chunk lengths of MorphFCs to be 14, 28, 28, 49 for stage 1-4,
respectively. Horizontal/vertical chunks with lengths 14, 28, 28, 49 of stage 1-4
can cover quarter, one, two, all rows/columns of feature maps of stage 1-4, re-
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spectively. In shallow layers, our network can learn detailed representation from
the local spatial context in small chunk length, e.g., length 14 for 56×56×C1

feature map. In deep layers, our network can capture long-range information
from the global semantic context in considerable chunk length, e.g., length 49
for 7×7×C4 feature map. With downsampling the spatial resolution and ex-
panding chunk length as the network goes deeper, our MorphMLP is capable of
discovering more core semantics progressively by operating the FC filter from
small to big spatial regions.

We provide two model variants for the video recognition depending on the
number of MorphMLP blocks in four stages: {3, 4, 9, 3} for MorphMLP-Small(S)
and {4, 6, 15, 4} for MorphMLP-Base(B). The numbers of channels of four stages
are {112, 224, 392, 784}. Additionally, for image-domain architecture, we simply
exclude the temporal dimension and drop MorphFCt in the MorphMLP block.
In addition to small and base settings, we provide two extra model variants for
image domain, depending on the number of MorphMLP blocks in four stages, i.e.,
{3, 4, 7, 3} for MorphMLP-Tiny(T) and {4, 8, 18, 6} for MorphMLP-Large(L).

4 Experiment

In this section, we first examine the performance of MorphMLP and evaluate
its spatiotemporal effectiveness on Kinetics-400[6], and Something-Something
V1&V2 [21] datasets. For fair comparisons and due to GPU resources limitation,
we only report MorphMLP-S and B for video classification. Then we verify the
effectiveness of its adaption to image domain, including ImageNet-1K [12] image
classification and ADE20K[76] semantic segmentation.

4.1 Video Classification on Kinetics-400

Settings. Kinetics-400[6] is a large-scale scene-related video benchmark. It con-
tains around 240K training videos and about 20K validation videos in 400 classes.
Our code heavily relies on PySlowFast [15] repository and the training recipe
mainly follows MViT[16]. We directly load the parameters of MorphFCs pre-
trained on ImageNet and randomly initialize the parameters of MorphFCt in the
video domain. We adopt a dense sampling strategy [66] and AdamW optimizer
to train the whole network. The warm-up epoch, total epoch, batch size, base
learning rate, and weight decay are 10, 60, 64, 2e-4, and 0.05 respectively. We
utilize the stochastic depth rates 0.1 and 0.3 for MorphMLP-S and B.
Results. As shown in Table 1, our method achieves outstanding performance
with fewer computation costs. Compared with CNN models such as SlowFast[19],
our MorphMLP requires 8× fewer GFLOPS but achieves 1.9% accuracy im-
provement (80.8% vs. 78.9%). With only ImageNet-1K pre-training, our method
surpasses most of the self-attention based Transformer backbones with larger
dataset pre-training. For example, compared with ViViT-L[1] pre-trained on
ImageNet-21K, our MorphMLP obtains better performance with 20× fewer com-
putations. When our model is scaled larger, the accuracy increases as well. Since
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Table 1: Comparisons with the state-of-the-art on Kinetics-400[6]. Our Mor-
phMLP achieves outstanding results with much fewer computation costs. For
example, compared with VideoSwin-T, our MorphMLP-S only requires 2× fewer
GFLOPs but gets 0.9% accuracy improvement (79.7% vs. 78.8%).

Method Pretrain #Frame GFLOPs
K400

Top-1 Top-5

Self-Attention Free – CNN

SlowFast R101[19] - (16+64)×3×10 6390 78.9 93.5
CorrNet-101[63] - 32× 3×10 6720 79.2 -
ip-CSN[60] Sports1M 32× 3×10 3264 79.2 93.8
X3D-XL[18] - 16×3×10 1452 79.1 93.9
SmallBigEN [35] IN-1K (8+32)×3×4 5700 78.7 93.7
TDNEN [64] IN-1K (8+16)×3×10 5940 79.4 94.4
CT-NetEN [32] IN-1K (16+16)×3×4 2641 79.8 94.2

Self-Attention Based – Transformer

Timesformer-L[3] IN-21K 96×3×1 7140 80.7 94.7
VidTr-L[75] IN-21K 32×3×10 11760 79.1 93.9
ViViT-L[1] IN-21K 16×3×4 17357 80.6 94.7
X-ViT[4] IN-21K 16×3×1 850 80.2 94.7
Mformer[46] IN-21K 32×3×10 11085 80.2 94.8
Mformer-L[46] IN-21K 32×3×10 35550 80.2 94.8
MViT-B,16×4 [16] - 16×1×5 355 78.4 93.5
MViT-B,32×3 [16] - 32×1×5 850 80.2 94.4
VideoSwin-T[41] IN-1K 32×3×4 1056 78.8 93.6
VideoSwin-B[41] IN-1K 32×3×4 3384 80.6 94.6

Self-Attention Free – MLP-Like

MorphMLP-S IN-1K 16×1×4 268 78.7 93.8
MorphMLP-S IN-1K 32×1×4 532 79.7 94.2
MorphMLP-B IN-1K 16×1×4 392 79.5 94.4
MorphMLP-B IN-1K 32×1×4 788 80.8 94.9

the computation cost is relatively low, our method still has great potential for
better performance. It demonstrates that our MorphMLP is a strong MLP-Like
backbone for video recognition.

4.2 Video Classification on Something-Something

Settings. Something-Something [21] is another large-scale dataset, in which the
temporal relationship modeling is critical for action understanding. It includes
two versions, i.e., V1 and V2, both of which contain plentiful videos over 174
categories. We adopt the same training setting as used for Kinetics-400, except
that a random horizontal flip is not applied. We utilize the sparse sampling
strategy. The warm-up epoch, total epoch, batch size, base learning rate, and
weight decay are 5, 50, 64, 4e-4, and 0.05, respectively. We set the stochastic
depth rates to be 0.3 and 0.6 for Morph-S and B respectively.

Results. The comparison results on Something V2&V1 are shown in Table 2 and
Table 3 respectively. For SSV2, CNN architectures perform worse than Trans-
former architectures since they are limited to capturing local spatial and tempo-
ral information and struggle to model long-term dependencies. Transformer ar-
chitectures can achieve better results, but they heavily rely on large-scale dataset
pre-training which requires high computation. Compared with CT-Net[32], our



10 David J. Zhang et al.

Table 2: Comparisons with the SOTA on SSV2 [21]. Our MorphMLP outper-
forms previous sota Transformers and CNNs with IN-1K pretraining only.

Method Pretrain #Frame GFLOPs
SSV2

Top-1 Top-5

Self-Attention Free – CNN

SlowFast R50[19] K400 (8+32)×3×1 197 61.7 46.6
TSM[38] K400 16×3×2 374 63.4 88.5
STM[28] IN-1K 16×3×10 1995 64.2 89.8
bLVNet[17] IN-1K 32×3×10 3870 65.2 90.3
TEA[36] IN-1K 16×3×10 2100 65.1 -
CT-Net[32] IN-1K 16×3×2 450 65.9 90.1

Self-Attention Based – Transformer

Timesformer[3] IN-21K 16×3×1 5109 62.5 -
VidTr-L[75] IN-21K+K400 32×3×10 10530 60.2 -
ViViT-L[1] IN-21K+K400 16×3×4 11892 65.4 89.8
X-ViT[4] IN-21K 32×3×1 1269 65.4 90.7
Mformer[46] IN-21K+K400 16×3×1 1110 66.5 90.1
Mformer-L[46] IN-21K+K400 32×3×1 3555 68.1 91.2
MViT-B,16×4[16] K400 16×3×1 510 67.1 90.8
MViT-B,32×3[16] K400 32×3×1 1365 67.7 90.9
MViT-B-24,32×3[16] K600 32×3×1 708 68.7 91.5

Self-Attention Free – MLP-like

MorphMLP-S IN-1K 16×3×1 201 67.1 90.9
MorphMLP-S IN-1K 32×3×1 405 68.3 91.3
MorphMLP-B IN-1K 16×3×1 294 67.6 91.3
MorphMLP-B IN-1K 32×3×1 591 70.1 92.8

Table 3: Comparisons with the state-of-the-art on Something-Something V1 [21].

Method Pretrain #Frame GFLOPs
SSV1

Top-1 Top-5

I3D[67] IN-1K+K400 32×3×2 918 41.6 72.2
NLI3D[67] IN-1K+K400 32×3×2 1008 44.4 76.0
NLI3D+GCN[67] IN-1K+K400 32×3×2 1818 46.1 76.8
TSM[38] IN-1K+K400 16×1×1 65 47.2 77.1
SmallBig[35] IN-1K 16×1×1 105 49.3 79.5
TEINet[42] IN-1K 16×3×10 1980 51.0 -
TEA[36] IN-1K 16×3×10 2100 52.3 81.9
CT-NET[32] IN-1K 16×3×2 447 53.4 81.7

MorphMLP-S IN-1K 16×1×1 67 50.6 78.0
MorphMLP-S IN-1K 16×3×1 201 53.9 81.3
MorphMLP-B IN-1K 16×3×1 294 55.5 82.4
MorphMLP-B IN-1K 32×3×1 591 57.4 84.5

MorphMLP can reduce 2.5× computation but achieves 1.2% accuracy gain. Com-
pared with the-state-of-art method MViT[16], which is pre-trained on large video
dataset Kinetics-600, our MorphMLP only pre-trained on ImageNet-1K can ob-
tain better performance (70.1% vs. 68.7%) with smaller GFLOPS (591G vs.
708G). For SSV1, our MorphMLP also achieves outstanding results.

The superior results of our method on this dataset can be attributed to our
unique progressively core semantics discovering manner and efficient spatial-
temporal block design in MorpMLP. Table 6 and 7 can also demonstrate our
point. Note that even if we do not add any complicated and unique temporal
attention operation, our simple method can achieve such great performance. This
indicates that our model can serve as a strong backbone for further improvement.
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Table 4: ImageNet-1K results. As shown in (a), our method achieves the best
performance among SOTA MLP-Like architectures. From (b), we can see that
our MorphMLP also achieves the comparable results with SOTA self-attention
based and hybrid models even with small computation.

(a) Comparisons with MLP-Like models.

Model Param FLOPs Top-1

Mixer-B/16[55] 59M 12.7G 76.4

Mixer-B/16†[55] 59M 12.7G 77.3

ResMLP-S12[56] 15M 3.0G 76.6
ResMLP-S24[56] 30M 6.0G 79.4
ResMLP-B24 [56] 116M 23.0G 81.0

gMLP-Ti[39] 6M 1.4G 72.3
gMLP-S [39] 20M 4.5G 79.6
gMLP-B [39] 73M 15.8G 81.6

S2-MLP-wide [72] 71M 14.0G 80.0
S2-MLP-deep [72] 51M 10.5G 80.7

ViP-Small/7 [24] 25M 6.9G 81.5
ViP-Medium/7[24] 55M 16.3G 82.7
ViP-Large/7 [24] 88M 24.4G 83.2

AS-MLP-T [37] 28M 4.4G 81.3
AS-MLP-S [37] 50M 8.5G 83.1
AS-MLP-B [37] 88M 15.2G 83.3

CycleMLP-B2[8] 27M 3.9G 81.6
CycleMLP–B3[8] 38M 6.9G 82.6
CycleMLP–B4[8] 52M 10.1G 83.0
CycleMLP–B5[8] 76M 12.3G 83.1

MorphMLP-T 23M 3.9G 81.6
MorphMLP-S 38M 6.9G 82.6
MorphMLP-B 58M 10.2G 83.2
MorphMLP-L 76M 12.5G 83.4

(b) Comparisons with SOTA models.

Model Family Scale Param FLOPs Top-1

ResNet50 [23] CNN 2242 26M 4.1G 79.2
DeiT-S [57] Trans 2242 22M 4.6G 79.8
ResNest50[74] CNN 224 28M 4.3G 80.6
T2T-ViT-14 [73] Trans 2242 22M 4.8G 81.5
PVT-S [65] Trans 2242 25M 3.8G 79.8
Swin-T [40] Trans 2242 29M 4.5G 81.3
GFNet-H-S [48] FFT 2242 32M 4.5G 81.5
BoT-S1-50 [51] Hybrid 2242 21M 4.3G 79.1
CoAtNet-0[11] Hybrid 2242 23M 4.2G 81.6
MorphMLP-T MLP 2242 23M 3.9G 81.6

ResNet101 [23] CNN 2242 45M 7.9G 79.8
ResNest101[74] CNN 2242 48M 8.0G 82.0
RegNetY-8G [47] CNN 2242 39M 8.0G 81.7
T2T-ViT-19 [73] Tran 2242 39M 8.5G 81.9
PVT-M [65] Trans 2242 44M 6.7G 81.2
BoT-S1-59 [51] Hybrid 2242 34M 7.3G 81.7
CoAtNet-1[11] Hybrid 2242 42M 8.4G 83.3
MorphMLP-S MLP 2242 38M 6.9G 82.6

ViT-B/16 [57] Trans 3842 86M 55.4G 77.9
DeiT-B [57] Trans 2242 86M 17.5G 81.8
DeiT-B [57] Trans 3842 86M 55.4G 83.1
T2T-ViT-24 [73] Tran 2242 64M 13.8G 82.3
Swin-B [40] Trans 2242 88M 15.4G 83.4
CaiT-S36 [58] Trans 2242 68M 13.9G 83.3
MorphMLP-L MLP 2242 76M 12.5G 83.4

4.3 Image Classification on ImageNet-1K

Settings. We train our models from scratch on the ImageNet-1K dataset [12],
which consists of 1.2M training images and 50K validation images from 1,000
categories. Our code is implemented based on DeiT[57] repository, and we follow
the same training strategy proposed in DeiT[57], including strong data augmen-
tation and regularization. Stochastic depth rates are set to be 0.1, 0.1, 0.2, 0.3
for our 4 model variants. We adopt AdamW [43] optimizer with cosine learning
rate schedule [44] for 300 epochs, while the first 20 epochs are used for linear
warm-up[20]. The total batch size, weight decay, and initial learning rate are set
to 1024, 5×10−2 and 0.01 respectively.

Results. As shown in Table 4a, our MorphMLP outperforms the state-of-the-art
MLP-Like architectures. Compared with ViP-S[24], our method can get much
higher accuracy (82.6% vs. 81.5%) with similar GFLOPS (7.0G vs. 6.9G). This
demonstrates the effectiveness of our progressively short-to-long range pattern.
In Table 4b, our MorphMLP can achieve competitive results with popular self-
attention based models. Compared with other tiny models, e.g., Swin-T[40], our
method can achieve better results (81.6% vs. 81.3%) with fewer parameters and
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Table 5: Semantic segmentation with Semantic FPN [30] on ADE20K [76] val.
Method Arch #Param.(M) mIoU

ResNet50[23] CNN 28.5 36.7
PVT-S[65] Trans 28.2 39.8
Swin-T[40] Trans 31.9 41.5
GFNet-H-T[48] FFN 26.6 41.0
CycleMLP-B2 [8] MLP-Like 30.6 42.4
MorphMLP-T MLP-Like 26.4 43.0

ResNet101[23] CNN 47.5 38.8
ResNeXt101-32×4d[70] CNN 47.1 39.7
PVT-M[65] Trans 48.0 41.6
GFNet-H-S[48] FFN 47.5 42.5
CycleMLP-B3[8] MLP-Like 42.1 44.5
MorphMLP-S MLP-Like 41.0 44.7

PVT-L[65] Trans 65.1 42.1
Swin-S[40] Trans 53.2 45.2
CycleMLP-B4 [8] MLP-Like 55.6 45.1
MorphMLP-B MLP-Like 59.3 45.9

GFLOPS (23M vs. 29M, 3.9G vs. 4.5G). As for larger settings, our method can
achieve comparable result to Swin-B [40] with fewer GFLOPS.

4.4 Semantic Segmentation on ADE20K

Settings.We conduct semantic segmentation experiments on ADE20K[76], which
consists of 20K training images and 2K validation images over 150 semantic cat-
egories. Our code is based on mmsegmentation [10] and we follow the experiment
setting used in PVT[65]. We simply apply Semantic FPN [30] for fair compar-
isons, and all the backbones are pre-trained on ImageNet-1K. We adopt AdamW
[43] optimizer with cosine learning rate schedule [44], while the initial learning
rate is 1e-4. The input images are randomly resized and cropped to 512×512 for
training, and the shorter sides of images are set to 512 while testing.
Results. The results on ADE20k dataset are shown in Table 5. Our MorphMLP
outperforms ResNet[47] and PVT[65] significantly. Compared with Swin-T, our
MorphMLP-T can achieve better mIoU with fewer parameters (26.4M vs. 31.9M).

4.5 Ablation Study

For Table 6, 8, and 9, we train all the models based on MorphMLP-T for 100
epochs on ImageNet. To explore the variants of our spatial-temporal design, we
adopt MorphMLP-S as the backbone on SSV1.
Impact of chunk length. In the MorphMLP, we expand the chunk length
gradually. The spatial resolutions of feature maps of Stages 1-4 are 56, 28, 14,
7, respectively. For the horizontal/vertical directions, chunk lengths 14, 28, 28,
49 in Stages1-4 can cover quarter, one, two and all rows/columns of the tokens,
respectively, which can discover core semantics progressively by operating the
FC filter from small to big spatial region.

As shown in Table 6, there are some alternative ways to set chunk length. The
first line represents that MorphFCs in each stage covers one row of image/video
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Table 6: Impact of chunk length.

Stage1 Stage2 Stage3 Stage4
SSV1 ImageNet ADE20K
Top-1 Top-1 mIoU

56 28 14 7 48.6 79.1 41.6
3 3 3 3 48.0 78.2 41.0
7 7 7 7 48.4 79.0 41.9
14 14 14 14 48.7 79.0 42.0
14 28 28 7 49.2 79.3 42.0
28 28 28 49 49.1 79.4 42.3
14 28 28 49 50.6 79.6 42.6

Table 7: Detail designs of spatial-
temporal MorphMLP block.

Method Order
Standard Skip SSV1
Residual Residual Top-1

Parallel T∥S " 49.2

Sequential

T+S " 49.8

S+T " 50.2

T+S " 50.6

S+T " 31.7

tokens, which only models global information. The second, third and fourth line
utilize the small chunk length, which only captures local structure. The results
show that our progressively expanding pattern can perform better than the solely
local or global pattern. The reason is that, in the shallow layer, the original
texture and shape information of the image/videos is relatively intact. Therefore,
it is critical to capture detailed structures in the early stage. The features in the
deep layers cover more semantic information, thus long-range relation modeling
is significant. Note that the improvement brought by expanding chunk lengths
on video is larger than image because such pattern is conducive to discovering
more fine-grained semantics for many tiny movement actions.

It is also worth noting that since chunk sizes are equal to H, W of features in
each stage if input is 224×224, 1st row is no ‘Morph’ (progressively discovering
core semantics), but with hierarchical downsampling only. Last row is our final
model (w/ both ‘Morph’ and same downsampling as the 1st row). Comparisons
show benefits are from MorphFC design instead of hierarchical downsampling.

Detail designs of spatial-temporal MorphMLP block. We explore some
alternative designs for our spatial-temporal MorphMLP block in the Table 7.
To begin with, in addition to applying MorphFCt and MorphFCs in a sequential
way, we can add the features from MorphFCt and MorphFCs in parallel. As shown
in Table 7, the parallel way performs worse than the sequential way. We argue
that it is more difficult for joint spatial and temporal optimization. Moreover,
we explore different spatial-temporal orders and residual connections. Standard
residual refers to applying a residual connection after each module in MorphMLP
block of Fig. 7. Skip residual means that a connection is applied between input
features of MorphMLP block and output features of the MorphFCs (red line in
Figure 7). The results show that sequential temporal and spatial order with skip
residual connection is the optimal setting.

Comparisons with convolution. To compared with spatial convolution, we
replace the MorphFCs layer with typical 3×3 and 7×7 convolution on image
domain. As shown in Table 8, our MorphFCs can outperform typical convolution
by a large margin. This demonstrates that typical convolution is difficult to
capture long-range information, which is crucial to the recognition problem.
Furthermore, we adopt two 1D group convolutions along the horizontal and
vertical direction, whose kernel sizes are exactly the same as our chunk lengths
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Table 8: Spatial design of MorphMLP.

Operation
#Param. FLOPs Throughput ImageNet

(M) (G) (images/s) Top-1

3×3 Conv 34.5 6.2 676 77.3
7×7 Conv 113 20.6 532 77.7

Group Conv 23.4 4.0 620 79.0
MorphFCs 23.4 4.0 734 79.6

Table 9: Different operations.

Dimension Style Weight Sum
SSV1 ImageNet
Top-1 Top-1

H+W+C Transformer " 50.6 79.6

H+W Transformer " 49.4 78.5

H+W+C CNN " 47.2 77.2

H+W+C Transformer % 50.2 79.3

Table 10: Temporal design.
Operation #Param.(M) FLOPs(G) SSV1

3×1×1 Conv 46.0 62.7 47.9
5×1×1 Conv 52.5 72.9 48.6
MorphFCt 47.0 66.4 50.6

Table 11: Training cost.
Video Model TFLOPs K400 Training Cost

SlowFast 1.11 71.0 30 epoch 444h
Timesformer 0.59 75.8 30 epoch 416h

Morph-S 0.27 77.0 30 epoch 408h

in each stage. The results show that our method is much better than group conv
in terms of speed and accuracy. This indicates the effectiveness of our MorphFCs.

Moreover, we do comparisons between MorphFCt and typical temporal con-
volutions, i.e., 3×1×1 and 5×1×1. As shown in Table 10, our MorphFCt outper-
forms typical temporal convolutions greatly. This is because that typical convo-
lutions only focus on local temporal information aggregation. On the contrary,
our MorphFCt is able to capture long-term temporal dependencies.
Importance of different operations. We explore the importance of different
operations in Table 9. First, we evaluate the necessity of FC layers from three
directions. It shows that each direction plays an important role. Second, we
replace the 3×3 convolution with our MorphFCs layer in ResNet[23]/R(2+1)D[61]
and the result shows that Transformer structure is more suitable for our MorphFC
than the bottleneck block of CNN. Third, following the ViP[24], we utilize a
weighted sum after three directions FC layers. Results show that weighted sum
can bring a slight improvement (0.3%).
Training speed. As shown in Table 11, considering speed and accuracy trade-
off, our approach is more efficient for training with other SOTA video methods.

5 Conclusion

In this paper, we propose a self-attention free, MLP-Like backbone for video
representation learning, named MorphMLP. MorphMLP is capable of progres-
sively discovering core semantics and capturing long-term temporal information.
To our best knowledge, we are the first to apply MLP-Like architecture in the
video domain. The experiments demonstrate that such self-attention free models
can be as strong as and even outperform self-attention based architectures.
Acknowledgements. This project is supported by the National Research Foun-
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Zheng Shou’s Start-Up Grant from NUS. David Junhao Zhang is supported by
NUS IDS-ISEP scholarship.



MorphMLP 15

References

1. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: Vivit: A
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