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Supplemental Material

Nikita Dvornik, Isma Hadji, Hai Pham, Dhaivat Bhatt, Brais Martinez,
Afsaneh Fazly, and Allan D. Jepson

Samsung AI Center

1 Summary

Our supplemental material is organized as follows: Section 2 elaborates on our
approach to construct tSort graphs from flow graphs and presents an efficient
implementation to tackle this step of our Graph2Vid approach. We then present
a detailed complexity analysis of Graph2Vid compared to the brute-force ap-
proach in Section 3. In Section 4, we present details on both the rule-based and
learning-based parsers that we used to convert procedural text to flow graphs.
We elaborate on our experimental setup in Section 5. Finally, in Section 6, we
provide additional analysis of flow graphs and their influence on step localization
performance.

2 Efficient algorithm for tSort graph construction

In Section 3.3 of the main paper we presented a simple algorithm for tSort graph
construction. Here, we further elaborate on tSort graph construction and present
the more efficient procedure implementation (actually used in our work). In
Algorithm 1, we present the algorithm used in our implementation to construct
the tSort graphs, S, given the flow graph, G. The algorithm uses Breadth First
Search (BFS) traversals in G, starting from the sink of the graph and following
the edges of G in the opposite direction (moving backwards to the root). During
the traversal, we build the tSort graph, S, such that each node of S is a tuple
(v, F ), where v ∈ VG is a node in G, and F ⊂ VG is the subset of nodes visited
so far. Specifically, during the BFS traversal, v is the node that is currently
being considered and it is referred to as the “active node”. On the other hand,
F is the set of nodes that have been visited by the BFS traversal on separate
threads (i.e., distinct from the thread containing the active node v) and they are
collectively referred to as the “front”.

In the main paper, we explain that a tSort graph, S, efficiently captures
all the topological sorts of the graph, G, while avoiding redundant paths. To
achieve this property we check for path feasibility as described in Algorithm 1.
In particular, to make sure that during the BFS traversal we explore only the
paths that conform to the original flow-graph, G, (i.e., valid topological sorts
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Algorithm 1 tSort-graph Construction

1: Inputs: G- flow graph, s - sink node in G
2: EtSort = [] ▷ init edge set of the tSort-graph
3: q = queue((s, set())) ▷ init BFS queue
4: while q do
5: v, F = q.pop() ▷ active node v, set of visited front F
6: Pv = get predecessors(v, G) ▷ Get predecessors of v in G
7: for vnew in Pv ∪ F do
8: Fnew = Pv ∪ F/{vnew}
9:
10: is feasible = True
11: for vF in Fnew do ▷ Checking for feasibility of this path
12: if lowest common ancestor(G, vnew, vF ) = vnew then
13: is feasible = False
14:
15: if is feasible = True then
16: q.append((vnew, Fnew)) ▷ Add new node to the queue
17: EtSort.add(((v, F ), (vnew, Fnew))) ▷ Add new edge to S
18: S = build graph from edges(EtSort) ▷ build the tSort graph
19: Output: S

of G), we check that the active node vnew is not an ancestor of any node in
the front Fnew in the original graph, G. To understand why, remember that the
set F contains nodes already visited by the traversal, while vnew is the node
being visited currently. Therefore, if vnew was an ancestor of one of the nodes
vF ∈ F in G, then vF must be visited after vnew in any valid topological sort
of G. Thus, the transitions tuples (vnew, Fnew) that do not satisfy the feasibility
criteria above are not added to the traversal path (see Alg. 1, lines 10-13). In
summary, using BFS for graph traversal (i.e., an algorithm that is guaranteed
to list all possible traversals of a graph) combined with the feasibility criteria
described above, guarantees that S contains all the valid topological sorts of G.
Fig. 1 illustrates our tSort graph construction as described in Algorithm 1.

3 On the algorithm’s complexity

To develop some intuition on both the size of the generated tSort graphs, and
on the speed-up over the naive approach described in Section 3.2 of the main
paper, we consider simple model problems where the flow graph consists of T
separate, linearly-ordered threads, with n1, n2, . . . , nT ≥ 1 nodes in each thread,
for a total of

∑T
t=1 nt = n steps. For simplicity, we also add a unique root node,

s, to G, with edges to the beginning of each of the T threads. We refer to such
a flow graph as G(n1, . . . , nT ) = (VG, EG).

For two threads (T = 2), ignoring the root node for a moment, the topological
sorts of the flow graph are called riffle shuffle permutations, specifically (n1, n2)-
shuffles [8]. These are analogous to the permutations that can be obtained from
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1

1, {}

4, {1}

2, {1}

3, {4}

5, {}

2, {4}

4, {2}

3, {1}

4, {3}

1

4

2 3

5

tSort Graph construction

Fig. 1: tSort graph construction. (left) Original flow-graph G. The red dashed line
illustrates the visited “front” corresponding to the node of the tSort graph (3, {4}).
(right) The obtained tSort graph S. Every node in S is a tuple, where the first element
is the active node in G, and the second is the “front” of the traversal, i.e. the nodes
last visited on all separate parallel threads. The node (3, {4}) ∈S corresponds to the
node 3 ∈ G and the red dashed “front” intersecting the parallel thread at node 4.

a sorted deck of n cards by riffle shuffling a cut of the first n1 with the remaining
cards. There are NtSort(n1, n2) =

(
n
n1

)
such riffle shuffles. This analysis is easily

extended to show that the number of topological sorts (tSorts) for our model
problems are given by

NtSort(G) =
n!

n1!n2! . . . nT !
, where n =

∑T
t=1 nt. (1)

Note that NtSort quickly becomes infeasibly large as n and T grow.

Next, for our model problems, we consider the number of nodes and edges
in their tSort graph S(G) = (VS , ES). From Algorithm 1 we see that any node
in VS is of the form (v, F ) where v is the “active” node and F is the set of all
nodes last visited by the traversal on the separate parallel threads, referred to
as the “front”. For our model problems, |F | ≤ T − 1.

This form (v, F ), clearly illustrates that, in this one node we are merging the
prefix strings of all topological sorts that have arrived at node v having processed
nodes in F in any other order. This merging of sequences to sets is the key
to our efficiency gain.

Moreover, for our model problems, we can use the form (v, F ) to count the
number of nodes, |VS |, in S, along with the maximum in-degree of edges in ES .
Other than the root node, (s, ∅), any node (v, F ) is defined by picking a thread,
t, and an active node, v, from the nt nodes on that thread, and then forming F
to characterize the state of processing in the other T − 1 threads. Specifically,
for these other threads, we might not have started on that thread (in which case
we need s ∈ F ), or we have already processed down to a specific node in that
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thread. The total number of vertices is therefore seen to be

|VS(G)| = 1 +

T∑
t=1

nt

∏
j ̸=t

(nj + 1)

 , where n =
∑T

t=1 nt,

= 1 +

 T∏
j=1

(nj + 1)

[
T∑

t=1

nt

nt + 1

]
. (2)

First, note that |VS | also rapidly grows with n and T . Therefore there will be
practical limits to the size of flow graphs that are feasible to process in this
manner, and in such cases we would need to resort to approximation approaches.
However, in practice, we find that typical procedures result in tSort graphs of
manageable sizes (see Section 4.5 of the main paper). Second, from Eq (2), we
can note that the crude upper bound is |VS | = O(TnT ). Hence, for a fixed
number of threads T in our model problems, the number of nodes in the tSort
graph is polynomial in the number of nodes, n, in the original graph. Finally,
again for our model problems, the incoming edges at any node (v, F ) in the tSort
graph must be due to a single step being performed in the flow graph, which
must have occurred in one of the T threads, either by advancing to the active
state v from the previous state, or by advancing to an element in the front F in
some other thread. That is, there must be at most T incoming (and, similarly,
outgoing) edges to each node in S.

The complexity of matching directly NtSort topological sorts of a flow graph,
G, with |VG| nodes to a video of C clips, is O(|VG|NtSort(G)C), while the com-
plexity of matching the associated tSort graph to C clips is O(T |VS(G)|C). The
ratio of these leading order terms is therefore

ρ(G) = NtSort(G)|VG|
T |VS(G)|

, (3)

and this ratio gives a rough idea of the speed-up. In Fig. 2 we have plot-
ted log(ρ) as a function of n for various numbers of threads, T ≥ 2, for the
above model problems, where the number of elements in each thread is nt ∈
{floor(n/T ), ceil(n/T )}. We can clearly observe massive speed-ups for our prob-
lem setup.

4 Creating flow graph from procedural text

In this section we elaborate on the rule-based and learning-based graph parsers
introduced in Section 3.6 of the main paper.

4.1 Rule-based graph parsing

Our flow graph construction pipeline is depicted in Figure 3. The pipeline con-
sists of two main steps: text entity extraction and graph construction.
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Fig. 2: Complexity speedup with Graph2Vid over the brute-force approach.
The plot shows gains in complexity (given by Eq. (3)) in log scale for the model example
in Sec 3 depending on the number of nodes n in the flow graph, and for different number
of threads T .

In a bowl, whisk eggs and 
cheese until homogeneous

Add egg and cheese 
mixture

In a pan, cook zucchini and 
butter over medium heat for 

6-7 minutes

add
egg & cheese 

mixture
<implied 
entity>

cook zucchini butter

add
egg & cheese 

mixture
<implied 
entity>

cook zucchini butter

Text
Entity 

Extraction

Flow
Graph

Construct.

whisk eggs cheese whisk eggs cheese

Instructions Text Entities Fine-grained Flow Graph

1 2

3

Coarse Graph

Fig. 3: The text-to-flow graph generation pipeline. It consists of two major steps: ex-
tracting text entities from the original instructions, and constructing the fine-grained
graph, in which objects and actions are properly connected to form a complete procedu-
ral flow graph. Finally, this fine-grained graph is collapsed into a coarse sentence-level
graph used in our graph-to-sequence grounding algorithm.

Text entity extraction. Starting from procedural text, we first extract relevant
text entities from each individual sentence, including action verbs, direct and
prepositional objects as suggested in [6]. Our entity extractor relies on an off-
the-shelf dependency parser [7] in order to recover the verb and noun phrases
from text. Furthermore, similar to previous work [3], we also take into account
“implicit objects”, which are only implied from the text. For example, in the
third sentence in Figure 3, the “egg and cheese mixture” is added to something
that was omitted from the writing. One can deduce that this implicit object
refers to the “cooked zucchini”, product of the action described in the second
sentence. We implemented a set of specific rules on top of dependency parsing to
augment the extracted entities with implicit entities. For instance, in the above
example, we use the rule “ADD [list of objects] TO [destination]” to fill in the
missing destination with the “implicit object”. These implied entities are also
used in the graph construction.
Flow graph construction. Similar to previous work [3, 9], we assume that the
output pi of an action ai in a graph is consumed by a subsequent action, aj .
In other words, one of the K input objects {ojk} (including implicit entities)
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Find the immediately next 
task of a task on cookware 

only
E.g.: “preheat oven“bake 
the chicken in the oven”.

Resolve “it” and “them” 
reference in action [i]: they 

refer to the output of 
action[i-1]

If explicit output of action 
is defined, find the action 

that consumes it.
E.g. “Roll the dough into a 

ball” … “Slice the ball”

Connect the unconnected 
intermediate input 

(mixture) of an action to a 
previous action

Connect two consecutive 
actions if they share inputs 

& cookwares or satisfy 
certain conditions

Resolve confirmed 
“implicit entity” input of 

action [i]. It refers to 
output of action [i-1].

E.g.: “Mix the marinade. 
Add chicken [to implicit 

entity]”

Resolve long-term 
dependency by grouping 

action by their inputs.

Connect any unconnected 
action[i] to action[i+1], 
adding implicit entity to 
action [i+1] if necessary

1 2 3 4

5 6 7 8

Fig. 4: The rules used by our rule-based parser to convert procedure text into a flow-
graph.

of aj is equivalent to pi, j indexes objects and k indexes actions. To connect
the various text entities, we defined a set of rich semantic rules for the graph
constructor. The full set of rules with examples is given in Figure 4. Connecting
the various entities with these rules results in a complete fine-grained flow graph
as shown in Figure 3. The fine-grained graph is then coarsened such that each
node corresponds to a single instruction. The resulting coarsened graph is what
serves as input to Graph2Vid.

4.2 Learning-based graph parsing

The adopted learning-based flow graph construction follows the same two steps
of the rule-based approach described above. However, in this case both entity
extraction and graph construction yield from learning-based neural networks
trained on the English recipe flow graph corpus [9].
Text entity extraction. Here, the text entity extraction is the output of the
tagger model used in [1]. In particular, this tagger is trained to recognize 10
different named entities as done in previous work [9]. For better accuracy, we
re-trained the tagger on the Y-20 dataset [9]. We used the Adam optimizer with
learning rate of 0.075 and a batch size of 30. We train the model for maximum of
100 epochs with early stopping using accuracy measure on the validation set as
a metric, and patience period of 10 epochs. We evaluate the quality of the tagger
by computing precision, recall and F1 score. For all 10 tags, we get precision,
recall and F1 of 0.87, 0.88 and 0.87, respectively.
Flow graph construction. To construct the flow graph, we use the graph
parser of [1], which takes as input the tagged entities from the previous step
and converts them into a graph structure by predicting the presence of an edge
between two entities, as well as a label indicating the semantic relation between
them; see [9] for details on entity and edge sets used by the parser. Figure 5 shows
an example of a recipe and (part of) its corresponding flow graph learned by
our parser. We evaluate the parser using standard measures, such as Unlabeled
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Attachment Score (UAS) and Labeled Attachment Score (LAS). UAS measures
the number of nodes which are assigned correct parents, regardless of the edge
label, while LAS takes into account correct edge label as well. Our parser yields
UAS and LAS of 0.94 and 0.91, respectively.

4.3 Coarse flow graph generation

In both the rule-based and learning-based approaches, the obtained fine-grained
flow graphs are collapsed into coarse sentence-level graphs to be used in our
experiments. To go from fine-grained (i.e., entity-level) flow graphs to coarse
(i.e., sentence-level) flow graphs, we traverse the fine-grained graphs using Depth
First Search (DFS) and merge all nodes with same sentence ID into a single node,
while retaining original connections.

5 Experimental

In this section, we detail the methods used for representation learning, presented
in Table 2 of the main paper.

Feature extraction. We start by elaborating on the feature extraction pro-
cedure. Given a raw video Y and a tSort graph St = (Vt, E) where every node
ti ∈ Vt contains a step description in the form of text, we apply jointly pre-
trained video (fv) and text (ft) feature extractors [5] (as mentioned in Sec. 4.3
of the main paper) to convert the video into a sequence of clip embeddings,
X = fv(Y ) and the text in each node into a sentence embedding vi = ft(ti). All
methods presented in Table 2 of the main paper expect such features as input.

Pre-trained Features. The baseline “Pre-trained Features” in Table 2 of
the main paper does not use any training at all. Instead, we directly use the
features from [5] (as described above) and perform flow-grounding in videos using
Graph2Vid. In contrast to this method, all other approaches listed in Table 2
train a 2-layer Multi-Layer Perceptron (MLP) for the video features in order to
improve step localization performance.

Bag of steps + soft clustering. The following baseline assumes that the
the recipe is an unordered set of steps (thus disregarding the connections in G),
and uses soft clustering loss to improve the pre-trained representations. Given
the sequence of video features, X ∈ RN×d, and the list of step embeddings,
V ∈ RK×d, the soft clustering loss is defined as:

Lclust = ||I − X̂V ⊤||F , (4)

where I ∈ RK×K is the identity matrix and X̂ = (x̂1, . . . , x̂K) ∈ RK×d. Each
element x̂i in X̂ is defined according to

x̂i =

N∑
j=1

xj · softmax(Xvi/γ). (5)
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01_Heat (Ac)

01_stir (Ac)

01_Add (Ac)

01_oil (F) 01_pan (T)

01_it (F)

01_ground (Ac)

01_beef (F)

01_let (Ac)

01_half (Q)

01_onions (F)

01_chopped (Ac) 01_chopped (Ac)

01_garlic (F)

01_cook (Af)

02_add (Ac)

02_Mix (Ac)

02_meat (F)

02_changes color (Af)

02_starts to release (Af)

02_water (F)

02_cook (Ac)

02_chili powder (F)

02_cumin powder (F)

03_Pour (Ac)

03_it (F)

02_3 more minutes (D)

03_blend (Ac)

03_water (F)

03_tomato paste (F)

1. Heat oil in a pan and stir in ground beef. Add half of the chopped onions,
chopped garlic and let it cook. 

2. When the meat changes color and starts to release water, add chili powder
and cumin powder. Mix and cook for 3 more minutes.

3. Pour in water and tomato paste, blend it well. Season with salt.
4. Thereafter mix in prepared yellow mustard, worcestershire sauce and brown

sugar. Let it simmer for 5 minutes or until of desired thickness. Keep the chili
aside.

5. Steam the frankfurters for 4 minutes. In the same steamer, place the hot dog
buns and steam for a couple of minutes.

6. Place a frankfurter in the middle of the bun, cover the sausage with chill.
Drizzle some mustard sauce over the top and garnish with chopped onions.

............ ......

Text

Recipe flow graph

Recipe text

Fig. 5: A recipe from our dataset, along with part of its learned flow graph corre-
sponding to steps 1–3. Action nodes (e.g., add, mix) are shown as hexagons, while
other entities (e.g., Food, Tool) are shown as ovals. Each node is labelled by an id (cor-
responding to instruction step), a token, and its entity class/tag (e.g., F for Food, Ac
for Action). Colored rectangles identify instances of co-reference and ellipsis resolution
in our parser, and will be further discussed in Section 6.
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1-Heat oil in a pan and stir in ground beef. Add half of the 
chopped onions, chopped garlic and let it cook.

2-When the meat changes color and starts to release water, add 
chili powder and cumin powder. Mix and cook for 3 more minutes.

3-Pour in water and tomato paste, blend it well. Season 
with salt.

4-Thereafter mix in prepared yellow mustard, worcestershire sauce and brown sugar. Let it 
simmer for 5 minutes or until of desired thickness. Keep the chili aside.



6-Place a frankfurter in the middle of the bun, cover the sausage with chill. Drizzle 

some mustard sauce over the top and garnish with chopped onions.

5-Steam the frankfurters for 4 minutes. In the same steamer, place 
the hot dog buns and steam for a couple of minutes.

Fig. 6: A coarse flow graph for recipe in Figure 5. This is derived from a fine-grained
recipe flow graph (part of it is shown in Figure 5).

In other words, x̂i in Eq. (5) defines attention-based pooling of sequence x,
relative to an element vi. Minimizing Lclust pushes every element in V to have a
unique match inX, which encourages the clustering of the embeddings xi around
the appropriate step embeddings vi and thus promotes relevant feature learning.
Note that this baseline does not use the knowledge of the flow graph structure
or even the order of steps in V , since all the operations in soft clustering are
permutation equivariant.

Linear Procedure + Drop-DTW. In the following baseline, we treat
instructions, as listed in the procedural text, as an ordered list of steps. To train
video features with step order supervision, we use Drop-DTW [2] and precisely
follow their original implementation. The only difference between our baseline
and the original Drop-DTW [2] is the source of supervision. Specifically, the
original work uses the provided ground-truth steps order, while we use the steps
of the generic procedure (identical for all the videos of the same category) in the
order in which they appear in the procedure description.
To this end, given the video features X ∈ RN×d, and the list of step embeddings,
V ∈ RK×d we train the model with the following loss:

Ltrain(V,X) = LDTW (V,X) + Lclust(V,X), (6)

Where LDTW (X,V ) is the cost of aligning the instruction list V with the video
X, and Lclust is the soft clustering loss (defined above) that [2] proposes to add
to regularize the training.

Graph2Vid. Finally, as described throughout our paper, Graph2Vid is a
way to train video representations supervised by flow graphs, G. Please refer
to Section 3.4 of the main paper for a detailed description of this proposed
formulation. Notably, to make the training with Graph2Vid more stable and
avoid degenerate solutions where all the features map to a single graph node, we
also adopt the regularization strategy from [2] and add the clustering loss. That
is, our final training objective is

Ltrain(G,X) = LG(G,X) + Lclust(V,X), (7)
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0. cut lemons 

1. squeeze lemons 

2. pour lemon juice into a pitcher 

3. add sugar 

4. add cold water into a pitcher 

5. stir mixture 

6. add ice 

7. pour lemonade into a glass

Manual Parser (learned) Parser (rules)Instruction: Make Lemonade

Segmentation Accuracy:

0. pour water 

1. pour alcohol 

2. mix water with jello 

powder 

3. Stir in the chilled water 

and alcohol mixture 

4. Pour the mixture into 

the cups

Manual Parser (learned) Parser (rules)Instruction: Make Jello Shot

22.9% 21.2% 22.3%35.1% 39.1% 33.8% Segmentation Accuracy:

Fig. 7: Manual vs parser-generated flow graphs. For two recipes, we provide the
list of steps and derived from them flow graphs. The bottom row gives Graph2Vid
segmentation accuracy on the videos of those procedures.

where LG(G,X) is the cost of aligning the flow graph, G, with the video, X, and
Lclust is defined above in Eq (4).

Training details. In our experiment with Graph2Vid (as well as “Linear
Procedure + Drop-DTW” and “Bag of steps + soft clustering” baselines) on
CrossTask, we use a 2-layer MLP on top of the video features and train it with
ADAM optimizer [4] with learning rate 10−4 and weight decay 10−4 for 10
epochs.

6 Flow Graph Analysis

In this section, we provide additional analysis of flow graphs and their influence
on step localization performance.

6.1 Comparison of different flow graphs for step localization

To better understand the difference in step localization performance when using
different flow graph, we compare manual and parser-generated flow graphs (see
Fig. 7). On the “Make Lemonade” recipe (Fig. 7, left), the learning-based graph
ignores some links present in the manual graph(e.g., 1 → 3, 1 → 4, and, 6 →
7) which leads to more parallel threads. On the other extreme, the rule-based
graph detects a single linear order. This shows that the learning-based graph
is more “flexible”, which we argue is key for better segmentation. Inspecting
the CrossTask dataset videos revealed that the sequence of steps 5 → 6 → 7
(bottom of the manual graph) happens only 20% of the time in the data, while
the alternative 5 → 7 ← 6 (from the learned parser) happens 80% of the time,
which explains the higher learning-based segmentation accuracy (i.e., 39.1% vs
35.1%). Notably, sometimes both parsers produce more constrained flow graphs
(e.g., Fig. 7, right), which leads to less accurate Graph2Vid segmentations.
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6.2 Co-reference and ellipsis resolution by the learned parser

Here we provide an analysis of how our learned parser is capable of performing
co-reference and ellipsis resolution. A quantitative analysis of the success rate
of such resolutions requires a detailed manual annotation of the predicted flow
graphs, and is beyond the scope of our study. But we observe many successful
examples in our predicted flow graphs, which can be attributed to the way
such resolutions are built into the annotation framework. Next, we present a
few examples and elaborate on the reason behind the success of the parser in
resolving them. Recall that the flow graph annotations of [9] draw on a set of pre-
defined entity tags (including Action, Food, Tool, etc.), as well as a set of edge
labels that identify relations among these entities (e.g., f-eq for food equivalency,
t for target). These edge labels are used to connect nodes of different entity types.
E.g., when f-eq connects two Food nodes, it signifies that the two Food items
are equivalent (e.g., potato and diced potato). This same label can be used to
connect an Action and a Food node, meaning that the result of the Action is
the same as the Food node.

The edge labels by design can help resolve the referent of pronouns that refer
back to the result of a previous cooking action. We can see two such examples in
the flow graph shown in Figure 5 (inside the blue boxes), which result in correct
resolution of references for the pronoun it. Similarly, the edge label t can connect
an Action to its direct object (e.g., the connection from heat (Ac) to oil (F) in
Figure 5), but also an Action to another Action whose result is the missing direct
object of the first Action, and as such can help with ellipsis resolution. Figure 5
provides two examples of such ellipsis resolution (inside the red box), where
the result of add is identified as the implicit (missing) argument of mix, whose
result is in turn linked to cook as its (missing) direct object. All in all, because
the training data contains many instances where co-reference and ellipsis cases
are explicitly resolved via the use of proper edge connections and labels among
entities, the parser is in principle capable of resolving them at inference time.
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