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Abstract. We present MaCLR, a novel method to explicitly perform
cross-modal self-supervised video representations learning from visual
and motion modalities. Compared to previous video representation learn-
ing methods that mostly focus on learning motion cues implicitly from
RGB inputs, MaCLR enriches standard contrastive learning objectives
for RGB video clips with a cross-modal learning objective between a
Motion pathway and a Visual pathway. We show that the representation
learned with our MaCLR method focuses more on foreground motion re-
gions and thus generalizes better to downstream tasks. To demonstrate
this, we evaluate MaCLR on five datasets for both action recognition and
action detection, and demonstrate state-of-the-art self-supervised perfor-
mance on all datasets. Furthermore, we show that MaCLR representa-
tion can be as effective as representations learned with full supervision
on UCF101 and HMDB51 action recognition, and even outperform the
supervised representation for action recognition on VidSitu and SSv2,
and action detection on AVA.

1 Introduction

Supervised learning has enjoyed great successes in many computer vision tasks
in the past decade. One of the most important fuel in this successful journey is
the availability of large amount of high-quality labeled data. Notably, the Ima-
geNet [17] dataset for image classification was the spark that ignited the deep
learning revolution in vision. In the video domain, the Kinetics dataset [41] has
long been regarded as the “ImageNet for videos” and has enabled the “pretrain-
then-finetune” paradigm for many video tasks. Interestingly, though years old,
ImageNet and Kinetics are still the to-go datasets for pretraining that are pub-
licly available. This shows how much effort is needed to create these large-scale
labeled datasets.

To mitigate the reliance on large-scale labeled datasets, self-supervised learn-
ing came with the promise to learn useful representations from large amount of
unlabeled data. Following the recent success in NLP (e.g., BERT, GPT-3 [18,7]),
some works have attempted to find its counterpart in vision. Among them, pio-
neering research has been conducted in the image domain to produce successful
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Fig. 1: (a) Cross-modal motion-visual learning. We propose Motion-aware
Contrastive Learning of Representations (MaCLR) as an explicit method to
learn motion-aware video representations without labels – Our visual pathway
features are pushed to learn a representation aligns with our motion pathway
and in doing so learn features that more robustly capture motion in the video.
(b) Motion inputs. Given the RGB input (top-left), we compare three options
for motion inputs. Best viewed on screen.

methods like MoCo [36] and SimCLR [12]. Compared to images, large-scale video
datasets induce even higher annotation costs, making it even more important to
develop effective self-supervised methods to learn generalizable representations
for videos. Some recent video works attempted to learn such representations by
training their models to solve pretext tasks, like predicting the correct temporal
order of clips [49,28,6,78,9], predict future frames [19] and predict whether a
video is played at its intrinsic speed [4]. Though successful to a certain extent,
these methods do not explicitly make use of motion information derived from
the temporal sequence, which has been shown to be important for supervised
action recognition tasks [63,26,74].

In this paper, we propose MaCLR, a novel self-supervised video representa-
tion learning method that explicitly models motion cues during training. MaCLR
(Motion-aware Contrastive Learning of Representations) consists of two path-
ways: Visual and Motion. It uses both pathways during self-supervised pretrain-
ing, but only transfers the Visual to downstream tasks. When trained alone, the
Visual pathway learns from RGB inputs using the contrastive InfoNCE objec-
tive, which mostly focuses on visual semantic information. To help enriching the
representation of Visual and make it motion-aware, we introduce a Motion path-
way trained on motion inputs. We then connect Motion to Visual using a novel
cross-modal contrastive objective that enables the Motion pathway to guide the
learning of Visual towards relevant motion cues. As our experiments show, this
formulation leads to rich video representations that capture both visual seman-
tics and motion patterns.
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To evaluate MaCLR, we perform self-supervised pretraining on Kinetics-400
and transfer its representation to 5 video datasets for both action recognition
(UCF101 [65], HMDB51 [43], Something-Something [1], VidSitu [59]) and ac-
tion detection (AVA [32]). Without bells and whistle, MaCLR outperforms all
previous video self-supervised methods on all datasets, under all evaluation set-
tings. For example, MaCLR improves top-1 accuracy by 17% and 16.9% on
UCF101 and HMD51, over previous SOTA trained on Kinetics-400. Further-
more, on Something-Something, VidSitu and AVA, MaCLR even outperforms
its fully-supervised counterparts, demonstrating the strength of our approach.

2 Related Work

Self-supervised image representation learning. The goal of self-supervised
image representation learning is to learn useful representations from large collec-
tions of unlabeled images. Early work focused on designing different pretext tasks
with the intent of inducing generalizable semantic representations [20,50,51,84].
Though producing promising results, these methods could not match the perfor-
mance of fully-supervised trained representations [42], as it is hard to prevent the
network from utilizing shortcuts to solve pretext tasks (e.g., “chromatic aberra-
tion” in context prediction [20]). This changed when researchers re-visited the
decade-old technique of contrastive learning [33,80]. Some of these recent work
started to successfully produce results that were comparable to those of super-
vised learning on images [36,12,13,48,31,14,10]. Though related, these work were
designed to learn from static images and thus cannot utilize the rich temporal
information contained in videos.
Self-supervised video representation learning. Videos present unique op-
portunities to extract self-supervision and the literature offers different direc-
tions. The first line of research focuses on designing video-specific pretext tasks.
Besides the work mentioned earlier [49,28,78,19,4], others attempt to learn video
representations by either tracking across frames patches [76], pixels [77], col-
ors [70], predicting temporal context for videos [58,73], or by enforcing con-
sistency along videos semantics and play speeds [38]. A more recent line of
work overcomes the need for pretext tasks by leveraging the contrastive learning
paradigm [57,24]. Though successful to a certain extent, none of above methods
explicitly make use of the important motion cues derived from the video tempo-
ral sequence. To better exploit such important information, [72] applies a pretext
task of regressing motion statistics, [35,30] mine and cluster RGB images with
similar motion cues, while [46,60,39] exploit the correspondences between RGB
and motion pixels. MaCLR belongs to this recent class of works that aim at
improving video representation using motion cues. However, it differs from pre-
vious works in the way it utilizes visual-motion correspondence in a cross-modal
contrastive framework at a higher level than pixels, which yields a a method
that is simpler, more robust and achieves considerably better results.
Motion in video tasks. Motion information has been heavily studied for many
video tasks. As a prominent motion representation, optical flow has been uti-
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lized in many video action classification methods, either in the form of classical
hand-crafted spatiotemporal features [44,16,71], or serve as input to deep CNN
systems trained with supervised learning [25,26,74]. In contrast, our method fo-
cuses on exploiting motion information in the context of self-supervised learning.
Beyond video classification, motion has also been exploited in many other tasks
like video object detection [85,40,27,81], video frame prediction [61,45], video
segmentation [68,3,15], object tracking [37,5,54], and 3D reconstruction [69].

3 MaCLR

We design MaCLR as a two-branch network consisting of a Visual pathway and
a Motion pathway (Fig. 1a). The Visual pathway takes as input visual1 clips
and produces their visual embeddings. Similarly, the Motion pathway operates
on motion clips (we will study different motion inputs in Sec. 3.2) and generates
motion embeddings. MaCLR is trained using three contrastive learning objec-
tives (Sec. 3.1): (i) a visual-only loss that pulls together visual clip embeddings
that are sampled from the same video (solid green arrow in Fig. 1a) and pushes
away that of different videos (solid red arrow); (ii) a motion-only loss that op-
erates like (i), but on motion clips (omitted in Fig. 1a to avoid clutter) and
(iii) a motion-visual loss to enforce alignment between embeddings of the visual
and motion inputs (dashed arrows). As shown in Fig. 1a, we generate positive
pairs from clips extracted from the same video (green arrows) and negative pairs
from clips extracted from different videos (red arrows). After pretraining with
MaCLR, we then remove the Motion pathway and transfer the Visual pathway
to target datasets for task-specific finetuning.

3.1 Training MaCLR

Visual-only learning. We model this using a contrastive learning objective.
Similar to [57], our model takes as input random clips with spatiotemporal jit-
terring. As shown in Fig. 1a, given a random clip we produce its embedding vq

(query), and sample a second positive clip from the same video and produce its
embedding vk (key), as well as N negative embeddings vni , i ∈ {1, ..., N} from
other videos. Then, we train the Visual pathway with the InfoNCE objective
Lv = IN(vq, vk, vn) [52,36]:

Lv = − log
exp(vq·vk/τ)

exp(vq·vk/τ) +
∑N

i=1 exp(v
q·vni /τ)

, (1)

where τ is a temperature parameter. This objective ensures that our Visual
pathway pulls together embeddings vq and vk, while pushing away those of all
the negative clips vni .

1 Sometimes also referred to as “RGB” in the literature.



MaCLR: Motion-aware Contrastive Learning of Representations for Videos 5

Motion-only learning. To improve the discriminativeness of the Motion path-
way, we add another InfoNCE objective Lm = IN(mq,mk,mn), which is trained
in a similar way to Lv but this time on motion embeddings mq, mk (both are
sampled from the same video as vq) and mn (which denotes a set of negative
motion embeddings). This ensures that the Motion pathway is able to embed
similar motion patterns close to each other.

Motion-Visual learning. We model this also with a contrastive learning ob-
jective, but with a different purpose compared to the previous two. Here, we
aim at enriching the Visual pathway to be motion-aware with the help of the
Motion pathway. Specifically, we train the model using the following InfoNCE
objectives:

Lmv = IN(vq,mk, vn) + IN(mq, vk,mn). (2)

Note that vq is not necessarily in temporal synchronization with mk, but rather
just a motion clip sampled from the same video (same for vk and mq). In our
ablation, we show that allowing for this misalignment encourages the embedding
to better learn semantic abstraction of visual and motion patterns, which leads
to better performance.

One key difference to visual-only contrastive learning is on how we sample
motion clips for both motion-only and motion-visual learning. Instead of sam-
pling randomly, we constrain to only sample in temporal regions with strong
motion cues. Specifically, we compute the sum of pixels Pi on the motion input
and only sample frames with

∑K
i=1 Pi/K > γ, where K is the total number

of pixels in a frame and γ is the threshold. This process helps avoid sampling
irrelevant regions with no motion and thus leads to better representations.

Final training objective. The final training objective for MaCLR is the sum
of all aforementioned loss functions:

L = Lv + Lm + Lmv. (3)

Training MaCLR end-to-end is non-trivial, as video representation are expen-
sive to compute and to maintain (as contrastive learning requires large batch
sizes [12]). Inspired by [80,36], we solve this problem by adopting the idea of
memory bank for negative samples. Specifically, we construct two memory banks
of negative samples for visual and motion inputs, and maintain a momentum ver-
sion of the Motion and Visual pathways updated as a moving average of their
online counterparts with momentum coefficient λ: θ′ ← λθ′ + (1− λ)θ, where θ
and θ′ are weights for the online and momentum version of the model respec-
tively. One caveat is that when pushing negatives into the pool, we push the video
index, along with the embedding, so that we can avoid sampling visual or mo-
tion clips that are from the same video as positive clips, which would otherwise
confuse the network and hurt the representations. Similar to [36], we forward
queries through the online model and keys through the momentum model to
produce embeddings.
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3.2 Design of motion inputs

There are many ways to represent a motion input. A straightforward way is to
directly compute the difference of pixel values between two consecutive frames.
While capturing motion to a certain extent, it also captures undesired signals
like pixel value shifts caused by background motion (e.g., sea-wave in Fig. 1b
top-right). A more appropriate representation might be optical flow [8,79,21,67].
However, a disadvantage of feeding in raw optical flow (or flow vector magnitude,
as used in [29]) is that it is heavily influenced by factors like illumination change
(Fig. 1b bottom-left) and it also captures absolute flow magnitude, which is not
very useful for learning general motion patterns. To overcome these limitations,
in MaCLR, we propose to use flow edge maps as inputs to the Motion pathway
network. Specifically, we apply a Sobel filter [64] onto the flow magnitude map
to produce the flow edges (Fig. 1b bottom-right). In our experiments, this simple
operation turns out to produce significantly better motion representations that
focus on foreground motion regions.

3.3 Visual and Motion pathway architectures

Our Visual pathway is a 3D ResNet50 (R3D-50) with a structure similar to
that of “Slow-only” in [23,57], which features 2D convs in res2, res3 and non-
degenerate 3D convs in res4, res5. It takes as input a tensor of size 3×8×2242,
capturing 8 frames of size 224×224. The sampling stride is 8, which means that
the visual input clip spans 8×8 frames, corresponding to ∼2 seconds for videos
at 30 FPS. To have larger temporal receptive field, we set the temporal kernel
size of conv1 to 5 following [57].

Our Motion pathway is a 2D ResNet50. and it takes as input a tensor of
size 3×16×2242, stacking 16 motion frames. We use a sampling stride of 4, so
that it spans for the same time as the visual input (i.e., ∼2 secs). Following the
design philosophy of SlowFast Networks [23], we design our Motion pathway to
be much more lightweight compared to our Visual pathway (1/8 channel sizes
across the network), as motion inputs have intrinsically less variability (i.e., no
variations on colors, illumination, etc.).

4 Experiments

4.1 Implementation Details

MaCLR training details.We train MaCLR on the Kinetics-400 (K400) dataset
(CC-BY-4.0) [41]. The dataset consists of ∼240k video clips that span at most 10
seconds. These were originally annotated with 400 different action classes, but
we do not use any of these labels. We train MaCLR for 600 epochs on the whole
240k videos when we compare against the literature. For our ablation study,
instead, we compare different variants of MaCLR trained for 100 epochs on a
subset of 60k videos (“K400-mini”). We use a pool size (N in Eq. 1) of 65536
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method data UCF HMDB

V-only K400-mini 63.6 33.7

M-only K400-mini 66.4 45.1

MaCLR K400-mini 78.1 47.2

V-only K400 74.6 46.3

MaCLR K400 85.5 57.7

(a) Motion-visual learning

inputsUCFHMDB

Diff 71.6 40.1

Flow 74.1 44.2

Edge 78.1 47.2

(b) Motion inputs

componentsUCFHMDB

MaCLR 78.1 47.2

−t. jitter 77.4 47.1

−m. thresh 77.3 46.4

−Lm 77.8 46.6

(c) Dissect components

Table 1: Ablating MaCLR. We present top-1 classification accuracy using the
Linear Layer Training evaluation protocol (sec. 4.2). In (a), V-only and M-only
refers to the visual and motion only pretraining. In (b), Diff, Flow and Edge
refer to motion inputs in the form of Frame Difference, Optical Flow and Flow
Edges, respectively. Experiments in (b) and (c) are conducted on K400-mini. We
use 8×8 R3D-50 model for finetuning.

negative samples for both visual and motion inputs. We set the momentum up-
date coefficient λ = 0.999 and temperature τ to 0.1. The embedding dimension
is set to 128 for both Visual and Motion pathways. For the visual inputs, we
apply random spatial cropping, temporal jittering, p = 0.2 probability grayscale
conversion, p = 0.5 horizontal flip, p = 0.5 Gaussian blur, and p = 0.8 color per-
turbation on brightness, contrast and saturation, all with 0.4 jittering ratio. For
motion inputs, we randomly sample flow edge clips in high motion regions (with
motion threshold γ set to 0.02) and skip other augmentations. Our codebase is
based on PySlowFast [22].
Flow Edge Maps. To compute flow edge map for frame t, we first compute
optical flow from frame t to t−5, using RAFT-things [67] model trained entirely
on synthetic data without human annotations. We hypothesize it would also
work with flow computed from closer pairs, as long as the motion threshold γ is
adjusted accordingly. Then, we apply a Sobel filter onto the magnitude map of
optical flow and clamp the resulting edge map in [0, 10] as the final flow edge
map. We note that this is an offline pre-processing that only needs to be done
once and reused throughout training (and never during inference).
Baselines. We compare against two baselines: (i) Self-Supervised Visual-only
is a strong self-supervised representation trained from RGB inputs using only
the contrastive learning objective of Eq. 1 (i.e., without our motion learning
objectives Lmv and Lm); and (ii) Supervised is a fully supervised model trained
for action classification on K400. Both baselines use a R3D-50 backbone.

4.2 Action Recognition on UCF101 and HMDB51

Datasets and evaluation protocol. We first evaluate MaCLR for action
recognition on the two most popular datasets in the literature: UCF101 [65]
and HMDB51 [43] (CC-BY-3.0). We follow the standard settings to perform
self-supervised training on K400 and then transfer the learned weights to target
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datasets for evaluation. Two evaluation protocols are employed in the literature
to evaluate the quality of the self-supervised representation: (i) Linear Layer
Training freezes the trained backbone and simply trains a linear classifier on the
target dataset, while (ii) Full Network Training finetunes the entire network end-
to-end on the target dataset. For completeness, we evaluate using both protocols
and report action classification top-1 accuracy. For all experiments on UCF101
and HMDB51, we report results using split1 for train/test split. In total, there
are 9.5k/3.7k train/test videos with 101 action classes in UCF101, and 3.5k/1.5k
train/test videos with 51 actions in HMDB51. We use the standard 10 (tempo-
ral) ×3 (spatial) crop sampling during test [75,23]. We use these two datasets
to compare against the state-of-the-art (SOTA). Additionally, we use K400-mini
to conduct an extensive ablation study on the components of MaCLR. For the
comparison with SOTA, we pretrain MaCLR with 8×8 inputs for 600 epochs
on K400, and finetune with 32×8 inputs on downstream tasks, as these leads to
the best performance. In our ablation study instead we simplify these settings
for efficiency and pretrain for only 100 epochs and use 8×8 inputs for finetuning.

Ablation: motion-visual learning (Table 1a). First and foremost, we study
the importance of enriching visual embeddings with motion cues using the pro-
posed motion-visual learning objective of Eq. 2. Results show that MaCLR im-
proves substantially over Visual-only on both UCF and HMDB, when pretrained
with either K400 or K400-mini. To understand if the benefit comes purely from
the new motion objective Lm, we also trained a Motion-only model on K400-
mini. Interestingly, this model performs slightly better than Visual-only, but
much worse than MaCLR, showing the importance of training a video represen-
tation that can capture both semantic and motion features. Finally, note how
MaCLR trained on K400-mini also outperforms the Visual-only baseline pre-
trained on the full K400 (4× more data): +3.5/+0.9 on UCF/HMDB.

Ablation: motion representations (Table 1b). In Sec. 3 we discussed some
conceptual advantages of using flow edge maps and here we evaluate it against
two popular motion alternatives: Frame Difference and Optical Flow. As shown
in Table 1b, Flow Edges is indeed the best way to represent motion for self-
supervised training, thanks to its ability to prune background motion noise and
absolute motion magnitude. That being said, even the much weaker Frame Dif-
ference representation outperforms the Visual-only baseline (Table 1a) by +8.0
top-1 accuracy on UCF and +6.4 on HMDB. This further confirms the impor-
tance of enriching video representations with motion cues.

Ablation: MaCLR components (Table 1c). We now dissect MaCLR to
study the importance of its components.
Temporal Jittering. Unlike previous work that learn self-supervised representa-
tion by exploiting pixel-level correspondences between RGB and optical flow
inputs [46,60], we demonstrate that it’s more effective to learn self-supervised
representations by introducing temporal “misalignment” between them. Specif-
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ically, we compare MaCLR, which trains on RGB and motion clips that are
temporally jittered, against a variant that is trained on synchronized RGB and
motion clips (i.e., sync pairs [vq, mk] and [mq, vk] in Eq. 2). Our results show
that the misaligned inputs lead to better representations (+0.7 on UCF), as it
prevents the model from exploiting the shortcut of finding pixel correspondences
using low-level visual cues.
Motion thresholding. Next, we study the motion input sampling strategy dis-
cussed in Sec. 3.1. We compare MaCLR to a variant which randomly samples mo-
tion input clips, without removing those with little motion (i.e., setting threshold
γ = 0, Sec. 4.1). Without this threshold, top-1 accuracy degrades by -0.8 on both
datasets, due to the noise introduced by clips with too little motion.
Motion loss Lm. Finally, we study whether it’s necessary to have the extra con-
trastive objective Lm between motion inputs (Eq. 3), which is included to help
training more discriminative motion embeddings. Results show that this motion
discrimination objective is indeed useful as it improves top-1 acc by +0.3 and
+0.6 on UCF101 and HMDB51.

Comparison to state-of-the-art (Table 2).We now compare MaCLR against
previous self-supervised video representation learning methods in the literature
using both the evaluation protocols introduced at the beginning of Sec. 4.2:
Linear (✓ for column “Frozen”) and Full (✗).

By only training a linear layer on top of our self-supervised learned repre-
sentation, our method is able to achieve significantly better top-1 classification
accuracy compared to the previous state-of-the-art trained on K400: +16.7 and
+16.9 over CoCLR on UCF101 and HMDB51, respectively. Only the recent
CVRL method comes close to our results on UCF, but still lacks on HMDB
(−4.7). Moreover, MaCLR outperforms all previous methods, including those
trained on 100×more data than K400 (e.g., IG65M and Youtube8M), and those
that use extra modalities like audio and text (e.g., XDC, MIL-NCE).

Results using the end-to-end full training evaluation protocol show similar ob-
servations to the linear evaluation protocol: MaCLR again achieves competitive
results among the methods trained on K400. When compared to previous ap-
proaches, only ρBYOL, XDC and GDT produce results comparable to MaCLR.
Among them, ρBYOL is conceptually similar to our visual-only method, but
augmented with the idea of sampling multiple clips (ρ = 4) per video for train-
ing, which is complementary to our main contribution. On the other hand, both
XDC and GDT are trained on 270×more data (IG65M contains 21 years of video
content vs.K400 only 28 days) and use extra audio modality as inputs. Further-
more, towards making the best effort in enabling fair comparison against the
literature, we also present the results of a weaker MaCLR model trained with a
smaller backbone (R18) and a smaller input size (128×128). Under this setting,
our model again convincingly outperforms models with similar backbone and
input resolutions (e.g., 3D-RotNet, CBT, GDT, CoCLR).

We also tried to keep the Motion pathway during inference and ensemble
its prediction with those of the Visual pathway (“V+F”). This produces results
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Method Date Data (duration) Arch. Size Modality Frozen UCF HMDB

MemDPC [34] 2020 K400 (28d) R-2D3D-34 2242 V ✓ 54.1 30.5
MIL-NCE [47] 2020 HTM (15y) S3D 2242 V+T ✓ 82.7 53.1
MIL-NCE [47] 2020 HTM (15y) I3D 2242 V+T ✓ 83.4 54.8
XDC [2] 2020 IG65M (21y) R(2+1)D 2242 V+A ✓ 85.3 56.0
ELO [55] 2020 YT-8M (8y) R(2+1)D 2242 V+A ✓ – 64.5
AVSlowFast [82] 2020 K400 (28d) AVSlowFast-50 2242 V+A ✓ 77.4 42.2
CoCLR [35] 2020 K400 (28d) S3D 1282 V ✓ 74.5 46.1
CVRL [57] 2021 K400 (28d) R3D-50 2242 V ✓ 89.8 58.3
MLFO [56] 2021 K400 (28d) R3D-18 1122 V ✓ 63.2 33.4
BraVe [58] 2021 K600 (36d) R3D-50 2242 V ✓ 88.8 61.8
MaCLR K400 (28d) R3D-18 1282 V ✓ 90.4 57.5
MaCLR K400 (28d) R3D-50 2242 V ✓ 91.5 63.0

w/o Pretrain - R3D-50 2242 V ✗ 69.0 22.7
CBT [66] 2019 K600+ (273d) S3D 1122 V ✗ 79.5 44.6
DynamoNet [19] 2019 YT-8M-1 (58d) STCNet 1122 V ✗ 88.1 59.9
XDC [2] 2020 IG65M (21y) R(2+1)D 2242 V+A ✗ 94.2 67.4
AVSlowFast [82] 2020 K400 (28d) AVSlowFast-50 2242 V+A ✗ 87.0 54.6
SpeedNet [4] 2020 K400 (28d) S3D-G 2242 V ✗ 81.1 48.8
MemDPC [34] 2020 K400 (28d) R-2D3D-34 2242 V ✗ 86.1 54.5
CoCLR [35] 2020 K400 (28d) S3D 1282 V ✗ 87.9 54.6
GDT [53] 2020 K400 (28d) R(2+1)D 1122 V+A ✗ 89.3 60.0
GDT [53] 2020 IG65M (21y) R(2+1)D 1122 V+A ✗ 95.2 72.8
MIL-NCE [47] 2020 HTM (15y) S3D 2242 V+T ✗ 91.3 61.0
ELO [55] 2020 YT-8M-2 (13y) R(2+1)D 2242 V+A ✗ 93.8 67.4
CVRL [57] 2021 K400 (28d) R3D-50 2242 V ✗ 92.9 67.9
MLFO [56] 2021 K400 (28d) R3D-18 1122 V ✗ 79.1 47.6
ρBYOL [24] 2021 K400 (28d) R3D-50 2242 V ✗ 94.2 72.1
MotionFit [30] 2021 K400 (28d) S3D-G 2242 V ✗ 90.1 50.6
ASCNet [38] 2021 K400 (28d) S3D-G 2242 V ✗ 90.8 60.5
BraVe [58] 2021 K600 (36d) R3D-50 2242 V ✗ 92.6 69.2
MaCLR K400 (28d) R3D-18 1282 V ✗ 91.3 62.1
MaCLR K400 (28d) R3D-50 2242 V ✗ 94.0 67.4
MaCLR K400 (28d) R3D-50 2242 V+F ✗ 94.2 67.3

Fully-Supervised [83] K400 (28d) S3D 2242 V ✗ 96.8 75.9

Table 2: Comparison with state-of-the-art approaches. We report top-1
accuracy. In parenthesis, we show the total video duration in time (d for day, y
for year). The top half of the table contains results for the Linear protocol (Frozen
✓), whereas the bottom half shows results for the Full end-to-end finetuning
protocol (Frozen ✗). For Modality, V: visual only, A: audio, T: text narration.

that are nearly identical to those obtained using only our motion-aware Vi-
sual pathway (“V”), which suggests that our novel training paradigm is indeed
able to successfully “distill” motion information into the Visual pathway dur-
ing pretraining. Finally, we also performed k-nearest-neighbor video retrieval to
compare to the recent ASCNet work [38] in Table 3a. Despite similar accuracy
when k=10, we largely outperform under the strictest 1-NN setting (+2.8%),
which shows the higher precision of our representations.

Low-shot finetuning. We further investigate how the performance of MaCLR
varies with respect to the amount of data available for finetuning on the tar-
get task. We evaluate using the Full Training protocol on the UCF101 dataset
starting from just 1% of its training data (1 video per class) and gradually in-
crease that to 100% (9.5k videos). We compare results against our two baselines:
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method 1-NN 10-NN

ASCNet R18 58.9 82.2

MaCLR R18 61.7 82.2

MaCLR R50 73.4 88.2

(a) kNN video retrieval

method 1% 5% 20% 40% 60% 80% 100%

Supervised 69.3 85.1 93.0 94.5 94.7 95.8 95.4

Visual-only 32.9 62.8 82.2 86.5 87.8 89.5 89.0

MaCLR 42.8 71.9 89.1 91.3 92.9 93.4 94.0

∆ +9.9 +9.1 +6.9 +4.8 +5.1 +3.9 +5.0

(b) Low-shot learning on UCF101

Table 3: Video retrieval and low-shot learning on UCF101. (a) reports
kNN video retrieval results on split1 of UCF101. A video is considered to be
correctly predicted if its ground-truth label is among the labels of its k nearest
neighbors retrieved from the training set. (b) Rows indicate different pretrainings
on K400, while columns vary the % of UCF training data used for finetuning.
All results are top-1 accuracy.

Visual-only and Supervised (Table 3b). MaCLR outperforms Visual-only across
all training set sizes and it only requires 20% of the training videos to match the
performance of Visual-only with 100% (89.1 vs 89.0). Another interesting obser-
vation is that the gap ∆ between MaCLR and Visual-only reaches its maximum
with the smallest training set (1%), suggesting that motion-visual learning is
particularly helpful for generalization in low-shot scenarios.

4.3 Action Recognition on Something-Something

Next we evaluate MaCLR on Something-Something-v2 (SSv2) [1], a challenging
action classification dataset that is heavily focused on motion. Different from
UCF101 and HMDB51 which contain action classes similar to K400, SSv2 con-
tains a very different set of actions featuring complex human object interactions,
like “Moving something up” and “Pushing something from left to right”. The
dataset consists of 168k training, 24k validation and 24k test videos, all anno-
tated with 174 action classes. We finetune on SSv2 with a recipe that mostly
follows the official implementation of [23]: we use a clip size of 16×8 and a batch-
size of 16 (over 8 GPUs); we train for 22 epochs with an initial learning rate of
0.03 and decay it by 10× twice at 14 and 18 epochs; and a learning rate warm-up
is scheduled for 0.19 epochs starting from a learning rate of 0.0001.

We evaluate using both the Linear and Full finetune protocol. We compare
methods that are pretrained in different ways: MaCLR and the Visual-only base-
line are pretrained self-supervisedly on K400, whereas R3D-50 [23] is pretrained
with full supervision on K400. Rand Init is a randomly initialized network with-
out pretraining (Table 4a).

For the Full protocol evaluation, it’s clear that pretraining on K400 is ben-
eficial and improves by almost +10 top-1 accuracy. Next, MaCLR outperforms
the Visual-only baseline, showing once more the importance of learning from the
added Motion pathway. Finally, when comparing to R3D-50 pretrained with full
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method pretrain sup. acc@1 acc@5 rec@5

Slow+NL K400 ✓ 29.1 58.7 19.2
R3D-50 K400 ✓ 38.3 69.3 18.7

Visual-only K400 ✗ 32.8 61.6 13.6
MaCLR K400 ✗ 43.0 73.2 17.5

(a) Action classification on SSv2

method pretrain sup. Full Linear

R3D-50 K400 ✓ 55.5 16.3

Rand Init - ✗ 45.4 -

Visual-only K400 ✗ 54.9 16.6

MaCLR K400 ✗ 57.4 27.1

(b) Verb prediction on VidSitu

Table 4: Results on SSv2 and VidSitu. (a) reports top-1 accuracy. For fine-
tuning, we use 16×8 clip as input following [23]. (b) reports top-1, top-5 accu-
racy and macro-averaged recall with five predictions on val set following [59].
All models use a R3D-50 backbone with 16×4 inputs.

supervision, MaCLR not only closes the gap between self-supervised and fully-
supervised methods, but even outperforms the supervised pretraining (+1.9).

Furthermore, we test with the Linear protocol, which is much more chal-
lenging due to the large difference between the label spaces of K400 and SSv2.
As expected, Table 4a shows that the accuracy of all methods is much lower
compared to their Full finetune results. However, it’s notable that the gap be-
tween MaCLR and Visual-only significantly increases (+10.5 vs +2.5) compared
to the Full protocol, which further demonstrates our method’s generalization
strength. Moreover, it’s interesting to see the supervised baseline underperform
both self-supervised methods, as it’s harder to overcome taxonomy bias under
Linear protocol compared to the Full protocol for a representation pretrained
with a fixed label taxonomy. We believe this is a promising example showing how
self-supervised training can remove the label taxonomy bias that is inevitable
under supervised settings, and lead to more general video representations that
can be better transferred to new domains.

In this section we evaluate how MaCLR pretrained on YouTube-style short
clips (K400) generalizes to a very different video domain: movie clips. For this,
we evaluate our video representation on the recent VidSitu benchmark [59] which
features 30k movie clips from 3k different movies. Specifically, we benchmark on
the verb prediction task of VidSitu, which contains 1560 action classes (e.g.,
speak, walk, run, climb). We compare different pretraining strategies, using
the same R3D-50 backbone with 16×4 inputs, and we evaluate verb predic-
tion results with top-1/top-5 accuracy and the macro-averaged recall metric
with five predictions, as in [59]. The results are shown in Table 4b. For the su-
pervised “R3D-50” baseline, we pretrained its backbone using the K400 labels
and then fine-tuned it on VidSitu. As for self-supervised pretraining, we evalu-
ate both the Visual-only baseline and our MaCLR. Similar to our observations
on SSv2, MaCLR outperforms all methods on both acc@1 and acc@5 metrics.
The improvement over the Visual-only baseline is also particularly substantial,
which suggests that motion information is particularly important to help self-
supervised representation generalize to different video domains.
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method pretrain dataset sup. mAP

Faster-RCNN [23] ImageNet ✓ 15.3
Faster-RCNN [23] K400 ✓ 21.9

Rand Init - ✗ 6.6
CVRL [57] K400 ✗ 16.3
Visual-only K400 ✗ 18.6
MaCLR K400 ✗ 22.1

Table 5: Action detection on AVA. We use 8×8 clip as input for finetun-
ing [23]. CVRL numbers are taken from [57].

4.4 Action Detection on AVA

In the previous section we showed that MaCLR can generalize to new video
domains within the same downstream task (i.e., action recognition). However,
we believe that our self-supervised representation can go beyond that and also
generalize to novel downstream tasks, since it is not optimized for any task
specific objective. To test this, we transfer MaCLR representation to the new
task of action detection, which requires not only to recognize the action class,
but also localize the person performing the action.

We evaluate action detection on the AVA dataset (CC-BY-4.0) [32] which
contains 211k training and 57k validation videos. Spatiotemporal labels (i.e., ac-
tion classes and bounding boxes) are provided at 1 FPS rate. We follow the stan-
dard evaluation protocol and compute mean Average Precision over 60 classes,
using an IOU threshold of 0.5. We follow the Faster-RCNN detector design of
[23] and use the Visual pathway architecture of Sec. 3.3 as the detector back-
bone. We fix the training schedule to 20 epochs with an initial learning rate of
0.1 and a batch size of 64 [23].

Results are shown in Table 5. Clearly, video pretraining plays a critical role
in action detection, as demonstrated by the low mAP of 6.6 when training from
scratch and the substantially lower AP achieved by supervised pretraining on
ImageNet (pretrained 2D convs are inflated into 3D for fine-tuning [11]) com-
pared to supervised pretraining on K400. As for self-supervised pretraining, both
the Visual-only baseline and MaCLR outperform ImageNet supervised pretrain-
ing, again demonstrating the importance of pretraining on videos. Moreover,
MaCLR again outperforms both the Visual-only baseline and the recent CVRL
approach, which also only uses RGB inputs for pretraining.

Finally, note how MaCLR even outperforms the supervised Faster-RCNN
pretrained on K400. To the best of our knowledge, we are the first to demonstrate
that self-supervised video learning can transfer to action detection and match
the performance of fully-supervised pretraining.

4.5 Visualizing MaCLR Representations

To gain deeper insights on what MaCLR has learned in its representations, we
adopt Grad-CAM [62] to visualize the spatiotemporal regions that contribute
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Fig. 2: Grad-CAM visualization for MaCLR (top) and Visual-only
(bottom) representations. Predictions are overlaid on each frame.

the most to the classification decisions on UCF101. As shown in Fig. 2, we ob-
serve that the representation learned by MaCLR focuses more on the “motion-
sensitive” regions (i.e., regions where object motion likely occur). For example,
in col-1, MaCLR makes the correct prediction of “PommelHorse” by focusing its
attention on the person carrying out the motion. The Visual-only model, on the
other hand, incorrectly predicted “ParallelBars” as it finds “bar-like” straight
lines in the background. This pattern can also be observed in col-2 (Visual-only
model predicts “BlowDryHair” after finding hair textures). Furthermore, we can
observe another type of behavior in col-3. In both examples, the background
scenes (gym) are associated with many fine-grained action classes (different gym
activities), our model is able to distinguish them by focusing on the actual mo-
tion pattern. The baseline, instead, gets confused as it focuses too much on the
background. Finally, we present a failure case in the last column where MaCLR
correctly focuses on the right motion region (fingers), but confuses the finger
motion of “Knitting” with “Typing”.

Conclusion

We presented MaCLR to learn self-supervised video representations with ex-
plicit cross-modal motion-visual contrastive learning. We demonstrated SOTA
self-supervised performance with MaCLR across various datasets and tasks.
Moreover, we showed that MaCLR representations can be as effective as rep-
resentations learned with full supervision for SSv2 action recognition, VidSitu
verb prediction and AVA action detection. Given the simplicity of our method,
we hope it will serve as a strong baseline for future research in self-supervised
video representation learning.
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31. Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P.H., Buchatskaya, E.,
Doersch, C., Pires, B.A., Guo, Z.D., Azar, M.G., et al.: Bootstrap your own latent:
A new approach to self-supervised learning. In: NeurIPS (2020) 3

32. Gu, C., Sun, C., Ross, D.A., Vondrick, C., Pantofaru, C., Li, Y., Vijayanarasimhan,
S., Toderici, G., Ricco, S., Sukthankar, R., et al.: AVA: A video dataset of spatio-
temporally localized atomic visual actions. In: CVPR (2018) 3, 13

33. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an in-
variant mapping. In: CVPR (2006) 3

34. Han, T., Xie, W., Zisserman, A.: Memory-augmented dense predictive coding for
video representation learning. In: ECCV (2020) 10

35. Han, T., Xie, W., Zisserman, A.: Self-supervised co-training for video representa-
tion learning. In: NeurIPS (2020) 3, 10

36. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: CVPR (2020) 2, 3, 4, 5

37. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with
kernelized correlation filters. T-PAMI (2014) 4

38. Huang, D., Wu, W., Hu, W., Liu, X., He, D., Wu, Z., Wu, X., Tan, M., Ding,
E.: ASCNet: Self-supervised video representation learning with appearance-speed
consistency. In: ICCV (2021) 3, 10

39. Huang, L., Liu, Y., Wang, B., Pan, P., Xu, Y., Jin, R.: Self-supervised video rep-
resentation learning by context and motion decoupling. In: CVPR (2021) 3

40. Kang, K., Li, H., Xiao, T., Ouyang, W., Yan, J., Liu, X., Wang, X.: Object detec-
tion in videos with tubelet proposal networks. In: CVPR (2017) 4

41. Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S.,
Viola, F., Green, T., Back, T., Natsev, P., et al.: The kinetics human action video
dataset. arXiv preprint arXiv:1705.06950 (2017) 1, 6

42. Kolesnikov, A., Zhai, X., Beyer, L.: Revisiting self-supervised visual representation
learning. In: CVPR (2019) 3

43. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video
database for human motion recognition. In: ICCV (2011) 3, 7

44. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human
actions from movies. In: CVPR (2008) 4

45. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.H.: Flow-grounded spatial-
temporal video prediction from still images. In: ECCV (2018) 4



MaCLR: Motion-aware Contrastive Learning of Representations for Videos 17

46. Mahendran, A., Thewlis, J., Vedaldi, A.: Cross pixel optical-flow similarity for
self-supervised learning. In: ACCV (2018) 3, 8

47. Miech, A., Alayrac, J.B., Smaira, L., Laptev, I., Sivic, J., Zisserman, A.: End-
to-end learning of visual representations from uncurated instructional videos. In:
CVPR (2020) 10

48. Misra, I., Maaten, L.v.d.: Self-supervised learning of pretext-invariant representa-
tions. In: CVPR (2020) 3

49. Misra, I., Zitnick, C.L., Hebert, M.: Shuffle and learn: unsupervised learning using
temporal order verification. In: ECCV (2016) 2, 3

50. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving
jigsaw puzzles. In: ECCV (2016) 3

51. Noroozi, M., Pirsiavash, H., Favaro, P.: Representation learning by learning to
count. In: ICCV (2017) 3

52. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748 (2018) 4

53. Patrick, M., Asano, Y.M., Kuznetsova, P., Fong, R., Henriques, J.F., Zweig, G.,
Vedaldi, A.: Multi-modal self-supervision from generalized data transformations.
In: ICCV (2021) 10

54. Perazzi, F., Khoreva, A., Benenson, R., Schiele, B., Sorkine-Hornung, A.: Learning
video object segmentation from static images. In: CVPR (2017) 4

55. Piergiovanni, A., Angelova, A., Ryoo, M.S.: Evolving losses for unsupervised video
representation learning. In: CVPR (2020) 10

56. Qian, R., Li, Y., Liu, H., See, J., Ding, S., Liu, X., Li, D., Lin, W.: Enhancing
self-supervised video representation learning via multi-level feature optimization.
In: ICCV (2021) 10

57. Qian, R., Meng, T., Gong, B., Yang, M.H., Wang, H., Belongie, S., Cui, Y.: Spa-
tiotemporal contrastive video representation learning. In: CVPR (2021) 3, 4, 6,
10, 13

58. Recasens, A., Luc, P., Alayrac, J.B., Wang, L., Strub, F., Tallec, C., Malinowski,
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