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Abstract. Active speaker detection (ASD) in videos with multiple speak-
ers is a challenging task as it requires learning effective audiovisual fea-
tures and spatial-temporal correlations over long temporal windows. In
this paper, we present SPELL, a novel spatial-temporal graph learning
framework that can solve complex tasks such as ASD. To this end, each
person in a video frame is first encoded in a unique node for that frame.
Nodes corresponding to a single person across frames are connected to en-
code their temporal dynamics. Nodes within a frame are also connected
to encode inter-person relationships. Thus, SPELL reduces ASD to a
node classification task. Importantly, SPELL is able to reason over long
temporal contexts for all nodes without relying on computationally ex-
pensive fully connected graph neural networks. Through extensive exper-
iments on the AVA-ActiveSpeaker dataset, we demonstrate that learning
graph-based representations can significantly improve the active speaker
detection performance owing to its explicit spatial and temporal struc-
ture. SPELL outperforms all previous state-of-the-art approaches while
requiring significantly lower memory and computational resources. Our
code is publicly available: https://github.com/SRA2/SPELL

1 Introduction

Holistic scene understanding in the wild is still a challenge in computer vision
despite recent breakthroughs in several other areas. A scene represents real-
life events spanning complex visual and auditory information, which are often
intertwined. Active speaker detection (ASD) is a key component in scene un-
derstanding and is an inherently multimodal (audio-visual) task. The objective
here is, given a video input, to identify which persons are speaking in each frame.
This has numerous practical applications ranging from speech enhancement sys-
tems [1] to human-robot interaction [31,30].

Earlier efforts on ASD had limited success due to the unavailability of large
datasets, powerful learning models, or computing resources [7,8,9]. With the
release of AVA-ActiveSpeaker [26], a large and diverse ASD dataset, a num-
ber of promising approaches have been developed including both visual-only
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Fig. 1. SPELL converts a video into a canonical graph from the audio-visual input data,
where each node corresponds to a person in a frame, and an edge represents a spatial
or temporal interaction between the nodes. The constructed graph is dense enough
for modeling long-term dependencies through message passing across the temporally-
distant but relevant nodes, yet sparse enough to be processed within low memory and
computation budget. The Active Speaker Detection (ASD) task is posed as a binary
node classification in this long-range spatial-temporal graph.

and audio-visual methods. As visual-only methods [8] are unable to distinguish
between verbal and non-verbal lip movements, more recent approaches have fo-
cused on joint modeling of the audio-visual information. Audio-visual approaches
[2,37,33,18,17] address the task by first encoding visual (primarily facial) and au-
dio features from videos, and then by classifying the fused multimodal features.
Such models generally have multi-stage frameworks [2,18,37,17] and show good
detection performance. However, state-of-the-art methods have relied on com-
plex architectures for processing the audio-visual features with high computation
and memory overheads. For example, TalkNet [33] suggests using a transformer-
style architecture [34] to model the cross-modal information from the audio-
visual input. ASDNet [17], which is the leading state-of-the-art method, uses a
complex 3D convolutional neural network (CNN) to extract more powerful fea-
tures. These approaches are not scalable and may not be suitable for real-world
situations with limited memory and computation budgets.

In this paper, we propose an efficient graph-based framework, which we call
SPELL (Spatial-Temporal Graph Learning). Figure 1 illustrates an overview
of our framework. We construct a multimodal graph from the audio-visual data
and cast the active speaker detection as a graph node classification task. First,
we create a graph where each node corresponds to each person at each frame and
the edges represent spatial or temporal relationships among them. The initial
node features are constructed using simple and lightweight 2D CNNs instead
of a complex 3D CNN or a transformer. Next, we perform binary node classi-
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fication – active or inactive speaker – on this graph by learning a three-layer
graph neural network (GNN) model each with a small number of parameters. In
our framework, graphs are constructed specifically for encoding the spatial and
temporal dependencies among the different facial identities. Therefore, the GNN
can leverage this graph structure and model the temporal continuity in speech
as well as the long-term spatial-temporal context, while requiring low memory
and computation.

Although the proposed graph structure can model the long-term spatial-
temporal information from the audio-visual features, it is likely that some of
the short-term information may be lost in the process of feature encoding. This
is because we use 2D CNNs that are not well-suited for processing the spatial-
temporal information when compared to the transformer or the 3D CNNs. To
encode the short-term information, we adopt TSM [19] - a generic module for
2D CNNs that is capable of modeling temporal information without introducing
any additional parameters or computation. We empirically verify that SPELL
can benefit both from the supplementary short-term information provided by
TSM and the long-term information modeled by our graph structure.

We show the effectiveness of SPELL by performing extensive experiments on
the AVA-ActiveSpeaker dataset [26]. Using our spatial-temporal graph frame-
work on top of the TSM-inspired feature encoders, SPELL outperforms all pre-
vious state-of-the-art approaches. Critically, SPELL requires significantly less
hardware resources for the visual feature encoding (0.7 GFLOPs, 11.2M#Params)
compared to ASDNet [17] (13.2 GFLOPs, 48.6M params), which is the leading
state-of-the-art method. In addition, SPELL achieved 2nd place in the AVA-
ActiveSpeaker challenge at ActivityNet 20221, which also demonstrates the ef-
fectiveness of our method (please refer to the technical report [22]).

There are three main contributions in this paper:
• We present a graph-based approach for solving the task of active speaker
detection over long time supports by casting it as a node classification prob-
lem.

• Our model, SPELL, learns from videos to model the short-term and long-
term spatial-temporal information. Specifically, we propose to construct graphs
on the TSM-inspired audio-visual features. The graphs are dense enough for
message passing across temporally-distant nodes, yet sparse enough to model
their interactions within tight memory and compute constraints.

• SPELL notably outperforms existing methods with lower memory and com-
putation complexity on the active speaker detection benchmark dataset,
AVA-ActiveSpeaker.

2 Related Work

We discuss related works in two relevant areas: application of GNNs in video
scene understanding and active speaker detection.

1 https://research.google.com/ava/challenge.html
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GNNs for scene understanding. CNNs, Long Short Term Memory
(LSTM), and their variants have long dominated the field of video understand-
ing. In recent times, two new types of models are gaining traction in many areas
of visual information processing: Transformers [34] and GNNs. They are not nec-
essarily in competition with the former models, but it has been shown that they
can augment the performance of CNN/LSTM based models. Applications of spe-
cialized GNN models in video understanding include visual relationship forecast-
ing [21], dialog modeling [11], video retrieval [32], emotion recognition [28], and
action detection [38]. GNN-based generalized video representation frameworks
have also been proposed [3,23,24] that can be used for multiple downstream
tasks. For example, in Arnab et al. [3], a fully connected graph is constructed
over the foreground nodes from video frames in a sliding window fashion, and a
foreground node is connected to other context nodes from its neighboring frames.
The message passing over the fully connected spatial-temporal graph is expensive
in terms of the computational time and memory. Thus in practice such models
end up using a small sliding window, making them unable to process longer-
term sequences. SPELL also operates on foreground nodes - particularly, faces.
However, the graph structure is not fully connected. We construct the graph
such that it enables interactions only between relevant nodes over space and
time. The graph remains sparse enough such that the longer-term context can
be accommodated within a comparatively smaller memory and compute budget.

Active speaker detection (ASD). Earlier work on active speaker de-
tection by Cutler et al. [7] detects correlated audio-visual signals using a time-
delayed neural network. Subsequent works depend only on visual information and
considers a simpler set-up focusing on lip and facial gestures [8]. More recently,
high-performing ASD models rely on large networks - developed for capturing
the spatial-temporal variations in audio-visual signals, often relying on ensemble
networks or complex 3D CNN features [2,33]. Sharma et al. [27] and Zhang et al.
[36] both used large 3D CNN architectures for audio-visual learning. The Active
Speaker in Context (ASC) model [2] uses non-local attention modules with an
LSTM to model the temporal interactions between audio and visual features
encoded by two-stream ResNet-18 networks [13]. TalkNet [33] achieves superior
performance through the use of a 3D CNN and a couple of Transformers [34] re-
sulting in an effectively large model. Another recent work, the ASDNet [17], uses
3D-ResNet101 for encoding visual data and SincNet [25] for audio. The Unified
Context Network (UniCon) [37] proposes relational context modules to capture
visual (spatial) and audio-visual context based on convolutional layers. Much
of these advances are due to the availability of the AVA-ActiveSpeaker dataset
[26]. Previously available multimodal datasets (e.g. [4]) were either smaller or
constrained or lacked variability in data. The work by Roth et al. [26] also in-
troduced a competitive baseline along with the large dataset. Their baseline
involves jointly learning an audio-visual model that is end-to-end trainable. The
audio and visual branches in this model are CNN-based which uses a depth-wise
separable technique.
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MAAS [18] presents a different multimodal graph approach. Our work dif-
fers from MAAS in several ways, where the main difference is in the handling of
temporal context. While MAAS focuses on short-term temporal windows to con-
struct their graphs, we focus on constructing longer-term audio-visual graphs.
More specifically, in MAAS, different faces are connected only between con-
secutive frames. In contrast, SPELL directly connects faces in a longer-term
neighborhood controlled by the time threshold hyperparameter, τ (defined in
Sec 3.2). In addition, SPELL exploits the temporal ordering patterns of the face
tracks by using all the forward/backward/undirected edges in the time domain.
In SPELL, each graph can span from 13 to 55 seconds (refer to Sec 4.2) of a
video depending on the number of nodes. This is significantly larger than MAAS
where the time window size is fixed at 1.59 seconds. During inference, SPELL
performs single forward pass, whereas MAAS performs multiple forward passes.

3 Method

In this section, we describe our approach in detail. Figure 2 illustrates how
SPELL constructs a graph from an input video where each node corresponds to
a face within a temporal window of the video. SPELL is unique in terms of its
canonical way of constructing the graph from a video. The graph is able to reason
over long temporal contexts for all nodes without being fully-connected. This is
an important design choice to reduce memory and computation overheads. The
edges in the graph are only between relevant nodes needed for message passing,
leading to a sparse graph that can be accommodated within a small memory
and computation budget. After converting the video into a graph, we train a
lightweight GNN to perform binary node classification on this graph. The model
architecture is illustrated in Figure 3. The model utilizes three separate GNN
modules for the forward, backward, and undirected graph, respectively. Each
module has three layers where the weight of the second layer is shared across
all the above three modules. More details and the intuition behind the design
choice are described in Section 3.4.

3.1 Notations

Let G = (V,E) be a graph with the node set V and edge set E. For any v ∈ V ,
we define Nv to be the set of neighbors of v in G. We will assume the graph has
self-loops, i.e., v ∈ Nv. In addition, let X denote the set of given node features
{xv}v∈V where xv ∈ Rd is the feature vector associated with the node v. Given
this setup, we can define a k-layer GNN as a set of functions F = {fi}i∈[k] for
i ≥ 1 where each fi : V → Rm ( m will depend on layer index i). All fi is
parameterized by a set of learnable parameters. Furthermore, Xi

V = {xv}v∈V

is the set of features at layer i where xv = fi(v). Here, we assume that fi has
access to the graph G and the feature set from the last layer Xi−1

V .

• SAGE-CONV aggregation: This aggregation was proposed by [12] and has a
computationally efficient form. Given a d-dimensional feature set Xi−1

V , the
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(a) (b)

Fig. 2. (a): An illustration of our graph construction process. The frames above are
temporally ordered from left to right. The three colors of blue, red, and yellow denote
three identities that are present in the frames. Each node in the graph corresponds
to each face in the frames. SPELL connects all the inter-identity faces from the same
frame with the undirected edges. SPELL also connects the same identities by the
forward/backward/undirected edges across the frames. In this example, the same iden-
tities are connected across the frames by the forward edges, which are directed and
only go in the temporally forward direction. (b): The process for creating the back-
ward and undirected graph is identical, except in the former case the edges for the
same identities go in the opposite direction and the latter has no directed edge. Each
node also contains the audio information which is not shown here.

function fi : V → Rm is defined for i ≥ 1 as follows:

f(v) = σ
( ∑

w∈Nv

Mixw

)
where xw ∈ Xi−1

V , Mi ∈ Rm×d is a learnable linear transformation, and
σ : R → R is a non-linear activation function applied point-wise.

• EDGE-CONV aggregation: EDGE-CONV [35] models global and local-structures
by applying channel-wise symmetric aggregation operation on the edge fea-
tures associated with all the edges emanating from each node. The aggrega-
tion function fi : V → Rm can be defined as:

fi(v) = σ
( ∑

w∈Nv

gi
(
xv ◦ xw

))
where ◦ denotes concatenation and gi : R2d → Rm is a learnable transfor-
mation. Often gi is implemented by MLPs. The number of parameters for
EDGE-CONV is larger than SAGE-CONV. This gives the EDGE-CONV layer
more expressive power at a cost of higher complexity and possible risk of
overfitting. For our model, we set gi to be an MLP with two layers of linear
transformation and a non-linearity. We describe the details in section 4.
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3.2 Video as a multimodal graph

We represent a video as a multimodal graph that is suitable for the task of active
speaker detection. We assume that the bounding-box information of every face
region in each frame is given as per the problem set up. For simplicity, we assume
that the entire video is represented by a single graph - if the video has n faces
in it, the graph will have n nodes. In our actual implementation, we temporally
order the set of all faces in a video, divide them in contiguous sets, and then
construct one graph for each such set.

Let B be the set of all face images cropped from an input video (i.e. face-
crops). Then, each element b ∈ B can be represented by a tuple (Box,Time, Id),
where Box is the normalized bounding-box coordinates of a face-crop in its frame,
Time is the time-stamp of its frame, and Id is a unique string that is common to
all the face-crops that shares the same identity.

In other words, B can be represented by a set of nodes [n] where n = |B| is
the total number of faces that appear in the video. Box is treated as a map such
that Box(i) is defined by the bounding-box coordinates of the i-th face for any
i ∈ [n]. Similarly, Time(i) and Id(i) correspond to the time and identity of the i-
th face, respectively. With this setup, the node set of G = (V,E) is V = [n] ∼= B,
and for any (i, j) ∈ [n] × [n], we have (i, j) ∈ E if either of the following two
conditions are satisfied:

• Id(i) = Id(j) and |Time(i)-Time(j)| ≤ τ

• Time(i) = Time(j)

where τ is a hyperparameter for the maximum time difference between the nodes
having the same identities. In essence, we connect two nodes (faces) if they share
the same identity and are temporally close or if they belong to the same frame.
Thus, the interactions between different speakers and the temporal variations of
the same speaker can jointly be modeled.

To pose the active speaker detection task as a node classification problem,
we also need to specify the feature vectors for each node v ∈ V . We use a two-
stream 2D ResNet [13] architecture as in [26,2] for extracting the visual features
of each face-crop and the audio features of each frame. Then, a feature vector
of node v is defined to be xv = [vvisual ◦ vaudio] where vvisual is the visual feature
of face-crop v and vaudio is the audio feature of v’s frame where ◦ denotes the
concatenation. Finally, we can write G = (V,E,X) where X is the set of the
node features.

3.3 ASD as a node classification task

In the previous section, we described our graph construction procedure that
converts a video into a graph G = (V,E,X) where each node has its own audio-
visual feature vector. During the training process, we have access to the ground-
truth labels of all face-crops indicating if each of the face-crop is active speaker
or not. Therefore, the task of active speaker detection can be naturally posed
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Fig. 3. An illustration of our proposed Bi-directional (a.k.a. Bi-dir) GNN model for
active speaker detection. Here, we have three separate GNN modules for the forward,
backward, and undirected graph, respectively. Each module has three layers where the
weight of the second layer is shared by all three graph modules. The second layer is
placed inside a solid-lined box to indicate the weight sharing while for the first and
the third layer we use dotted-lines. E-CONV and S-CONV are shorthand for EDGE-
CONV and SAGE-CONV, respectively. We use the color coding: blue and red to denote
different identities in input frames. The output of the third layers are added together
and then passed to the prediction layer. It applies the sigmoid function to the summed
features of every node and produces node classification probabilities.

as a binary node classification problem in the constructed graph G, whether a
node is speaking or not speaking. Specifically, we train a three-layer GNN for this
classification task. The first layer in the network uses EDGE-CONV aggregation
to learn pair-wise interactions between the nodes. For the last two layers, we
observe that using SAGE-CONV aggregation provides better performance than
EDGE-CONV, possibly due to EDGE-CONV’s tendency to overfit.

3.4 SPELL

We now describe how our graph construction and embedding strategy takes tem-
poral ordering into consideration. Specifically, as we use the criterion: |Time(i)−
Time(j)| ≤ τ for connecting the nodes having the same identities across the
frames, the resultant graph becomes undirected. In this process, we lose the
information of the temporal ordering of the nodes. To address this issue, we ex-
plicitly incorporate temporal direction as shown in Figure 2(b). The undirected
GNN is augmented with two other parallel networks; one for going forward in
time and another for going backward in time.

More precisely, in addition to the undirected graph, we create a forward
graph where we connect (i, j) if and only if 0 ≥ Time(i) − Time(j) ≥ −τ .
Similarly, (i, j) is connected in a backward graph if and only if 0 ≤ Time(i) −
Time(j) ≤ τ . This gives us three separate graphs where each of the graphs can
model different spatial-temporal relationships between the nodes. Furthermore,
the weights of the second layer of each graph is shared across the three graphs.
This weight sharing technique can enforce the temporal consistencies among the
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different information modeled by the three graphs as well as reduce the number
of parameters. For the remaining parts of this paper, we will refer to this network
that is augmented with the foward/backward graphs as Bi-directional or Bi-dir
for short.

The proposed three-layer Bi-dir is illustrated in Figure 3. We note that right
before the Bi-dir is applied, the audio and the visual features are further encoded
by two learnable MLP layers (linear transformation with ReLU activation) sep-
arately and then added to form the fused features for the graph nodes. After the
fused features are processed by the first and the second layers, the third layer
aggregates all the information and reduce the feature dimension to 1. These 1D
features coming from the three separate graphs are added and applied to the
sigmoid function to get the final prediction score for each node.

3.5 Feature learning

Similar to ASC [2], we use a two-stream 2D ResNet [13] architecture for the
audio-visual feature encoding. The networks take as visual input k consecutive
face-crops and take as audio input the Mel-spectrogram of the audio wave sliced
along the time duration of the face-crops for the visual stream. Although the 2D
ResNet requires significantly lower hardware resources than 3D CNN counter-
parts or a transformer-style architecture [34], it is not specifically designed for
processing spatial-temporal information that is crucial in understanding video
contents. To better encode the spatial-temporal information, we augment the vi-
sual feature encoder with TSM [19], which provides 2D CNNs with a capability to
model the short-term temporal information without introducing any additional
parameters or computation. This additional use of TSM can greatly improve the
quality of the visual features, and we empirically establish that SPELL benefits
from the supplementary short-term information. The audio-visual features from
the two stream are concatenated to be node features {xv}.

Data augmentation. Reliable ASD models should be able to detect speak-
ing signals even if there is a noise in the audio. To make our method robust to
noise, we make use of data augmentation methods while training the feature
extractor. Inspired by TalkNet [33], we augment the audio data by negative
sampling. For each audio signal in a batch, we randomly select another audio
sample from the whole training dataset and add it after decreasing its volume by
a random factor. This technique can effectively increase the amount of training
samples for the feature extractor by selecting negative samples from the whole
training dataset.

Spatial feature. The visual features encoded by the 2D ResNet do not
have any information about where each face is spatially located in each frame
because we only use the cropped face regions in the visual feature encoding.
Here, we argue that the spatial locations of speakers can be another type of
inductive bias. In order to exploit the spatial information of each face-crop, we
incorporate the spatial features corresponding to each face as additional input
to the node feature as follows: We project the 4-D spatial feature of each face
region parameterized by the normalized center location, height and width (x, y,
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Table 1. Performance comparisons with other state-of-the-art methods on the valida-
tion set of AVA-ActiveSpeaker datset [26]. We report mAP (mean average precision).
SPELL outperforms all the previous approaches. 3D Conv denotes an additional use
of one or more 3D convolutional layers. Note that TSM [19] does not increase memory
usage nor the computation cost.

Method Feature encoding network mAP(%)

Roth et al. [26] MobileNet [14] 79.2
Zhang et al. [36] 3D ResNet-18 [29] + VGG-M [5] 84.0
MAAS-LAN [18] 2D ResNet-18 [13] 85.1
Chung et al. [6] VGG-M [5] + 3D Conv 85.5
ASC [2] 2D ResNet-18 [13] 87.1
MAAS-TAN [18] 2D ResNet-18 [13] 88.8
UniCon [37] 2D ResNet-18 [13] 92.0
TalkNet [33] 2D ResNet-18/34 [13] + 3D Conv 92.3
ASDNet [17] 3D ResNeXt-18 [16] + SincDSNet [25] 93.5

SPELL (Ours) 2D ResNet-18-TSM [13,19] 94.2
SPELL+ (Ours) 2D ResNet-50-TSM [13,19] 94.9

h, w) to a 64-D feature vector using a single fully-connected layer. The resulting
spatial feature vector is then concatenated to the visual feature at each node.

4 Experiments

We perform experiments on the large-scale AVA-ActiveSpeaker dataset [26]. De-
rived from Hollywood movies, this dataset comes with a number of face tracks
for active and inactive speakers and their audio signals. Its extensive annotations
of the face tracks is a key feature that was missing in its predecessors.

Implementation details. Following ASC [26], we utilize a two-stream net-
work with a ResNet [13] backbone for the audio-visual feature encoder. In the
training process, we perform visual augmentation including horizontal flipping,
color jittering, and scaling and audio augmentation as described in Section 3.5.
We extract the encoded audio, visual, and spatial features for each face-crop
to make the node feature. For the visual features, we use a stack of 11 con-
secutive face-crops (resolution: 144×144). We implement SPELL using PyTorch
Geometric library [10]. Our model consists of three GCN layers, each with 64
dimensional filters. The first layer is implemented by an EDGE-CONV layer that
uses a two-layer MLP for feature projection. The second and third GCN layers
are of type SAGE-CONV and each of them uses a single MLP layer. We set the
number of nodes n to 2000 and τ parameter to 0.9, which ensures that each
graph fully spans each of the face tracks. We train SPELL with a batch size
of 16 using the Adam optimizer [15]. The learning rate starts at 5 × 10−3 and
decays following the cosine annealing schedule [20]. The whole training process
of 70 epochs takes less than an hour using a single GPU (TITAN V).
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Table 2. Performance comparison of context-reasoning with state-of-the-art methods.
SPELL without TSM [19] demonstrates the higher context-reasoning capacity of our
method when compared to the other 2D CNN-based approaches.

Method Stage-1 mAP Final mAP ∆mAP

MAAS-LAN [18] 79.5 85.1 5.6
ASC [2] 79.5 87.1 7.6
MAAS-TAN [18] 80.2 88.8 8.6
Unicon [37] 84.0 92.0 8.0
ASDNet [17] 88.9 93.5 4.6
SPELL (Ours) 88.0 94.2 6.2
SPELL (Ours) w/o TSM 82.6 92.0 9.4

4.1 Comparison with the state-of-the-art

We summarize the performance comparisons of SPELL with other state-of-the-
art approaches on the validation set of the AVA-ActiveSpeaker dataset [26] in Ta-
ble 1. We want to point out that SPELL significantly outperforms all the previous
approaches using the two-stream 2D ResNet-18 [13]. Critically, SPELL’s visual
feature encoding has significantly lower computational and memory overhead
(0.7 GFLOPs and 11.2M parameters) compared to ASDNet [17] (13.2 GFLOPs,
48.6M #Params), the leading state-of-the-art method. A concurrent and closely
related work MAAS [18] also uses a GNN-based framework. MAAS-LAN uses a
graph that is generated on a short video clip. To improve the detection perfor-
mance, MAAS-TAN extends MAAS-LAN by connecting the graphs over time,
which makes 13 temporally-linked graph spanning about 1.59 seconds. This time
span is relatively shorter than SPELL since the SPELL graph spans around 13-
55 seconds, as explained in the next subsection. In addition, SPELL requires
a single forward pass when MAAS performs multiple forward passes for each
inference process.

4.2 Context-reasoning capacity

Most of the previous approaches have multi-stage frameworks, which includes
a feature-encoding stage for audio-visual feature extraction that is followed by
one or more context-reasoning stages for modeling long-term interactions and the
context information. For example, SPELL has a single context-reasoning stage
that uses a three-layer Bi-dir GNN for modeling long-term spatial-temporal in-
formation. In Table 2, we compare the performance of context-reasoning stages
with previous methods. Specifically, we analyze the detection performance when
using only the feature-encoding stage (Stage-1 mAP) and the final performance.
The difference between the two scores can provide a good insight on the capac-
ity of the context-reasoning modules. Because ASDNet [17] uses 3D CNNs, it is
likely that some degree of the temporal context is already incorporated in the
feature-encoding stage, which leads to a low context-reasoning performance. Sim-
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Table 3. Complexity comparisons of the context-reasoning stage. SPELL achieves the
best performance while requiring the lowest memory and computation consumption.

Method #Params(M) Size(MB) mAP(%)

ASC [2] 1.13 4.32 87.1
MAAS-TAN [18] 0.16 0.63 88.8
ASDNet [17] 2.56 9.77 93.5
SPELL (Ours) 0.11 0.45 94.2

ilarly, using TSM [19] provides the short-term context information in the feature-
encoding stage, which leads to a smaller score difference between the Stage-1 and
Final mAP and thus underestimates the context-reasoning capacity. Therefore,
we also estimate the performance of SPELL without TSM. In this case, the
context-reasoning performance of SPELL outperforms all the other methods,
which shows the higher context-reasoning capacity of our method, thanks to the
longer-term context modeling. Note that although ASC [2], MAAS [18], Uni-
con [37], and SPELL use the same 2D ResNet-18 [13], their Stage-1 mAP can
be different due to the inconsistency of input resolution, number of face-crops,
and training scheme.

Long-term temporal context. Note that τ (= 0.9 second in our exper-
iments) in SPELL imposes additional constraint on direct connectivity across
temporally distant nodes. The face identities across consecutive time-stamps are
always connected. Below is the estimate of the effective temporal context size of
SPELL. AVA-ActiveSpeaker dataset contains 3.65 million frames and 5.3 mil-
lion annotated faces, resulting into 1.45 faces per frame. With an average of 1.45
faces per frame, a graph with 500 to 2000 faces in sorted temporal order spans
over 345 to 1379 frames which correspond to 13 to 55 seconds for a 25-fps video.
In other words, the nodes in the graph might have a time-difference of about
1 minute, and SPELL is able to reason over that long-term temporal window
within a limited memory and compute budget, thanks to the effectiveness of the
proposed graph structure. It is note worthy that the temporal window size in
MAAS [18] is 1.9 seconds and TalkNet [33] uses up to 4 seconds as long-term
sequence-level temporal context.

4.3 Efficiency of the context-reasoning stage

In Table 3, we compare the complexity of the context-reasoning stage of SPELL
with ASC [2], MAAS-TAN [18], and ASDNet [17]. These methods release the
source code for their models, so we use the official code to compute the number of
parameters and the model size of the context-reasoning stage. ASC has about 10
times more parameters and model size than ours. Nevertheless, SPELL achieves
7.1% higher mAP than ASC. SPELL has fewer number of parameters than
MAAS-TAN even while achieving 5.4% higher mAP. When compared to the
leading state-of-the-art method, ASDNet, SPELL is one order of magnitude
more computationally efficient.
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Table 4. Performance comparisons of different ablative settings: TSM [19], Cx-reason
(context-reasoning only with an undirected graph), Bi-dir (augmenting with for-
ward/backward graphs), Audio-aug (audio data augmentation), Sp-feat (spatial fea-
tures).

TSM Cx-reason Bi-dir Audio-aug Sp-feat mAP(%)

- - - - - 80.2
- - - ✓ - 82.6
✓ - - ✓ - 88.0
✓ ✓ - ✓ - 92.4
✓ ✓ ✓ ✓ - 93.9
✓ ✓ ✓ ✓ ✓ 94.2

(a) (b)

Fig. 4. Study on the impact of two hyperparameters, which are τ (when n is set to
2000) and n (when τ is fixed at 0.9).

4.4 Ablation study

We perform an ablative study to validate the contributions of individual com-
ponents, namely TSM, Cx-reason (context-reasoning only with an undirected
graph), Bi-dir (augmenting context-reasoning with the forward/backward graphs),
Audio-aug (audio data augmentation), and Sp-feat (spatial features). We sum-
marize the main contributions in Table 4. We can observe that TSM, Bi-dir
graph structure, and audio data augmentation play significant roles in boosting
the detection performance. This implies that 1) retaining short-term information
in the feature-encoding stage is important, 2) processing the spatial-temporal in-
formation using our graph structure is effective, and 3) the negatively sampled
audio makes our model more robust to the noise. Additionally, the spatial fea-
tures also bring meaningful performance gain.

In addition, we analyze the impact of two hyperparameters: τ (Section 3.2)
and the number of nodes in a graph embedding process. τ controls the connec-
tivity or the edge density in the graph construction. Specifically, larger values
for τ allow us to model longer temporal correlations but increases the average
degree of the nodes, thus making the system more computationally expensive.
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Table 5. Comparisons of the detection performance and the model size with different
filter dimensions.

Filter Dim #Params(M) Size(MB) mAP(%)

16 0.02 0.10 93.5
32 0.05 0.21 93.9
64 0.11 0.45 94.2
128 0.29 1.14 94.1
256 0.88 3.38 94.1

In Figure 4, we can observe that connecting too distant face-crops deteriorates
the detection performance. One potential reason behind this could be that the
aggregation procedure becomes too smooth due to the high degree of connectiv-
ity. Interestingly, we also found that a larger number of nodes does not always
lead to higher performance. This might be because after a certain point, larger
number of nodes leads to over-fitting.

We perform additional experiments with different filter dimensions of the
EDGE-CONV and SAGE-CONV. In Table 5, we show how the detection perfor-
mance and the model size change depending on the filter dimension. We can
observe that increasing the filter dimension above 64 does not bring any perfor-
mance gain when the model size increases significantly.

We also perform an ablation study of the input modalities. When using only
the visual features, the detection performance drops significantly from 94.2% to
84.9% mAP (when using only the audio: 55.6%), which shows that both the
audio and video modalities are important for this application.

4.5 Qualitative analysis

In the supplementary material, we show several detection examples to provide
a qualitative analysis. The selected frames have multiple faces and have a long
time-span about 5-10 seconds. In all of the provided examples in the supplemen-
tary material, SPELL correctly classifies all the speakers when the counterpart
fails to do. The qualitative analysis demonstrates that SPELL is effective and
that it is good at modeling spatial-temporal long-term information.

5 Conclusion

We proposed SPELL - an effective graph-based approach to active speaker de-
tection in videos. The main idea is to capture the long-term spatial and temporal
relationships among the cropped faces through a graph structure that is aware of
the temporal order of the faces. SPELL outperforms all the previous approaches
and requires significantly less hardware resources when compared to the leading
state-of-the-art method. The model we propose is also generic - it can be used
to address other video understanding tasks such as action localization and audio
source localization.
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18. León-Alcázar, J., Heilbron, F.C., Thabet, A., Ghanem, B.: MAAS: Multi-modal
Assignation for Active Speaker Detection. In: Internal Conference on Computer
Vision (2021)

19. Lin, J., Gan, C., Han, S.: Tsm: Temporal shift module for efficient video under-
standing. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 7083–7093 (2019)



16 K. Min et al.

20. Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts.
In: International Conference on Learning Representations (ICLR) (2017)

21. Mi, L., Ou, Y., Chen, Z.: Visual relationship forecasting in videos. arXiv preprint
arXiv:2107.01181 (2021)

22. Min, K., Roy, S., Tripathi, S., Guha, T., Majumdar, S.: Intel labs at activitynet
challenge 2022: Spell for long-term active speaker detection (2022)

23. Nagarajan, T., Li, Y., Feichtenhofer, C., Grauman, K.: Ego-topo: Environment
affordances from egocentric video. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 163–172 (2020)

24. Patrick, M., Asano, Y.M., Huang, B., Misra, I., Metze, F., Henriques, J., Vedaldi,
A.: Space-time crop & attend: Improving cross-modal video representation learn-
ing. arXiv preprint arXiv:2103.10211 (2021)

25. Ravanelli, M., Bengio, Y.: Speaker recognition from raw waveform with sincnet. In:
2018 IEEE Spoken Language Technology Workshop (SLT). pp. 1021–1028. IEEE
(2018)

26. Roth, J., Chaudhuri, S., Klejch, O., Marvin, R., Gallagher, A., Kaver, L., Ra-
maswamy, S., Stopczynski, A., Schmid, C., Xi, Z., et al.: Ava active speaker: An
audio-visual dataset for active speaker detection. In: ICASSP 2020-2020 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP). pp.
4492–4496. IEEE (2020)

27. Sharma, R., Somandepalli, K., Narayanan, S.: Crossmodal learning for audio-visual
speech event localization. arXiv preprint arXiv:2003.04358 (2020)

28. Shirian, A., Tripathi, S., Guha, T.: Learnable graph inception network for emotion
recognition. IEEE Transactions on Multimedia (2020)

29. Stafylakis, T., Tzimiropoulos, G.: Combining residual networks with lstms for
lipreading. arXiv preprint arXiv:1703.04105 (2017)

30. Stefanov, K., Beskow, J., Salvi, G.: Vision-based active speaker detection in mul-
tiparty interaction. In: Grounding Language Understanding GLU2017 August 25,
2017, KTH Royal Institute of Technology, Stockholm, Sweden (2017)

31. Stefanov, K., Sugimoto, A., Beskow, J.: Look who’s talking: visual identification
of the active speaker in multi-party human-robot interaction. In: Proceedings of
the 2nd Workshop on Advancements in Social Signal Processing for Multimodal
Interaction. pp. 22–27 (2016)

32. Tan, R., Xu, H., Saenko, K., Plummer, B.A.: Logan: Latent graph co-attention
network for weakly-supervised video moment retrieval. In: Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 2083–
2092 (2021)

33. Tao, R., Pan, Z., Das, R.K., Qian, X., Shou, M.Z., Li, H.: Is someone speaking?
exploring long-term temporal features for audio-visual active speaker detection.
In: Proceedings of the 29th ACM International Conference on Multimedia. pp.
3927–3935 (2021)

34. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017)

35. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph cnn for learning on point clouds. Acm Transactions On Graphics (tog) 38(5),
1–12 (2019)

36. Zhang, Y.H., Xiao, J., Yang, S., Shan, S.: Multi-task learning for audio-visual active
speaker detection. The ActivityNet Large-Scale Activity Recognition Challenge
pp. 1–4 (2019)



SPELL for Active Speaker Detection 17

37. Zhang, Y., Liang, S., Yang, S., Liu, X., Wu, Z., Shan, S., Chen, X.: UniCon: Unified
Context Network for Robust Active Speaker Detection, p. 3964–3972. Association
for Computing Machinery, New York, NY, USA (2021), https://doi.org/10.

1145/3474085.3475275

38. Zhang, Y., Tokmakov, P., Hebert, M., Schmid, C.: A structured model for action
detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 9975–9984 (2019)


