
1

A Appendix

The appendix is composed of 9 parts. In Sec. A.1, we discuss the gradient
of multi-modal contrastive loss. In Sec. A.2, we elaborate the derivations and
implementations of decoupled gradient accumulation. In Sec. A.3, we introduce
the detailed calculation of coin flipping mixup loss. In Sec A.4, we explore another
sampling strategy related to our proposed debiased sampling. In Sec A.5, we show
that debiased sampling tackles various kinds of data bias. In Sec A.6, we show
that debiased sampling works well on a single dataset. In Sec A.7, we provide
linear probing results on more datasets. In Sec. A.8, we detail open-source and
web pre-training data. In Sec. A.9, we provide training details for reproducing
our strong baseline.

A.1 Gradient of Multi-Modal Contrastive Loss

Formulating gradients of contrastive loss. Within each training batch,
define the similarity between the query j and the key k as sjk. The ground-truth
label corresponding to sjk is represented by yjk ∈ {0, 1}. The contrastive loss
can be formulated as:

L =
∑
j

∑
k

yjklog

(
exp(sjk)∑
l exp(sjl)

)
, (1)

where the temperature parameter is omitted for simplification. Then, the gradient
of the popular contrastive loss could be written as:

∇θL = −
∑
j

∑
k

yjk∇θlog

(
exp(sjk)∑
l exp(sjl)

)

= −
∑
j

∑
k

yjk

(
∇θsjk −∇θlog

∑
l

exp(sjl)

)

= −
∑
j

∑
k

yjk

(
∇θsjk − 1∑

l exp(sjl)
∇θ

∑
l

exp(sjl)

)

= −
∑
j

∑
k

yjk

(
∇θsjk −

∑
l

exp(sjl)∑
m exp(sjm)

∇θsjl

)

= −
∑
j

∑
k

yjk

(
∇θsjk −

∑
l

p̄jl∇θsjl

)
= −

∑
j

∑
k

yjk∇θsjk +
∑
j

∑
k

yjk
∑
l

p̄jl∇θsjl,

(2)

2

where we place a vinculum on a value to indicate its gradient is detached. Due
to

∑
k yjk = 1, we rewrite Eqn.(2) as:

∇θL = −
∑
j

∑
k

yjk∇θsjk +
∑
j

∑
l

p̄jl∇θsjl

= −
∑
j

∑
k

yjk∇θsjk +
∑
j

∑
k

p̄jk∇θsjk

=
∑
j

∑
k

(p̄jk − yjk)∇θsjk

=
∑
j

∑
k

(p̄jk − yjk) (x̄j∇θxk + x̄k∇θxj) ,

(3)

where xj and xk are embeddings of sample j and k. Regarding the sample j as
the query, its gradient comes to

∑
k (p̄jk − yjk) (x̄j∇θxk + x̄k∇θxj). If sample j

and k are from different machines, detaching gradients makes the term x̄j∇θxk

to 0, since xk serves as a constant term in the gradient calculation process.

Detaching gradients in multi-modal contrastive loss. Subsequently, we
study the gradients of multi-modal contrastive loss. We start with minor notation
adjustments to cater for the multi-modal setting. The calculation of multi-modal
contrastive loss can be divided into image-to-text (I2T) matching and text-to-
image (T2I) matching parts. Gradients of I2T and T2I matching losses are:

∇θLI2T =
∑
j

∑
k

(
p̄I2Tjk − yI2T

jk

)
(̄ij∇θtk + t̄k∇θij) , (4)

∇θLT2I =
∑
j

∑
k

(
p̄T2I
jk − yT2I

jk

)
(t̄j∇θik + īk∇θtj) , (5)

where i and t represent image and text embeddings. For pairs (ij , tk) and (tj , ik)
from different machines, gather operations with detaching gradients would pro-
duce the following gradients on the machine of j:

∇̃θLI2T =
(
p̄I2Tjk − yI2T

jk

)
t̄k∇θij , (6)

and the gradient on k’s machine:

∇̃θLT2I =
(
p̄T2I
kj − yT2I

kj

)
īj∇θtk. (7)

We add a tilde symbol on the gradient ∇̃θL, indicating the calculation involves
detaching gradients. Then, we have:

∇θLI2T +∇θLT2I ̸=
(
∇̃θLI2T + ∇̃θLT2I

)
. (8)

Mathematically, detaching gradients in multi-modal contrastive loss yields incor-
rect gradients. Experiments in Sec. 4.1 of the manuscript prove that gradient
reserved gather operations are beneficial in multi-modal contrastive learning.

A.2 Decoupled Gradient Accumulation

Decoupling the gradient of multi-modal contrastive loss. Inspired by a
technical report1 which decouples the gradient of single-modal contrastive loss,

1 https://spaces.ac.cn/archives/8471

https://spaces.ac.cn/archives/8471

3

we further generalize it to the multi-modal scenario. According to Eqn.(4) and (5),
we have:

∇θLI2T =
∑
j

∑
k

(
p̄I2Tjk − yI2T

jk

)
(̄ij∇θtk + t̄k∇θij)

=
∑
k

∇θ

(∑
j

(
p̄I2Tjk − yI2T

jk

)
īj

)
tk

+
∑
j

∇θ

(∑
k

(
p̄I2Tjk − yI2T

jk

)
t̄k

)
ij

(9)

∇θLT2I =
∑
j

∑
k

(
p̄T2I
jk − yT2I

jk

)
(t̄j∇θik + īk∇θtj)

=
∑
k

∇θ

(∑
j

(
p̄T2I
jk − yT2I

jk

)
t̄j

)
ik

+
∑
j

∇θ

(∑
k

(
p̄T2I
jk − yT2I

jk

)
īk

)
tj

=
∑
j

∇θ

(∑
k

(
p̄T2I
kj − yT2I

kj

)
t̄k

)
ij

+
∑
k

∇θ

(∑
j

(
p̄T2I
kj − yT2I

kj

)
īj

)
tk.

(10)

Then, the total gradient can be written as:

∇θL = ∇θLI2T +∇θLT2I

=
∑
j

∇θ

(∑
k

(
p̄I2Tjk − yI2T

jk + p̄T2I
kj − yT2I

kj

)
t̄k

)
ij

+
∑
k

∇θ

(∑
j

(
p̄I2Tjk − yI2T

jk + p̄T2I
kj − yT2I

kj

)
īj

)
tk.

(11)

As suggested in Eqn.(11), we mathematically decouple the gradient into two
parts. One part of gradient is only related to stop-gradient embeddings (t̄k and
īj), and the other part only depends on embeddings with gradients (tk and ij).

Implementation of decoupled gradient accumulation. In the conventional
multi-step gradient accumulation, we are not allowed to obtain embeddings (with
gradients) from different training sub-iterations. However, we can cache stop-
gradient embeddings of the large batch, and then calculate the correct gradient
with Eqn.(11) in each sub-iteration. With forwarding the large batch and caching
stop-gradient embeddings, our decoupled gradient accumulation can accurately
produce the gradient produced by large-batch training.

Complete pseudo code in a PyTorch-like style. In Sec. 4.2 of the
manuscript, we provide a simplified pseudo code of decoupled gradient accu-
mulation. In Algorithm 1, we provide a detailed and complete pseudo code of
decoupled gradient accumulation for better understanding. In the implementation

4

of previous methods [11,5], the temperature of contrastive loss is learnable. Thus,
in the implementation of decoupled gradient accumulation, we need consider the
gradient of the temperature variable. As shown in Algorithm 1, we detach the
gradient of temperature (with torch.no grad) for forwarding the large batch,
and then calculate the gradient of temperature in each sub-iteration. Besides, a
square-root should be applied on the value of temperature for correctly calculating
the scale of temperature. Note that encoders could contain modules of random-
ness, e.g., dropout layers are widely applied in the BERT [4]. Thus, forwarding
the same sample two times could produce different embeddings. To this end, we
set the identical random seed for twice forwarding processes, eliminating the
randomness and stabilizing the training.

A.3 Coin Flipping Mixup Loss

We detail the coin flipping mixup loss function by following notations defined in
Sec. 3.2 of the manuscript. We first define a batch {(I1, T1), (I2, T2), . . . , (IN , TN)}
of N image-text pairs. Then, we uniformly sample a γ from the range [0, 1].

γ > 0.5: We apply the mixup on the images, and the mixed batch can be
denoted as {(Ĩ1, T1), (Ĩ2, T2), . . . , (ĨN , TN)}. The image-to-text matching part
can be formulated as:

LĨ2T = λ ∗

(
− 1

N

N∑
j=1

log
exp(ĩj · tj/τ)∑N

k=1 exp(ĩj · tk/τ)

)

+ (1− λ) ∗

(
− 1

N

N∑
j=1

log
exp(ĩj · tN−j/τ)∑N−1

k=0 exp(ĩj · tN−k/τ)

)
.

(12)

And the text-to-image part can be formulated as:

LT2Ĩ = λ ∗

(
− 1

N

N∑
j=1

log
exp(tj · ĩj/τ)∑N

k=1 exp(tj · ĩk/τ)

)

+ (1− λ) ∗

(
− 1

N

N∑
j=1

log
exp(tj · ĩN−j/τ)∑N−1

k=0 exp(tj · ĩN−k/τ)

)
.

(13)

γ ≤ 0.5: We apply the mixup on the texts, and the mixed batch can be denoted
as {(I1, T̃1), (I2, T̃2), . . . , (IN , T̃N)}. The image-to-text matching part can be
formulated as:

LI2T̃ = λ ∗

(
− 1

N

N∑
j=1

log
exp(ij · t̃j/τ)∑N

k=1 exp(ij · t̃k/τ)

)

+ (1− λ) ∗

(
− 1

N

N∑
j=1

log
exp(ij · t̃N−j/τ)∑N−1

k=0 exp(ij · t̃N−k/τ)

)
.

(14)

5

Algorithm 1 Pseudo code in a PyTorch-like style.

stable_random_seed: random seed generated by time.time()
temp: temperature

fix dropout with fixed random seed
setup_seed(random_seed)

with torch.no_grad():
stop-grad forward
img_emb_local, text_emb_local = [], []
for _idx_l in range(0, bs, bs_train):

_data_batch = data_batch[_idx_l: _idx_l + bs_train]
_img_embs, _text_embs, temp = model(_data_batch)
img_emb_local.append(_img_embs)
text_emb_local.append(_text_embs)

concatenate embeddings of each GPU
img_emb_local = torch.cat(img_emb_local, dim = 0)
text_emb_local = torch.cat(text_emb_local, dim = 0)

gather embeddings of all GPUs
img_emb_global = torch.cat(gather(img_emb_local), dim = 0)
text_emb_global = torch.cat(gather(text_emb_local), dim = 0)

calculate cosine similarity
sim_i2t_nm = img_emb_global @ text_emb_local.T / temp
sim_i2t_mn = img_emb_local @ text_emb_global.T / temp

calculate the normalized factor in softmax function
sim_i2t_esum_local = torch.sum(torch.exp(sim_i2t_mn), dim = 1)
sim_t2i_esum_local = torch.sum(torch.exp(sim_i2t_nm.T), dim = 1)
sim_i2t_esum = torch.cat(gather(sim_i2t_esum_local), 0).unsqueeze(dim = 1)
sim_t2i_esum = torch.cat(gather(sim_t2i_esum_local), 0).unsqueeze(dim = 1)

calculate the probability matrix
prob_i2t_mn = torch.exp(sim_i2t_mn) / sim_i2t_esum[bs * rank: bs * (rank + 1), :]
prob_t2i_nm = torch.exp(sim_i2t_mn.T) / sim_t2i_esum
prob_i2t_nm = torch.exp(sim_i2t_nm) / sim_i2t_esum
prob_t2i_mn = torch.exp(sim_i2t_nm.T) / sim_t2i_esum[bs * rank: bs * (rank + 1), :]

left_I = (prob_i2t_mn + prob_t2i_nm.T) @ text_emb_global - text_emb_local * 2
left_I /= torch.sqrt(temp)
left_T = (prob_i2t_nm.T + prob_t2i_mn) @ img_emb_global - img_emb_local * 2
left_T /= torch.sqrt(temp)

Fix dropout with fixed random seed
setup_seed(random_seed)

forward with grad
for _idx_l in range(0, bs, bs_train):

_left_I = left_I[_idx_l: _idx_l + bs_train]
_left_T = left_T[_idx_l: _idx_l + bs_train]
_data_batch = data_batch[_idx_l: _idx_l + bs_train]

_img_embs, _text_embs, temp = model(_data_batch)

loss_i = _left_I * _img_embs
loss_t = _left_T * _text_embs
loss corresponds to Eqn.(11)
loss = (loss_i + loss_t).sum() / 2 / bs / torch.sqrt(temp)
backward propagation
loss.backward()

update model parameters
update(model.param)

6

And the text-to-image part can be formulated as:

LT̃2I = λ ∗

(
− 1

N

N∑
j=1

log
exp(t̃j · ij/τ)∑N

k=1 exp(t̃j · ik/τ)

)

+ (1− λ) ∗

(
− 1

N

N∑
j=1

log
exp(t̃j · iN−j/τ)∑N−1

k=0 exp(t̃j · iN−k/τ)

)
.

(15)

Generally, the coin flipping mixup loss Lcoin can be formulated as:

Lcoin =

{
LĨ2T + LT2Ĩ , if γ > 0.5

LI2T̃ + LT̃2I , if γ ≤ 0.5.
(16)

A.4 Discussions on Sampling Strategies

Except for random sampling and debiased sampling mentioned in the manuscript
Sec. 3.1, we further explore another strategy, i.e., sequential sampling. As the
name suggests, sequential sampling pre-defines the sampling order of multiple
datasets and generates batches from the sequence of datasets. Illustrations of
three sampling strategies are shown in Figure 1.

dataset A dataset B dataset C

random
sampling

sequential
sampling

debiased
sampling
(ours)

multiple
datasets

batch 1 batch 3batch 2

batch 6batch 5batch 4

batch 1 batch 3batch 2

batch 6batch 5batch 4

batch 1 batch 3batch 2

batch 6batch 5batch 4

Fig. 1. Comparisons between random, sequential, and debiased sampling strategies.

In the following, we study the effect of different sampling strategies. RSUM
scores of zero-shot image-text retrieval task on COCO and F30K datasets are
provided in Figure 2, we notice the following phenomena on down-stream tasks:

• Sequential sampling also yields better results on downstream tasks than the
random sampling.

• The order of datasets in sequential sampling exerts non-negligible influences
on model performances.

7

random sequential: SBU - VG - CC12M - CC3M
sequential: CC3M - VG - SBU - CC12M sequential: CC3M - VG - CC12M - SBU
debias (ours)

476.8

504.6
508.2

510.8 510.1

470

475

480

485

490

495

500

505

510

515

F30K RSUM

363.5

382.6
386.2

388.3

392.3

350

355

360

365

370

375

380

385

390

395

MSCOCO RSUM

Fig. 2. Comparisons between random and sequential sampling.

Subsequently, we further discuss these observations.
(1) Why sequential sampling works? As proven in Sec. 3 of the manuscript,
debiased learning greatly benefits the contrastive vision-language pre-training.
We believe that sequential sampling also tackles the dataset bias issue, since it
also ensures the samples within a training batch come from one dataset.
(2) Why does the order matter? It is observed that adjusting the order of datasets
in sequential sampling exerts non-negligible influences on model performances.
We conjecture that the domain relevance between the “last seen” dataset and the
downstream dataset is directly proportional to model performances, especially
for zero-shot scenarios. For instance, SBU, MSCOCO, and F30K provide images
with visually relevant captions, while CC3M and CC12M contain images coupled
with noisy or visually irrelevant captions. Results in Figure 2 validate that setting
SBU as the last dataset leads to consistently superior results, compared with
CC3M or CC12M being the last one.
(3) Drawback of sequential sampling. For sequential sampling, undoubtedly, enu-
merating the order of collected datasets is not acceptable for real-scenario applica-
tions, and the sequence needs further adjustment if new datasets are introduced.
Our proposed debiased sampling effectively tackles this problem, and achieves
better results.

A.5 Discussions on Dataset Bias

The dataset bias could be generally divided into two types, i.e., semantic bias and
context bias. Semantic bias corresponds to that semantics can be totally different
between datasets, as mentioned in the manuscript. Context bias corresponds to
image and text contexts, e.g., image style, caption lengths and so on. In this part,
we demonstrate that debiased sampling works well on solving such context bias.

For avoiding semantic bias, we use only CC3M in the following. We split
CC3M into part A with long captions and part B with short captions. Then, we
introduce image style bias by adding a red bounding box to each image of part A.
We use random sampling to train a CLIP model and conduct illustrations in the
Figure 3. Due to context bias, features of A (red) and B (blue) are separated, and
gradients are inferior when training with random sampling. Debiased sampling

8

tackles context bias and improves RSUMs from 211.8/328.0 to 239.5/367.5 on
COCO/F30K.

Fig. 3. Effects of debiased sampling on context bias.

Dataset bias and biased data (feature) distribution are different concepts.
Both biased feature distributions and inferior gradients are effects, while dataset
bias is the cause. Dataset bias is the inherent property of training data, which
exists before training. The CLIP model captures such bias, allowing the model to
distinguish samples with different biases easily. Figure 3 and 4 in the manuscript
both reveal bad effects of dataset bias in CLIP and prove the bias is captured by
the model.

A.6 Application of Debiased Sampling on a Single Dataset

Debiased sampling also works well on a single source dataset. Concretely, we
extract features of CC12M data, apply the KMeans on features, and produce 100
clusters. Then, we regard 100 clusters as 100 data sources, and apply debiased
sampling for training a CLIP model, improving RSUMs on COCO/F30K from
370.8/502.5 to 384.4/511.1.

A.7 More Linear Probing Results

We provide linear probing results on other datasets. Six datasets are included,
i.e., CUB-200-2011 [14] (200 categories), Food-101 [1] (101 categories), Ox-
ford Pets [10] (37 categories), FGVC Aircraft [8] (100 categories), iNaturalist-
17 [13] (5089 categories), and Places365 [15] (365 categories). Due to the pre-
training dataset and linear probing hyper-parameters of CLIP is not accessi-
ble (e.g., parameters are obtained by grid search with sklearn). We mainly
compare ZeroVL with our re-implemented CLIP. Results are reported in Ta-
ble 1, and ZeroVL consistently outperforms CLIP on all datasets, which further
validates the effectiveness of our baseline on linear probing tasks.

9

pre-training linear probing
computation

data
input

CUB Food101 Pets Aircraft iNat17 Places365
device count size

CLIP (our impl.) V100 8 14M 224 61.9 84.3 85.9 50.0 43.7 53.6
CLIP (our impl.) V100 128 14M 224 75.0 88.5 89.9 51.3 53.4 54.0
ZeroVL (ours) V100 8 14M 224 75.7 90.9 92.0 52.1 54.3 55.8

Table 1. Linear probing results.

A.8 Details of Pre-Training Datasets

Open-source datasets. Four widely-used image-text pair datasets are selected
for pre-training. Details are as followed:

– SBU Captioned Photos (SBU) [9] contains 1M images with associated visually
relevant captions.

– Visual Genome (VG) [7] consists of around 100K images and 5M captions,
where each image is coupled with 50 captions. For training efficiency, we filter
5 out of 50 captions for each image according to largest areas of bounding
box regions.

– Conceptual Captions 3M (CC3M) [12] contains around 3.3M images anno-
tated with captions, collected from web data with an automatic collection
pipeline.

– Conceptual 12M (CC12M) [2] is similar to CC3M and the collection pipeline
is relaxed. Consequently, the data in CC12M is relatively noisier than CC3M.

A part of download links provided by CC3M and CC12M are lost. Collectively,
our visual-linguistic corpus for pre-training is composed of around 14.23M image-
text pairs from various domains.

Web data. The web data is mainly collected from an image library community
Tuchong 2. Due to the double-blind review policy, we are not allowed to provide
the name of the community. Each image is coupled with a caption created by the
image’s author. The 100M web data comprises 14M academic data and 86M of
web-crawling data (from Tuchong). For applying debiased sampling, we consider
the web-crawling data as a prominent source and apply debiased sampling on
datasets from five sources.

A.9 Training Details

We elaborate the training details of our strong baseline.

Data preparation. Batches are comprised by applying the debaised sampling
strategy on academic pre-training datasets, i.e., SBU, VG, CC3M and CC12M.
Each image is randomly cropped to a rectangular region with aspect ratio
sampled in [3/4, 4/3] and area sampled in [60%, 100%], then resized to 224×224
resolution. Regarding the corresponding text, we set the max length to 25 and

2 https://www.tuchong.com

https://www.tuchong.com

10

use a percentage of 20% input words for processing. For each word, we mask it,
replace it with a random word, or delete it with a probability of 50%, 10% and
40%, respectively. We directly apply AutoAugment after crop operation and the
policy is search on ImageNet 3. Coin flipping mixup is also used in the training
phase, and the α is set to 0.1 in the coin flipping mixup. During test, images are
resized to 256×256 and center cropped to 224×224, while no specific process is
applied to texts.

Model architecture. Image and text encoders are ViT-B/16 and BERT-Base,
respectively. The image encoder is pre-trained on ImageNet [3] which could be
directly obtained from the timm 4 library while the text encoder is pre-trained on
BookCorpus [6] and English Wikipedia from the HuggingFace 5 library. [CLS]
tokens from image and text encoders are extracted and then projected to 512-dim
compact embeddings and ℓ-2 normalized for calculating the contrastive loss.

Training. AdamW optimizer is used for training and the weight decay is 1e-3.
Based on our decoupled gradient accumulation, the dual-encoder model is trained
for 20 epochs on 8 Nvidia V100 GPUs with a batch size of 16,384. The learning
rate is initialized to 1e-4 and follows a cosine decay schedule. Notably, we set a
minimum learning rate 1e-5 to avoid over-fitting. The embedding dimension for
image and text representations is 512 and the trainable temperature of contrastive
loss is initialized to 0.02.

References

1. Bossard, L., Guillaumin, M., Gool, L.V.: Food-101–mining discriminative compo-
nents with random forests. In: ECCV. pp. 446–461 (2014)

2. Changpinyo, S., Sharma, P., Ding, N., Soricut, R.: Conceptual 12M: Pushing
web-scale image-text pre-training to recognize long-tail visual concepts. In: CVPR
(2021)

3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR (2009)

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. arXiv:1810.04805 (2018)

5. Jia, C., Yang, Y., Xia, Y., Chen, Y.T., Parekh, Z., Pham, H., Le, Q.V., Sung, Y.,
Li, Z., Duerig, T.: Scaling up visual and vision-language representation learning
with noisy text supervision. In: ICML (2021)

6. Kiros, R., Zhu, Y., Salakhutdinov, R.R., Zemel, R., Urtasun, R., Torralba, A.,
Fidler, S.: Skip-thought vectors. In: NeurIPS (2015)

7. Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., Chen, S.,
Kalantidis, Y., Li, L.J., Shamma, D.A., et al.: Visual Genome: Connecting language
and vision using crowdsourced dense image annotations. In: IJCV (2017)

8. Maji, S., Rahtu, E., Kannala, J., Blaschko, M., Vedaldi, A.: Fine-grained visual
classification of aircraft. arXiv:1306.5151 (2013)

3 https://github.com/4uiiurz1/pytorch-auto-augment
4 https://github.com/rwightman/pytorch-image-models
5 https://huggingface.co

https://github.com/4uiiurz1/pytorch-auto-augment
https://github.com/rwightman/pytorch-image-models
https://huggingface.co

11

9. Ordonez, V., Kulkarni, G., Berg, T.: Im2text: Describing images using 1 million
captioned photographs. In: NeurIPS (2011)

10. Parkhi, O.M., Vedaldi, A., Zisserman, A., Jawahar, C.: Cats and dogs. In: CVPR.
pp. 3498–3505 (2012)

11. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from
natural language supervision. In: ICML (2021)

12. Sharma, P., Ding, N., Goodman, S., Soricut, R.: Conceptual Captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning. In: ACL (2018)

13. Van Horn, G., Mac Aodha, O., Song, Y., Cui, Y., Sun, C., Shepard, A., Adam, H.,
Perona, P., Belongie, S.: The inaturalist species classification and detection dataset.
In: CVPR (2018)

14. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd
birds-200-2011 dataset (2011)

15. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: A 10 million
image database for scene recognition. TPAMI (2017)

