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Abstract. In this paper, we study the challenging instance-wise vision-language
tasks, where the free-form language is required to align with the objects instead
of the whole image. To address these tasks, we propose X-DETR, whose ar-
chitecture has three major components: an object detector, a language encoder,
and vision-language alignment. The vision and language streams are indepen-
dent until the end and they are aligned using an efficient dot-product operation.
The whole network is trained end-to-end, such that the detector is optimized for
the vision-language tasks instead of an off-the-shelf component. To overcome the
limited size of paired object-language annotations, we leverage other weak types
of supervision to expand the knowledge coverage. This simple yet effective archi-
tecture of X-DETR shows good accuracy and fast speeds for multiple instance-
wise vision-language tasks, e.g., 16.4 AP on LVIS detection of 1.2K categories at
~20 frames per second without using any LVIS annotation during training. The
code is available at https://github.com/amazon-research/cross-modal-detr.
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1 Introduction

Vision-language (V+L) understanding has achieved promising progresses in the past a
few years [[7)8/18124,26([32/33/{4249]. [[18/42] have shown that strong vision-language
alignment can be enabled by a simple dot-product between vision and language rep-
resentations, with the help of large-scale image-caption pairs (hundred of millions to
billions). Although they have achieved very exciting results on image-level tasks, such
as open-vocabulary classification and image-text retrieval, how to develop a system for
instance-wise localization based V+L tasks is still unknown, e.g., open-vocabulary ob-
ject detection (OVOD) and multi-modal instance search (MMIS). OVOD detects any
object categories defined by free-form language descriptions without finetuning (see
Fig. [T top), where the size of categories could span from dozens to thousands. On the
other hand, MMIS retrieves the most similar object region from a database given a free-
form language query (see Fig.[I]bottom), where the database size could be millions or
billions for a commercial search engine.

One straightforward solution is to use a R-CNN framework [10] with a pretrained
object proposal detector, e.g., [4,5,46,61]], and a pretrained V+L model, e.g., CLIP [42],
denoted as R-CLIP, similar to [11]]. Then the pipeline is to 1) detect object proposals,
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Fig. 1. The illustration for open-vocabulary object detection (OVOD) and multi-modal instance
search (MMIS).

and 2) crop image regions of proposals, and 3) forward the cropped image regions
through the V+L model for final vision-language alignment. However, this framework
has its limitations. First, it is very slow because feature extraction is repeated in over-
lapped image regions. Speed is the key for applications of instance-wise V+L tasks.
For example, OVOD usually requires real-time speeds (e.g., 25 frames per second), and
MMIS requires instant retrieval results (e.g., in at most a few seconds) from a database
of millions or billions instances. Second, the image-level representation of CLIP is sub-
optimal for the instance-wise V+L tasks. For example, the cropped regional represen-
tation lacks global context, which is required in some tasks. As shown in the example
of locating “the middle giraffe in a sunny day” in Fig. [I] (bottom), the conditions of
“middle” and “in a sunny day” require to know the relations with other giraffes and the
global image context, respectively.

To resolve these issues, we propose an efficient and effective architecture for var-
ious instance-wise V+L tasks, denoted as X-DETR (cross-modal DETR). It has three
major components: a visual object detector (transformer based DETR [5]]), a language
encoder (a RoBERTa model [31]]) and alignment between the visual instance and the
language description. This model is trained end-to-end, optimizing all components si-
multaneously. Hence, the detector is adapted to the instance-wise V+L tasks instead
of as an off-the-shelf component as in the previous V+L efforts [7,[26,[32]. Further-
more, motivated by the success of CLIP [42]], we keep the visual and language streams
independent as much as possible, and align them together by a simple dot-product op-
eration at the very end, instead of using an expensive joint-modality transformer as
in [[7,[19,)26,32]]. In this sense, X-DETR can be seen as a detection counterpart of CLIP,
but it overcomes the two issues of R-CLIP framework. First, thanks to the architecture
design of X-DETR, the representations of multiple instances and language queries can
be obtained by a single feed-forward pass. For example, X-DETR can run 20 fps for
OVOD on LVIS of ~1.2K categories , and for MMIS, it can retrieve the object in
seconds from one million of instances given a query. Second, each instance feature rep-
resentation of DETR encodes the information from global image and thus can be more
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accurate for tasks requiring global context. For example, X-DETR is much better than
R-CLIP on RefCOCO/RefCOCO+ datasets [57] requiring context information.

A cornerstone of the success of CLIP is the large-scale training data, ~400 million
image-caption pairs. The paired image-caption annotation is relatively easy to collect,
e.g., by crawling from the internet. However, paired object-language data usually re-
quires human annotation and thus is very expensive. As a result, only a few datasets
have this kind of annotations, i.e., Flickr30k entities [39]] for grounding, RefCOCO/Re-
fCOCO+/RefCOCOg [34L57] for referring expression comprehension (REC), VG [22]
for dense captioning and GQA [17] for visual question answering (VQA). In fact, the
union of them is of relatively small size, with only ~90K unique images for training,
which is not enough to learn universal instance-wise V+L representations. To deal with
this challenge, our framework resorts to other types of weak supervisions than the paired
object-language annotation, including image-caption pairs, object bounding boxes and
pseudo-labels, from datasets including COCO [28]], Openlmages [21]], CC [48]], and
LocNar [41]]. This expanded combination of full and weak annotations provides broader
knowledge coverage for X-DETR to learn universal representation, as will be seen in
our experiments. Our contributions can be summarized as follows:

— We propose a simple yet effective architecture, X-DETR, which is end-to-end opti-
mized for various instance-wise V+L tasks, such as OVOD, MMIS, phrase ground-
ing, and referring expression. It also shows better transferring capacity on down-
stream detection tasks than other detectors.

— We have empirically shown that the CLIP-style of vision-language alignment, i.e.,
simple dot-product, can achieve good results with fast speeds for instance-wise
V+L tasks, and the expensive cross-modality attention may not be necessary.

— We have shown that X-DETR is capable of using different weak supervisions,
which are helpful to expand the knowledge coverage of the model.

2 Related Work

Vision-Language Learning is a popular interdisciplinary research topic [7,(8,[24}26,
321133,421/49]. Early efforts focused on a single specific task, e.g., [35/53] on image cap-
tioning, [[1,55]] on visual question answering (VQA) [2], [23}36]] on image-text retrieval
and [16}56] on REC [20], etc. Recent efforts have focused on the joint pretraining of
two modalities [7}24,126L/32,33/49], aiming for a multi-task model that can work on
multiple downstream tasks simultaneously. Although these methods do not necessarily
work on detection related tasks, most of them use an off-the-shelf detector, e.g., [[1,59],
for more accurate visual feature representation. However, the system is not end-to-end
and it is not guaranteed that the detector is optimized for the following V+L tasks. Dif-
ferently, X-DETR, a versatile architecture for multiple instance-wise V+L tasks, has all
components optimized end-to-end.

Uni-modal Object Detection has achieved great progresses in recent years, includ-
ing the pioneering two-stage object detectors [4}/10,[27,/46], efficient one-stage detec-
tors [30L45], and the very recent transformer-based object detectors [5,/61]]. However,
these uni-modal detectors are constrained to predefined categories, e.g., COCO/Ob-
jects365/0Openlmages [21,28,147|] of 80/365/601 classes, and they are unable to detect
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any categories beyond the predefined ones. In natural images, the objects are orders
more diverse than the predefined categories (usually 10~1,000) in the sense of cate-
gories, attributes (e.g., colors, materials, etc.), geometric location (e.g., “man on the
right”), relation to the environment (“man sitting in a couch”), etc. The traditional uni-
modal object detectors are incapable of dealing with these problems.

Multi-modal Object Detection tries to detect objects with free-form language descrip-
tion. Previous work [15}/40,/54] extended traditional uni-model detection framework to
accommodate the language inputs. Recently, MDETR [19]], a modulated detector for
multi-modal understanding, achieved state-of-the-art results on multiple datasets. How-
ever, it adopts the expensive joint-modality transformer to model the alignment between
language and vision, which prevents it from being used in practical applications like
OVOD and MMIS. For example, it takes 5 seconds per image for OVOD and hours for
MMIS. OVOD [15},25,{401/58,/60] usually leverages language models as it is impossible
to pre-define all open-vocabulary categories. It is related to zero-shot object detection
(ZSOD) [3l/43]], where the model is trained on the seen categories and evaluated on un-
seen ones. X-DETR falls into the category of OVOD because it is trained on large V+L
data. X-DETR shares some similarities with some concurrent OVOD works [|11,25,60],
but it 1) also works on other practical tasks, e.g., MMIS; 2) leverages more diverse weak
supervisions; 3) has fast speeds for both OVOD and MMIS tasks.

Cross-modal Retrieval Cross-modal (image and text) retrieval has a long research
history [44]. This task is also popular in recent V+L learning efforts [36,51]]. Many X-
DETR tasks are related to cross-modal retrieval, but they are instance-wise. For exam-
ple, OVOD [[15}/40,58]] and MMIS [[15[29,/40] are to retrieve the most similar bounding
boxes across the full dataset given the free-form query, and phrase grounding [39]] and
REC [34,/57] are to retrieve the most similar bounding box in an image given a query.
X-DETR aims to tackle them in an efficient and effective manner.

3 Instance-wise Cross-modality Network

3.1 Overall Architecture

Figure[2] gives an overview of X-DETR architecture with its three components: a visual
object detector D, a text encoder 1) and an alignment between visual instance and tex-
tual description h. The method takes an image I and a language query y as inputs and
outputs the detected object o and its alignment score with the language query y. The
object detector D is used to generate the instance o = D(I) by processing the input
image I, and the language encoder % is to encode the tokenized text input y into embed-
dings 1 (y) which can be mapped to the joint space with the visual instance embeddings
o. Vision-language alignment / is the key component in V+L models, aligning the vi-
sual instance o and language description y in a joint feature space, such that h(o, 1 (y))
is higher (lower) for paired (unpaired) visual instances and language descriptions. For
example, as shown in Fig. ] the alignment will pull the same concepts together, e.g.,
the detected cat (yellow bounding box) and the language description “a yellow cat”,
but push different concepts away, e.g., the cat and other language descriptions like “a
beach”, “some chairs”, “blue sky”, etc. In addition to the object-language alignment,
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“ lying on a beach.”
“Some chairs under a straw umbrella.”—— ROBERTa
“Blue sky in the background.”

[T
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Fig. 2. Overview of our X-DETR architecture. The same color of text and object means they are
aligned concepts. The matrix is the similarity matrix between text tokens and instance hypotheses,
where the colored score items should be maximized but the rest should be minimized.

X-DETR also has an image-language alignment component to leverage the weak data
of image-caption pairs to learn broader knowledge coverage. The details of each com-
ponent are discussed next.

3.2 Object Detection

There are many choices for the object detection component [4,5,27}/30,45,61]], and we
are not constrained to any specific one. We chose the transformer based framework of
DETR [5]], because 1) it is simpler without heuristics compared with the other popular
one or two-stage frameworks [4,[27,30,45]], and 2) each detected instance encodes infor-
mation from global image due to the attention mechanism of transformers. In DETR, a
standard CNN (e.g., ResNet [[14]]) is applied to an image I to extract convolutional fea-
ture maps. They are then flattened into a sequence of features passed through a encoder-
detector transformer architecture [[50]]. To detect objects, the detector also takes object
queries as input, and outputs the decoded queries as the detection results o. The detec-
tion architecture of X-DETR is shown in Fig. 3] (a). Due to the slow convergence of
the original DETR, we resort to Deformable DETR [61], which has faster convergence
speed and better accuracy. Please refer to [5,/601]] for more details.

The detector in X-DETR is a stand-alone component, where the detection results
are conditioned on only the image input. This is different from previous multi-modal
object detection frameworks [[19}/54]], where the detection results depend on both image
and language inputs. Decoupling the vision and language streams makes the detection
results independent of the queries. This is closer to a human detection system, where
salient objects can be detected before being asked to detect something of interest.

3.3 Object-Language Alignment

A common and powerful strategy for image-level vision-language alignment is to lever-
age the interaction between two modalities by a joint-modality transformer [7,[26}32],
M A, as follows:

h(I,y) = MA(S(I),¥(y)), 00
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Fig. 3. (a) is the architecture of X-DETR. (b) illustrates how the encoded image-level query (red
square) is aligned with the caption (yellow square).

where ¢ is the image encoder, e.g., CNN. The joint-modality transformers could be
either self-attention on concatenated vision and language features, e.g., [[7,26]], or cross-
attention between vision and language streams, e.g., [32]]. Although more cross-modal
interaction could lead to stronger cross-modal representations, the computation of M A
needs to be repeated if any vision or language input is changed. This is impractical
for tasks such as OVOD and MMIS. For example, M A needs to be repeated for 1.2K
times for LVIS detection, and one million times for MMIS of database image size of
one million, although ¢(I) and ¥ (y) do not need to be recomputed.

Motivated by CLIP [42], where strong cross-modal alignment can be enabled by a
simple and efficient dot-product operation, we adopt a similar approach, i.e., the vision-
language alignment h is a linear mapping of the two modality streams into a common
feature space followed by a dot-product operation between them,

h(o,y) = f(0) © g(¥(v)), 2)

where f and g are linear mapping for instance representation o and text representation
¥ (y), respectively, and © is a dot-product operation. Since o is generated by the stand-
alone object detector D, @) can be formulated as

h(o,y) = F(D(I)) © g(¢(y))- 3)

Since the two modalities are coupled at the very end via an efficient dot-product, no
additional computation needs to be repeated. This is a key difference with methods
that use joint-modality transformers [7}/19,[26}32]] and enables X-DETR to be used in
practical tasks such as real-time OVOD and instant MMIS without sacrificing accuracy.

3.4 Image-Language Alignment

As shown in Fig. 3] (b), in addition to the queries used for object detection, an additional
query is added to the query list as image query, which encodes image-level representa-
tion instead of instance-level representation like the other object queries. All queries are
forwarded to the decoder with no difference. The language representation is the mean
of all token representations in the sentence. Similar to CLIP, the alignment is also a
simple dot-product between the encoded image query and the caption representation.
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4 Training

In this section, we describe our multi-task loss design involving losses from object
detection and vision-language alignment, and different types of data we used. More
details about the losses can be found in the supplementary.

4.1 Class-agnostic Object Detection

In DETR [3]], object detection is a set-to-set prediction, where a set of queries is firstly
mapped to a set of ground truth objects during training. Then the matched object query
is learned to regress to the corresponding ground truth, with a classification loss (cross-
entropy) and bounding box regression loss (generalized IoU and L1 loss). Different
from the general object detection of [5,61], X-DETR does not use the class information
of each object. Instead, it is class-agnostic detection: classifying a hypothesis to fore-
ground or background. This design is similar to [11]]. In total, three losses come from
detection, a binary cross-entropy, a generalized IoU and L1 regression loss.

4.2 Vision-Language Alignment

We have explored different levels of vision-language alignment, including object-phrase,
object-sentence and image-caption alignment. The diverse levels of alignments allow us
to expand the training data, which is one of our key contributions.

Object-Phrase Alignment In the phrase grounding dataset of Flickr30k entities [39],
the ground truth is a pair of sentence phrases and objects. For example in Fig. 2] given
the sentence “Some chairs under a straw umbrella.”, the phrase queries are “Some
chairs” and “a straw umbrella”, with associated one or a few bounding boxes. We used
the contrastive loss of InfoNCE [37] to optimize for the object-phrase alignment. The
similarity of every potential object-token pair is computed, as shown in similarity ma-
trix of Fig. 2] and contrastive loss is applied for each row (object-token alignment) and
column (token-object alignment) of this matrix. Note that although this loss does not
directly optimize the phrase-object alignment, it achieves similar results.

Object-Sentence Alignment is a special case of object-phrase alignment, where the
length of the text is the full sentence, with data from REC datasets [34]/57]]. Contrastive
loss is applied between the object query and whole sentence embedding, which is aver-
aged from token embeddings.

Image-Caption Alignment leverages the large-scale weak data of image-caption pairs.
Similar to CLIP, the loss is a cross-modality contrastive loss between the encoded image
queries and the captions.

4.3 Training Efficiency

In a typical image, there are multiple objects associated multiple language descriptions.
The most efficient way for training is to use all object-language pairs at a single forward-
backward pass. However, this is problematic for the models with cross-modality inter-
action M A, e.g., [7,[19L[25]]26]], due to the reasons discussed in Section As a com-
promise, they usually merge all independent text queries into a paragraph as a single
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query, and then computes M A only once. However, this violates the independence as-
sumption of queries and queries can see each other during training, due to the property
of transformer. At inference, only a single query is provided each time. On the contrary,
X-DETR does not have these problems, due to the design of fully independent vision
and language streams. It can take queries as many as possible at high efficiency while
not violating the independence assumption, thus better performances.

4.4 Training Data

The most preferred data to learn instance-wise cross-modal representation is the paired
object-language annotations, but they are very expensive and limited. X-DETR is capa-
ble of leveraging other weak supervision to cover broader knowledge.

Object-Language Data The paired object-language data comes from Flickr30k enti-
ties [39] for grounding, RefCOCO/RefCOCO+/RefCOCOg [34})57] for REC, VG [22]
for dense captioning and GQA [17] for VQA. We used the mixed dataset of them fol-
lowing MDETR [19]. Please refer to [[19] for more details.

Object Detection Data Since X-DETR has a stand-alone object detector, it can lever-
age data with detection annotation only. COCO [_28]] bounding box annotations are used
because many images of the mixed dataset are from COCO. But category information
is not used, since the detection in X-DETR is class-agnostic as described in Section[3.2]
Instead of having an image with detection annotations only, we add COCO objects into
the existing images of the mixed dataset, since many of them are sparsely annotated.
For example, usually only 3-5 objects are annotated per image in REC datasets.

Image-Caption Data Many datasets have image-caption annotations, e.g., Flickr30
[39], COCO Captioning [6], CC [48]], SBU [38]], etc. Since the mixed dataset already
includes Flickr30k and COCO images, we added their captions into the mixed dataset.
Beyond that, we also use the large-scale CC and Localized Narratives (LocNar) [41]]
(only the subset of Openlmages [21]]). Note that we do not use the weak localization
annotations of LocNar, i.e., the pointer tracks along narratives, because we found they
are quite noisy and have no much benefit.

Pseudo-Labeled Data We also used the pseudo labeled data generated by our X-
DETR model on LocNar. Given an image and its corresponding caption, at first we
use Spacy[] to extract the noun phrases which are possible objects in the correspond-
ing image. Then we treat the pseudo-labeling as a phrase grounding task, retrieving the
bounding box that is most aligned with the noun phrase. This pseudo-labeled dataset is
then used with no difference to the other object-language pairs. In addition, the Open-
Images object annotations were also added to LocNar similar to COCO.

5 Experiments

In this section, we are going to show how X-DETR performs on the challenging and
practical OVOD and MMIS tasks, and how it can be generalized well on the other
simpler tasks, such as phrase grounding and REC.

! https://spacy.io/
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5.1 Implementation Details

In X-DETR, we used RoBERTa-base model as the text encoder (with implementation
and pretrained model from HuggingFace [52]), ResNet as the vision backbone, and De-
formable DETR as the object detector. The model has been trained for 10 epochs, w.r.t.
the mixed dataset, with class-agnostic detection, object-phrase alignment, and image-
caption alignment losses introduced in Section[d] The object-sentence alignment loss is
not used during pretraining but used in some of the downstream tasks finetuning. In each
mini-batch, the batch size for fully/pseudo/weakly-annotated data is 4/2/4 for a single
GPU. The image is resized such that the minimum of width and height is 600, which
is smaller than the standard practice of 800 in object detection [1327]], for training
cost reduction. See the supplementary for more training details. We report the results
with and without finetuning. X-DETR without finetuning is a multi-task architecture for
various instance-wise V+L tasks. All the compared algorithms use ResNet-101 (except
R-CLIP). We do not use any prompt engineering as in CLIP [42]], e.g., adding a prefix
of “a photo of” to the language query.

In the baseline of R-CLIP with the pipeline introduced in Section |1} the proposal
detector is a binary Faster R-CNN detector [27] of ResNet-50, trained on the COCO
train2017 with binary (object/non-object) annotations. Note the binary detector is not a
RPN network [46]. The V+L model is a pretrained ViT-B-32 CLIP model [42]. For each
image, the top 300 detection results are selected as the proposals. Since the proposals
are usually tight bounding boxes, covering few context region. To include some context,
we expand the proposal region by 50% on each side of the bounding box, following
[11]. When using the context, the CLIP feature representations from the original and
expanded regions are averaged before L2 normalization. This is denoted as R-CLIP+.

To evaluate the similarity between a free-form language query and an object is
straightforward for R-CLIP and X-DETR. The whole sentence is forwarded through
the language encoder to get feature embeddings for the input tokens. The feature em-
beddings corresponding to the phrase or the full sentence (excluding start and end to-
kens) are then averaged and L2-normalized as the phrase/sentence feature representa-
tion, which is then dot-producted with the L2-normalized object feature representation.

5.2 Open-vocabulary Object Detection (OVOD)

First, X-DETR is evaluated on OVOD task [15,40,58]. LVIS [12], consisting of ~1.2K
categories, is used for OVOD evaluation. Two settings are evaluated: 1) without finetun-
ing and 2) finetuning with different amount (i.e., 1%/10%/100%) of LVIS annotations.
The former is for OVOD and the latter is to show the transferring ability of X-DETR
to other downstream detection datasets. For finetuning, the model is finetuned for 50
epochs, with the object detection and object-sentence alignment losses, learning rate
dropped at 40th epoch and an image resolution of 800. For X-DETR and R-CLIP, the
final score of an instance is the product between the objectness score and the classifica-
tion probabilities over the categories of interest.

The results are shown in Table[I] For OVOD, R-CLIP achieves 12.7 AP even when
the CLIP model is trained with image-caption annotations, and including some context
information gives additional gains of 1 AP, but with 2 times slower speeds. X-DETR
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Table 1. OVOD detection results on LVIS-v1 (box AP). We followed [19] to evaluate on the
Sk minival subset. The subscript “r/c/f”” of AP is for rare/common/frequent categories of LVIS.
“Train Time” is the finetuning time on LVIS.

Method Data Train Time Test Time AP AP50 AP, AP. APs
R-CLIP 0% - 5s 127 193 17.0 16.0 9.0
R-CLIP+ 0% - 10.6s 13.7 20.6 185 173 9.6
MDETR [19] 0% - 5s 64 9.1 1.9 36 098
X-DETR (ours) 0% - 0.05s 164 244 9.6 152 188
DETR [5] 1% 0.5h 0.05s 42 70 1.9 1.1 73
MDETR [19]] 1% 11h 5s 16.7 258 11.2 14.6 19.5
X-DETR (ours) 1% 1h 0.05s 228 350 17.6 22.0 244
DETR [5] 10% 3h 0.05s 13.7 21.7 4.1 132 159
MDETR [19]] 10% 108h 5s 242 380 209 249 243
X-DETR (ours) 10% 5.2h 0.05s 295 447 294 306 28.6
Mask R-CNN [13] 100% 16h 0.1s 333 51.1 263 340 339
DETR [5] 100% 35h 0.05s 178 275 32 129 248
MDETR [19] 100% 1080h 5s 225 352 74 227 250
X-DETR (ours) 100% 45h 0.05s 340 49.0 24.7 346 35.1

outperforms R-CLIP by 3.7 points and is about 100 times faster, without using any
LVIS annotations. When compared with MDETR, the recent state-of-the-art localiza-
tion based V+L model, X-DETR is 10 points better. Note that X-DETR is even close to
the fully-supervised vanilla DETR baseline (16.4 v.s. 17.8). These experiments support
that the X-DETR can serve as an effective open-vocabulary object detector.

To evaluate the transferring ability, Mask R-CNN [13] trained on full LVIS data,
using repeat factor sampling (RFS) for class imbalance, is regarded as a strong baseline,
and a vanilla DETR pretrained on COCO as a transferring baseline, following [19].
The backbone for both of them is ResNet-101. When finetuning, X-DETR still has
very strong improvements over MDETR, 6.1/5.3/11.5 points for 1%/10%/100% data.
Using more data leads to worse results in MDETR (100% v.s. 10% data), showing that
MDETR does not leverage detection data very well. But X-DETR has increasing gains
with more detection data, whose result using 100% data is better than the strong Mask
R-CNN baseline (34.0 v.s. 33.3). Note that the X-DETR finetuning is straightforward
and uses no strategy for the category imbalance issue.

In addition to OVID results on LVIS, we test X-DETR on COCO (80 classes) [28]],
Openlmages-v6 (601 classes) [21] and Objects365-v1 (365 classes) [47]], in Table
Although our pretraining uses the images from COCO and Openlmages, no category
information is used. X-DETR achieves relatively good results on COCO (26.5 AP), but
COCO only has 80 classes, and it is possible that the pretraining data has covered those
categories information in the free-form language descriptions. Since Ojbects365 and
Openlmages are much more challenging, the numbers of X-DETR are relatively lower,
but are still much better than MDETR. R-CLIP has close results as X-DETR on COCO
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Table 2. OVOD results on other datasets. “FT”” means being finetuned on the target dataset.

COCO Objects365 Openlmages
AP AP50 AP AP50 AP AP50

Faster R-CNN [46] v 38.1 589 19.7 30.6 20.6 30.8

R-CLIP X 228 346 59 92 152 231
R-CLIP+ X 244 368 65 101 160 24.1
X
X

Method

MDETR [19] 30 39 05 07 04 05
X-DETR (ours) 265 389 57 86 48 6.7

Table 3. Multi-modal instance search results. Time is evaluated per query on RefCOCO (1,500
images) after feature indexing.

RefCOCO val RefCOCO+ val RefCOCOg val

R@5 R@10 R@30|R@5 R@10 R@30|R@5 R@10 R@30
R-CLIP X ~0.19ms| 5.6 81 148 | 7.3 102 173 |21.7 294 429

Method FT time

R-CLIP+ X ~019ms| 50 7.1 128 | 63 9.0 147 |200 273 40.6

12-in-1 [33]] X ~35 [ 1.0 21 58 109 1.8 54 (27 54 129

MDETR [19] X ~25s | 13 25 66 (1.1 22 54 |15 28 175

X-DETR (ours) X ~0.15ms|21.5 30.8 47.8 |14.8 22.1 37.7 |234 332 520

UNITER [7] vV ~l4s | 81 143 289 |135 21.0 360 |145 22.1 377

MDETR [19] v ~25s |20 3.7 90 (25 44 109 |35 59 153
v

~0.15ms|29.9 40.7 59.6 |23.7 33.5 53.8 |40.0 534 725

X-DETR (ours)

and Objects365, but much better on Openlmages (~10 points gain). These have shown
that OVOD is still a very challenging task and requires more research efforts.

5.3 Multi-modal Instance Search (MMIS)

Next, X-DETR is evaluated on MMIS [15,29,40]. This 1) is a practical problem, like the
commercial search engines (Google, Bing, etc.), 2) is challenging, as there are tons of
false positives due to the large-scale image database, and 3) requires high efficiency, i.e.,
instant retrieval results for millions/billions of images for commercial search engines.
However, collecting MMIS datasets is very expensive, because it needs to annotate all
bounding boxes in the full database for any free-form language query. This is a main
reason that there is no publicly available dataset for this task yeﬂ

To evaluate on this task, we converted the referred expression comprehension (REC)
datasets (RefCOCO/RefCOCO+/RefCOCOg [20,34}57]]), because REC is a special
(simpler) case of MMIS, which is to search the result in a single image. We changed
the evaluation protocol of REC, such that the retrieval operates on the full database
instead of a single image. However, only one bounding box is associated with a given

2 A recent work [29] discusses this, but no data is released yet.
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Table 4. Phrase grounding results on Flickr30k entities validation.

Method FT R@! R@5 R@10|Method FT R@1 R@5 R@10
R-CLIP X 219 484 60.0 |VisualBert[24] < 68.1 84.0 862
MDETR [19] X 825 929 949 |VisualBertf [24] v 704 845 863
X-DETR (ours) X 814 93.6 95.6 |X-DETR (ours) ¢ 81.8 93.6 955

query in REC datasets, which is not exclusive across the full database. For example,
multiple bounding boxes from different images could correspond to a single query,
especially when the query is somewhat general, e.g., “left man”. Therefore, we used a
loose evaluation metric, the recall @ the top {5, 10, 30} bounding boxes. The cross-
modal similarity scores are used to rank and retrieve the objects for each query. The
results shown in Table 3] and some MMIS examples are shown in the supplementary.
R-CLIP does not perform well for RefCOCO/RefCOCO+, because these two datasets

require more context information, e.g., “left/right”, which is missing in R-CLIP. Even
when including the context region, it does not improve. For RefCOCOg, which focuses
more on general language description, which CLIP was mainly trained on, R-CLIP
shows much better results. On the contrary, X-DETR is better in all three datasets, espe-
cially on RefCOCO/RefCOCO+. When compared with 12-in-1 [33]], UNITER [7] and
MDETR [19], which use cross-modality transformers to model vision-language align-
ment and achieved very good results on REC tasks, X-DETR outperforms them by a
large margin with and without finetuning. These observations are consistent with [40]:
a good model for REC is not necessarily a good model for the MMIS task.

5.4 Phrase Grounding and Referring Expression Comprehension

Phrase grounding and referring expression comprehension (REC) are reduced versions
of MMIS, which retrieve the targets most similar to the given query in a single image.
They are simpler tasks than MMIS, which assumes that the object referred by the query
definitely exists in the image.

Flickr30k entities dataset [39] is used for phrase grounding evaluation, with the
train/val/test splits of [39] and Recall@{1, 5, 10} as the evaluation metrics. For fine-
tuning, the pretrained X-DETR model was finetuned for 3 epochs on the target dataset,
with the same losses as pretraining. The results are shown in Table d} R-CLIP performs
poorly on this task. Compared with MDETR [19], X-DETR only has a small gap for
R@1 but better performance at R@5 and R@10, considering X-DETR does not use
the much stronger transformer as the joint-modality modeling. Finetuning also helps
X-DETR, but does not help MDETR as mentioned in [[19].

RefCOCO, RefCOCO+ and RefCOCOg [20L/34,/57] are used for REC evaluation
with Recall@{1, 5, 10} as the evaluation metrics. For finetuning, the pretrained model
was finetuned for 4 epochs on the union of all three dataset (excluding all images in
all three validation sets), with the object detection and object-sentence alignment losses
introduced in Section ] The results are shown in Table[5] Similar to grounding in Table
R-CLIP does not work very well for REC task. X-DETR outperforms UNITER, [7]
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Table 5. Comparison with state-of-the-art on REC datasets.

Method FT RefCOCO val RefCOCO+ val RefCOCOg val
R@]1 R@5 R@10 R@] R@5 R@10 R@1 R@5 R@I10

R-CLIP X 216 522 685 247 574 728 364 723 864
R-CLIP+ X 173 456 62.0 198 486 654 324 68.0 827
MDETR [19] X 724 922 947 583 863 905 559 87.0 0918
X-DETR (ours) X 78.7 954 976 635 925 962 604 91.8 95.6
MAttNet [S6] ' 76.7 - - 653 - - 66.6 -
UNITER; [7]* v 814 - - 759 - - 749 -
VILLA, 91" v 824 - - 762 - - 762 -
MDETR [19] v 86.8 96.0 972 795 962 97.5 81.6 955 96.8
X-DETR (ours) v 86.2 97.8 989 77.0 971 98.6 804 968 979

and VILLA [, [9]], on all three datasets. When compared with the current state-of-the-art
MDETR [[19] on the finetuning setting, X-DETR is slightly worse at R@1 but better
at R@5 and R@10. When the model is not finetuned, X-DETR achieves much better
results than MDETR. These results have shown that X-DETR can be generalized well
for simpler tasks such as phrase grounding and REC, in addition to the challenging
tasks of OVOD and MMIS.

5.5 Speed Comparisons

X-DETR is an efficient architecture for both training and inference. When compared
with R-CLIP, X-DETR is about 100 times faster for OVOD due to the slow R-CNN
pipeline. For MMIS, X-DETR has close retrieval time with R-CLIP, since they both use
the simple dot-product as the vision-language alignment and vision/language features
are fully indexable. However, the indexing speed of X-DETR is about 100 times faster
than R-CLIP due to the R-CNN pipeline. When compared with the state-of-the-art lo-
calization based V+L work of MDETR, X-DETR is a few times faster during training,
since it can process an image with all of its queries simultaneously but MDETR needs
to process the queries one by one due to the joint-modality transformer design, as dis-
cussed in Section@ For example, finetuning on 10% LVIS, MDETR needs 108 hours
for 150 epochs, but X-DETR only needs 5.2 hours for 50 epochs with improved results
(see Table EI) At inference, for OVOD/MMIS, X-DETR is about 100/100,000 times
faster than MDETR (see Table[T]and [3). Note that we have already indexed the index-
able features, e.g., the ones before the joint-modality transformers for MDETR. The
training (inference) speeds are reported on 8 (1) A100 GPUs.

5.6 Ablation on Pretraining Data

We ablated the effect of the pretraining data in Table [6] (with ResNet-50 for efficiency
purpose). The rows are for experiments using data of 1) the original mixed of MDETR
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Table 6. Ablation studies. “*”” means MMIS experiments. Finetuning on LVIS is on 10% data.

Pre-training FT LVIS RefCOCOg* Flickr RefCOCO
data AP AP@r R@5 R@10 R@l R@1
mixed X 115 6.0 162 246 797 63.9
mixed* X 135 52 204 298 799 75.4
mixed*+boxes X 147 51 224 324 799 78.0
+CC X 159 79 222 318 80.1 76.9
+CC+LocNar X 157 6.8 21.0 298 813 78.3
mixed v 200 134 343 458 80.1 83.0
mixed* v 217 18.6 362 489 80.6 83.9
mixed*+boxes v 22.8 148 365 494 803 84.1
+CC v 233 166 375 494 809 84.5
+CC+LocNar v 256 173 375 503 818 85.4

[19] (“mixed”), where all queries of an image are merged into a single paragraph, vio-
lating the independence assumption of the queries; 2) mixed with independent queries
(“mixed*”), by splitting the merged paragraph into independent queries; 3) adding
COCO objects without category (“mixed*+boxes”); 4) adding CC [48] weakly labeled
image-caption data (“+CC”); 5) adding LocNar [41]] pseudo-labeled and Openlmage
[21]] bounding box data (“+CC+LocNar”). It can be found that the original mixed dataset
has a mismatch with the inference data, which leads to inferior results especially when
the model is not finetuned. Independent queries of mixed* can have significant accu-
racy boosts in multiple tasks. Adding COCO object data (“mixed*+boxes”) also has
nontrivial improvements, showing the advantage of X-DETR to leverage detection-
only data. When using CC data (“+CC”), the results of OVOD on LVIS are improved
because more concepts are covered by more data, but the results on RefCOCO are
decreased. When adding more LocNar pseudo-labeled data with Openlmage objects
(“+CC+LocNar™), the results on Flickr30k and RefCOCO are improved over “+CC”,
but decreased on MMIS. The observations on finetuning settings are consistent. These
ablation studies have shown that it is not enough to just use the fully annotated object-
phrase annotations, and leveraging other weaker types of supervision could be helpful
for instance-wise V+L learning.

6 Conclusion

In this paper, we propose a simple yet effective architecture for instance-wise vision-
language tasks, which uses dot-product to align vision and language. It has shown that
the expensive joint-modality transformer may not be necessary for those V+L tasks and
the weak annotated data can be a big help to improve the model performances. The
proposed X-DETR has shown benefits in terms of accuracy and speed, when compared
to the previous V+L language state-of-the-art, on the practical and challenging tasks
such as open-vocabulary detection and multi-modal instance search.
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