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A Model Details

A.1 VLN⟳BERT

As discussed in Section 3.2, VLN⟳BERT [9] encodes the language instruction
once at the beginning. The leading input token is selected to initialize the agent’s
state. During navigation, there is no language processing, but the state will be
refined by both the attended language and visual features. Next, we present the
refinement in detail.

At each navigation step t, the prior state ht−1 will be firstly fused with
previous action embedding at−1 to encode the history information. Formally:

h̄t = LayerNorm([ht−1; at−1]Wa), (1)

where LayerNorm denotes layer normalization [2], [·] represents concatenation
operation, and Wa is trainable parameter.

To enrich the state representation, the matched language and visual features
are fed to the current state. Specifically, the weighted sum of language features
is calculated as F l = α(It)I, where I is the encoded instruction, and α(It)
means the attention scores over the language tokes at the final encoding layer,
normalized by a Softmax function.

In terms of the attended visual scene features, different from the baseline, we
use the weighted sum of the landmark- and action-aware outputs in disentangled
decoding module as the attention scores α(Vt) over the visual tokens, where Vt

is the visual scene feature at each candidate direction. Then the weighted visual
features are expressed as F v = α(Vt)Vt.

Finally, the state is refined as:

ht = LayerNorm([ĥt;F
v ⊙ F l]Wr), (2)

⋆ Corresponding author: Jianbing Shen (shenjianbingcg@gmail.com). † Equal contri-
bution.
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where ĥt is the output state representation of the final encoding layer, ⊙ denotes
the element-wise product, and Wr is trainable parameter.

A.2 HAMT

HAMT [4] is a multi-modal transformer that integrates all past historical infor-
mation in VLN. Next, we present the history encoding in detail. The panoramic
observation is processed via a hierarchical vision transformer ViT [5]. Firstly,
each oriented view image feature vt,i at each step t is encoded by:

vt,i = LayerNorm(Wfft,i) + LayerNorm(Woot,i), (3)

where ft,i is image feature at direction ot,i in view i, embedded via a ViT,Wf and
Wo are learnable parameters. Then, another panoramic transformer is enforced
to learn spatial relationship among all directions. To save computation cost, the
observation at each step is integrated into one temporal vector vht by average
pooling. The final temporal token ht is calculated by:

ht = LayerNorm(Whv
h
t ) + LayerNorm(Waa

h
t−1), (4)

where aht−1 denotes the relative angle representation of previous action. For the
proposed DDL, we keep the historical encoding unchanged, and only disentangle
the input observation at the current step.

A.3 OAAM

OAAM [11] utilizes two learnable attention modules to highlight the correspond-
ing object- and action-related part of the given instruction, and then combines
the predictions as the final decision. Next, we discuss the navigation process in
detail. The internal memory is maintained by a LSTM [8]:

ht = LSTM Decoder([f̂t; at−1], ĥt−1) (5)

where at−1 is the previous action embedding, f̂t is the current observation, and
ĥt = Tanh(Wl[ht; ût]) is instruction-aware hidden state, where ût is the atten-

tive instruction feature. To obtain the object-aware hidden state ĥo
t , the first

attention module is applied:

γt,j = Softmaxj(u
T
j Woht), ûo

t =
∑
j

γt,juj , ĥo
t = Tanh(Wp[ht; û

o
t ]), (6)

where uj is the j-th word embedding in instruction, γt,j is object-aware language
attention weight, and Wp, Wo are trainable parameters.

Similarly, the action-aware hidden state ĥa
t and language attention weight

σt,j can be obtained. Then the intermediate action confidence is formulated by:

GOA(at,k) = fT
t,kWrĥ

o
t , GAA(at,k) = oTt,kWtĥ

a
t , (7)



Learning Disentanglement with Decoupled Labels for VLN 3

10%

20%

50%

40%

30%

(a) Landmark-similarity (b) Action-similarity

10%

20%

50%

40%

30%

60%

Landmark

Supp-Figure 1. Cosine
similarity distribution
between annotated labels
and pseudo-labels at all
viewpoints on the valida-
tion unseen set of LAR2R.

where ft,k is visual feature and ot,k is orientation feature of each candidate
direction. The final action probability of each navigable view k is determined
by the weighted sum of the object-aware confidence GOA(at,k) and action-aware
confidence GAA(at,k). The combined weight is formulated as: wu = Wdût, which
is a weighted vector to measure the importance of the object- and action-aware
instruction at each viewpoint and Wd is trainable parameter.

The model is trained by mixed Imitation Learning (IL) and Reinforcement
Learning (RL). There are three ways of action selection for different scenarios.
In IL, the agent follows teacher action a∗t . In RL, the selected action is sampled
with probability distribution at ∼ P (at,k). During testing, the agent chooses the
candidate with maximal probability: at = argmaxkP (at,k).

B Dataset

We evaluate our method on two datasets R2R [1] and R4R [10]. The R2R is built
upon Matterport3D Simulator [3] with photo-realistic environment. The original
R2R dataset consists of 7,189 paths in 90 real-world scenes. Each path has 3 or
4 instructions generated by human annotation, with an average of 29 words per
instruction and 10m of physical length per path ranging from 5 to 7 viewpoints.
The dataset is split into four sets: training, validation seen, validation unseen
and test unseen, where unseen means that paths are sampled from environments
that are not seen during training. Specifically, 4,676 paths are used for training
and 340 paths for validation seen in 61 scenes, 783 paths for validation unseen
in 11 scenes, and the remaining 18 scenes with 1,391 paths for testing. The
R4R extends R2R with longer instructions and paths. The R4R contains three
splits: training (233,613 instructions), validation seen (1,035 instructions) and
validation unseen (45,162 instructions).

C Additional Ablations

As discussed in Section 3.4, in disentangled decoding module, we firstly equip the
disentanglement branch to the original VLN⟳BERT, then the decoupled labels
are utilized to optimize the language attention weight via the proposed language
auxiliary loss. The VLN⟳BERT is initialized by a pre-trained model. Here, we
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Component R2R Val seen R2R Val unseen

Base DB DL SR↑ SPL↑ OR↑ NE↓ SR↑ SPL↑ OR↑ NE↓

✓ 71.5 67.4 76.8 2.87 62.2 56.5 68.3 4.09
✓ ✓ 74.2 68.8 81.0 2.72 63.1 57.4 70.5 3.91
✓ ✓ ✓ 77.5 71.4 83.9 2.47 64.8 58.3 71.1 3.84

Supp-Table 1. Ablation study showing the effect of different components in
VLN⟳BERT on R2R. DB means the disentanglement branch, and DL represents the
decoupled labels.

choose PREVALENT [7] to obtain state-of-the-art performance. Thus, the train-
ing consists of one stage, i.e., directly train the model with mixed original data
and augmented data. Supp-Table 1 shows the ablations of each component. We
can find when the baseline is equipped with the disentanglement branch, it has
obtained performance improvement. This indicates that disentangling the visual
and orientation features can benefit the agent’s understanding of complex input.
Moreover, the decoupled labels can help the agent locate the specific positions
of the landmark- and action-related parts in instruction, further improving the
decision-making ability.

D Qualitative Results

Supp-Figure 2 shows the comparison of disentangled attention weights between
OAAM and ours, indicating the disentanglement of our model is more accu-
rate. Supp-Figure 3 also presents the visualization of a trajectory predicted by
our Transformer-based model. The language attention weight concerning for the
agent’s state is disentangled clearly along the path, making the navigation more
interpretable. We also provide a failure case in Supp-Figure 4. This shows object
recognition needs to be improved in future work.

E Future Work

To learn this fine-grained scenario more efficiently, in future work, it would be
necessary to explore how to accelerate the generation of labeled data via semi-
/weakly- supervised methods. One direction is to enhance the ability of our de-
coupled label speaker and try to generate more accurate pseudo labels. In such a
way, high-quality data annotations can be obtained on new more VLN datasets.
Another way is to synthesize new instructions according to the annotated index
in a weak manner. Since each trajectory usually has three instructions, cross-
combination between different sub-instructions can generate more labeled data.

We also provide more discussion and insights for introducing few-shot learning to
the VLN task in the future work. The VLN task requires the agent to navigate
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(a) Landmark attention weight (OAAM)

(b) Action attention weight (OAAM)

(c) Landmark attention weight (Ours)

(d) Action attention weight (Ours)

Supp-Figure 2. A comparison of language attention weight predicted by the baseline
OAAM [11] (left column) and our full model (right column). The disentanglement of
our model is more accurate. Take the first viewpoint as an example. Our model is able
to disentangle the “leave” and “the bathroom” more clearly while OAAM only tends
to focus on the beginning of instruction with too much noise.

in an unseen environment, which is intrinsically similar to few-shot learning
task that aims to learn a new function from limited annotation. The internal
state during navigation is often maintained in a single-vector-based, history-
bank-based, or graph-based manner. So if we only have a limited amount of la-
beled data, how to efficiently represent and mine the pivotal information during
exploration? From the perspective of meta Reinforcement Learning (RL), fast
adaption can be accelerated via multiple slow explorations [6]. At each training
iteration, the agent could be allowed to explore a series of episodes, while inte-
grating the time order information into the internal state. We believe that this
will help the agent extract the meta knowledge and generalize to new unseen
environments.
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Supp-Figure 3. Visualization of a trajectory with landmark (top row) and action
(bottom row) attention weights of our model based on VLN⟳BERT [9]. We presented
the averaged attention weight of state-language over all heads at each step. The image
is depicted in panoramic view, and the arrow roughly denotes the agent’s heading
direction.
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(b) Top-down View

Walk down the hall way and make a right at the stairs 
and walk down the stairs. Make a hard left at the 
bottom of the stairs and wait by the Bamboo plant.

(a) Panoramic View (c) Instruction

Step 2
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Step 5

Step 1

Step 6

Step 7
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Ground Truth
Overlap

1
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Supp-Figure 4. A failed case of our model based on VLN⟳BERT [9]. (a) is the pre-
dicted trajectory along each step. (b) is a comparison between ground truth and inferred
path in a top-down view. (c) is the given instruction. The target location is marked as
position 1 in Figure (a), but the agent stopped at position 2. This can be explained as
the agent has a poor understanding of “the hard left” and “the Bamboo plant”. Specif-
ically, the first two steps of the agent are different from the ground truth, but it can be
considered to follow the instruction (Walk down the hall way and make a right at the
stairs). In the third step, the agent finds the stair and returns to the correct path. At
the end, the agent turns left, but it does not match the hard left. Most importantly, the
agent doesn’t know the Bamboo plant, which caused the wrong prediction. Therefore,
object recognition is a direction that needs to be explored in future work.


