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1 An overview of Switch-BERT

We provide further details about Switch-BERT. Fig. 1 illustrates the overall ar-
chitecture of the proposed model. The visual and text embeddings are fed into
Switch-Encoder that consists of a stack of Switch-BERT layers, with Switch-
Input Block inserted between consecutive Switch-BERT layers. Three proxy
tasks are used for pre-training, including Masked language modeling with visual
clues (MLM) [3], Masked region classification with KL-divergence (MRC-KL) [2]
and Image-Text matching (ITM).

2 Implementation details and hyper-parameter tuning

For datasets used in both pretraining and finetuning phase except RefCOCO+,
we obtain regional bounding boxes and features from the Faster R-CNN object
detector [7] with ResNet101 [4] as the backbone that is well trained on Visual
Genome[5]. For the RefCOCO+ dataset, we directly extract the mean-pooled
RoI features for bounding boxes provided by [8] from Faster R-CNN. Follow-
ing [1], we select the top 36 regional features in each image for training and share
this setting across all downstream tasks and model architectures. The maximum
number of word tokens varies with different tasks, which are set as 30, 20, and
23, respectively, for image-text retrieval, referring expression comprehension and
visual question answering. Switch-BERT is pre-trained with the AdamW [6] op-
timizer with the following settings: initial lr=1e-4, β1=0.9, β2=0.999, ϵ=1e-6,
weight decay=0.01, warmup ratio=0.1. The initial temperature is set as 5.0 and
gradually decay to 0.2 with annel rate=1e-6. For finetuning, the initial temper-
ature is set as 1.0. Switch-BERT is finetuned on 4 Nvidia P100 GPUs for 20
epochs for each downstream task with initial lr=1e-4, weight decay=1e-4.
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Fig. 1: An Overview of the Switch-BERT Architecture. LN, EL, RL each denote
layers that perform layer-normalization, embedding lookup and reverse embed-
ding lookup, respectively. (Best viewed in color)
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