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Abstract. This paper investigates the modeling of automated machine
description on sports video, which has seen much progress recently. Nev-
ertheless, state-of-the-art approaches fall quite short of capturing how
human experts analyze sports scenes. There are several major reasons:
(1) The used dataset is collected from non-official providers, which nat-
urally creates a gap between models trained on those datasets and real-
world applications; (2) previously proposed methods require extensive
annotation efforts (i.e., player and ball segmentation at pixel level) on
localizing useful visual features to yield acceptable results; (3) very few
public datasets are available. In this paper, we propose a novel large-
scale NBA dataset for Sports Video Analysis (NSVA) with a focus on
captioning, to address the above challenges. We also design a unified ap-
proach to process raw videos into a stack of meaningful features with
minimum labelling efforts, showing that cross modeling on such features
using a transformer architecture leads to strong performance. In ad-
dition, we demonstrate the broad application of NSVA by addressing
two additional tasks, namely fine-grained sports action recognition and
salient player identification. Code and dataset are available at https:

//github.com/jackwu502/NSVA.

1 Introduction

Recently, there have been many attempts aimed at empowering machines to
describe the content presented in a given video [21,12,57,40]. The particular
challenge of generating a text from a given video is termed “video caption-
ing” [2]. Sports video captioning is one of the most intriguing video captioning
sub-domains, as sports videos usually contain multiple events depicting the in-
teractions between players and objects, e.g., ball, hoop and net. Over recent
years, many efforts have addressed the challenge of sports video captioning for
soccer, basketball and volleyball games [40,57,54].

Despite the recent progress seen in sports video captioning, previous efforts
share three major limitations. (1) They all require laborious human annotation
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Fig. 1: Which one is more descriptive for the above professional sport game clip? Con-
ceptual comparison between NSVA (top box) and extant basketball (NBA) video cap-
tioning datasets [57,53] (bottom box). The sentence in blue text describes a passing
action, which might not be practically valuable and is not a focus of NSVA. Instead,
captions in NSVA target compact information that could enable statistics counting and
game analysis. Moreover, both alternative captioning approaches lack in important de-
tail (e.g., player identities and locations).

efforts that limit the scale of data [40,57,54]. (2) Some previous efforts do not
release data [40,57,54], and thereby prevent others from accessing useful data
resources. (3) The collected human annotations typically lack the diversity of
natural language and related intricacies. Instead, they tend to focus on details
that are not interesting to human viewers, e.g. passing or dribbling activities
(see Figure 1), while lacking important information (e.g. identity of performing
players). In this regard, a large-scale sports video dataset that is readily acces-
sible to researchers and annotated by professional sport analysts is very much
needed. In response we propose NBA dataset for Sports Video Analysis (NSVA).

Figure 1 shows captions depicting the same sports scene from NSVA, MSR-
VTT [53] and another fine-grained sports video captioning dataset, SVN [57].
Our caption is compact, focuses on key actions (e.g., made shot, miss shot and
rebound) and is identity aware. Consequently, it could be further translated to a
box score for keeping player and team statistics. SVN includes more less impor-
tant actions, e.g., passing, dribbling or standing, which are excessively common
but of questionable necessity. They neither cover player names nor essential
details, e.g., shooting from 26 feet away. This characteristic of NSVA poses a
great challenge as it requires models to ignore spatiotemporally dominant, yet
unimportant, events and instead focus on key events that are of interest to
viewers, even though they might have unremarkable visual presence. Addition-
ally, NSVA also requires the model to identify the players whose actions will be
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recorded in the box score. This characteristic adds another difficulty to NSVA
and distinguishes us from all previous work, where player identification is under-
emphasized by only referring to “a man”, “some player”, “offender”, etc.

Contributions. The contributions of this paper are threefold. (1) We pro-
pose a new identity-aware NBA dataset for sports video analysis (NSVA), which
is built on web data, to fill the vacancy left by previous work whose datasets
are neither identity aware nor publicly available. (2) Multiple novel features are
devised, especially for modeling captioning as supported by NSVA, and are used
for input to a unified transformer framework. Our designed features can be had
with minimal annotation expense and provide complementary kinds of infor-
mation for sports video analysis. Extensive experiments have been conducted
to demonstrate that our overall approach is effective. (3) In addition to video
captioning, NSVA is used to study salient player identification and hierarchical
action recognition. We believe this is a meaningful extension to the fine-grained
action understanding domain and can help researchers gain more knowledge by
investigating their sports analysis models for these new aspects.

2 Related work

Video captioning aims at generating single or multiple natural language sen-
tences based on the information stored in video clips. Researchers usually tackle
this visual data-to-text problem with encoder-decoder frameworks [39,36,1,44].
Recent efforts have found object-level visual cues particularly useful for caption
generation on regular videos [36,59,60,62] as well as sports videos [54,40]. Our
work follows this idea to make use of detected finer visual features together with
global information for professional sports video captioning.

Transformers and attention first achieved great success in the natural lan-
guage domain [48,14], and then received much attention in vision research. One of
the most influential pioneering works is the vision transformer (ViT) [15], which
views an image as a sequence of patches on which a transformer is applied.
Shortly thereafter, many tasks have found improvements using transformers,
e.g., object detection [8], semantic segmentation [63,46] and video understand-
ing [58,28,47,4]. Our work is motivated by these advances and uses transformers
as building blocks for both feature extraction and video caption generation.

Sports video captioning is one of several video captioning tasks that em-
phasizes generation of fine-grained text descriptions for sport events, e.g., chess,
football, basketball and volleyball games [11,53,18,40,57,54]. One of the biggest
limitations in this area is the lack of public benchmarks. Unfortunately, none of
the released video captioning datasets have a focus on sport domains. The most
similar efforts to ours have not made their datasets publicly available [40,57,54],
which inspires us to take advantage of webly available data to produce a new
benchmark and thereby enable more exploration on this valuable topic.

Identity aware video captioning is one of the video captioning tasks that
requires recognizing person identities [30,31,38]. We adopt this setting in NSVA
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because successfully identifying players in a livestream game is crucial for sports
video understanding and potential application to automatic score keeping. Un-
fortunately, the extant sports video captioning work failed to take player identi-
ties into consideration when creating their datasets. Earlier efforts that targeted
player identification in professional sport scenes only experimented in highly
controlled (i.e., unrealistic) environments, e.g., two teams and ten players, and
has not consider incorporating identities in captioning [30,31].

Action recognition automates identification of actions in videos. Recent work
has mostly focused on two sub-divisions: coarse and fine-grained recognition. The
coarse level tackles basic action taxonomy and many challenging datasets are
available, e.g., UCF101 [45], Kinetics [20] and ActivityNet [7]. In contrast, fine-
grained distinguishes sub-classes of basic actions, with representative datasets in-
cluding Diving48 [24], FineGym [42], Breakfast [22] and Epic-Kitchens [13]. Fea-
ture representation has advanced rapidly within the deep-learning paradigm (for
review, see [65]) from primarily convolutional (e.g., [51,9,52,26,16]) to attention-
based (e.g., [4,28]). Our study contributes to action understanding by providing
a large-scale fine-grained basketball dataset that has three semantic levels as
well as a novel attention-based recognition approach.

3 Data collection

Unlike previous work, we make fuller use of data that is available on the internet.
We have written a webscaper to scrape NBA play-by-play data from the official
website [35], which contains high resolution (e.g., 720P) video clips along with
descriptions, each of which is a single event occurred in a game. We choose 132
games played by 10 teams in NBA season 2018-2019, the last season unaffected
by COVID and when teams still could play with full capacity audiences, for data
collection. We have collected 44,649 video clips, each of which has its associated
play-by-play information, e.g., description, action and player names. We find that
on the NBA website some different play-by-play information share the same video
clip because there are multiple events taking place one-by-one within a short
period time and the NBA just simply uses the same video clip for every event
occurring in it. To avoid conflicting information in model training, the play-by-
play text information sharing the same video clip is combined. We also remove
the play-by-play text information that is beyond the scope of a single video clip,
e.g., the points a player has scored so far in this game. This entire process is fully
automated, so that we can access NBA webly data and associate video clips with
captions, actions and players. Overall, our dataset consists of 32,019 video clips
for fine-grained video captioning, action recognition and player identification.
Additional details on dataset curation are provided in the supplement.

3.1 Dataset statistics

Table 1 shows the statistics of NSVA and two other fine-grained sports video
captioning datasets. NSVA has the most sentences out of three datasets and five
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Datasets Domain #Videos #Sentences #Hours Avg. words Accessibility Scalability Multi-task

SVN [54] basketball 5,903 9,623 7.7 8.8 ✗ ✗ ✗

SVCDV [40] volleyball 4,803 44,436 36.7 - ✗ ✗ ✗

NSVA basketball 32,019 44,649 84.8 6.5 ✓ ✓ ✓

Table 1: The statistics of NSVA and comparison to other fine-grained sports video
captioning datasets.

times more videos than both SVN and SVCDV. The biggest strength of NSVA
is its public accessibility and scalability. Both SVN and SVCDV datasets are
neither publicly available nor scalable because heavy maunal annotation effort
is required in their creation. In contrast, NSVA is built on data that already
existed on the internet; so, everyone who is interested can directly download
and use the data by following our guidelines. Indeed, the 132 games that we
chose to use only accounts for 10.7% of total games in NBA season 2018-2019.
There is more data being produced everyday as NBA teams keep playing and
sharing their data. Note that some other datasets also contain basketball videos,
e.g., MSR-VTT [53] and ActivityNet [7]. However, they only provide coarse-level
captions (see example in Figure 1) and include very limited numbers of videos,
e.g, ActivityNet has 74 videos for basketball and they are all from amateur play,
not professional.

Table 2 shows the data split of NSVA. We hold 32 games out from 132 games
to form validation set and test set, each of which contains 16 games. All clips
and texts belonging to a single game are assigned to the same data split. When
choosing what data split a game is assigned to, we ensure that every team match-
up has been seen at least once in the training set. For example, Phoenix Suns
play four games against San Antonio Spurs in NBA season 2018-2019. We put
two games in the training set, one in the validation set and one in the test set.

NSVA also supports two additional vision tasks, namely fine-grained action
recognition and key player identification. We adopt the same data curation strat-
egy as captioning and show the number of distinct action or player name cate-
gories in the rightmost two columns of Table 2. When being compared with other
find-grained sport action recognition datasets, e.g., Diving48 (48 categories) and
Finegym (530 categories), ours is in the middle place (172 categories) in terms
of number of actions and is the largest regarding the basketball sub-domain.

Videos Sentences Games Teams Actions Identities

train val test total train val test total train val test total all-sets all-sets all-sets
24k 3.9k 3.9k 32k 33.6k 5.5k 5.5k 44.6k 100 16 16 132 10 172 184

Table 2: Data split detail of our dataset.
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Fig. 2: Pipeline of our proposed approach for versatile sports video understanding. First,
raw video clips (left) are processed into two types of finer visual information, namely
object detection (including ball, players and basket), and court-line segmentation, all of
which are cropped, grided and channelled into a pre-trained vision transformer model
for feature extraction. Second, these heterogeneous features are aggregated and cross-
encoded with the global contextual video representation extracted from TimeSformer
(middle). Third, a transformer decoder is used with task-specific heads to recursively
yield results, be it as video captions, action recognition or player identification (right).

4 Architecture design

Problem formulation. We seek to predict the correct sequence of word cap-
tions as one-hot vectors, {y}, whose length is arbitrary, given the observed input
clip X ∈ RH×W×3×N consisting of N RGB frames of size H ×W sampled from
the original video.

Overall structure. As our approach relies on feature representations extracted
from multiple orthogonal perspectives, we adopt the framework of UniVL [32],
a network designed for cross feature interactive modeling, as our base model.
It consists of four transformer backbones that are responsible for coarse feature
encoding, fine-grained feature encoding, cross attention and decoding, respec-
tively. In the following, we step-by-step detail our multi-level feature extraction,
integrated feature modeling and decoder.

4.1 Course contextual video modeling

In most video captioning efforts a 3D-CNN has been adopted as the fundamental
unit for feature extraction, e.g., S3D [52,54,40]. More recent work employed a
transformer architecture in tandem [32]. Inspired by TimeSformer [4], which is
solely built on a transformer block and has shown strong performance on several
action recognition datasets, we substitute the S3D part of UniVL with this new
model as video feature extractor. Correspondingly, we decompose each frame
into F non-overlapping patches, each of size P × P , such that the F patches
span the entire frame, i.e., F = HW/P 2. We flatten these patches into vectors
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and channel them into several blocks comprised of linear-projection, multihead-
self-attention and layer-normalization, in both spatial and temporal axes, which
we shorten as

Fc = TimeSformer (X) , (1)

where Fc ∈ RN×d, d is the feature dimension and X is an input clip.

Transformer blocks have less strong inductive priors compared to convolu-
tional blocks, so they can more readily model long-range spatiotemporal infor-
mation with their self-attention mechanism in a large-scale data learning setting.
We demonstrate the strong performance of TimeSformer features in Sec. 5.

4.2 Fine-grained objects of interest modeling

One limitation of solely using TimeSformer features is that we might lose impor-
tant visual details, e.g., ball, players and basket, after resizing 1280×720 images
to 224× 224, the size that TimeSformer encoder needs. Such loss can be impor-
tant because NSVA requires modeling main players’ identities and their actions
to generate an accurate caption. To remedy this issue, we use an object detector
to capture objects of interest that contain rich regional semantic information
complementary to the global semantic feature provided by TimeSformer. We ex-
tract 1,000 image frames from videos in the training set and annotate bounding
boxes for basket and ball and fine-tune on the YOLOv5 model [19] to have a
joint ball-basket object detector. This pre-trained model returns ball and basket
crops from original images, i.e., Iball and Ibasket.

For player detector, we simply use the YOLOv5 model trained on the MS-
COCO dataset [27] to retrieve a stack of player crops, {Iplayer}. As our caption
is identity-aware, we assume that players who have touched the ball during a
single play are more likely to be mentioned in captions. Thus, we only keep
the detected players that have overlap with a detected ball, e.g., each player
crop, Iplayer, is given a confidence score, C, of 1 otherwise 0; in particular,
if IoU (Iplayeri , Iball) > 0 : C = 1; else : C = 0. Player crops that have C = 1
will be selected for later use, Ipb. Even though the initially detected players,
{Iplayer}, potentially are contaminated by non–players (e.g., referees, audience
members), our ball-focused confidence scores tend to filter out these distractors.

After getting bounding boxes of ball, players intersecting with the ball and
basket, we crop these objects from images and feed them to a vision transformer,
ViT [15], for feature extraction,

fball = ViT (Iball) , fbasket = ViT (Ibasket) , fpb = ViT (Ipb) , (2)

where fball, fpb and fbasket are features of d dimension extracted from cropped ball
image, Iball, player with ball image, Ipb, and basket image, Ibasket, respectively.
We re-group features from every second in the correct time order to have Fball,
Fbasket and Fpb, which all are of dimensions Rm×d.

Discussion. Compared with previous work that either require pixel-level an-
notation in each frame to segment each player, ball and background [54], or
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person-level annotation that needs professional sport knowledge to recognize
each player’s action such as setting, spiking and blocking [40], our annotation
scheme is very lightweight. The annotation only took two annotators less than
five hours to draw bounding boxes for ball and basket in 1,000 selected im-
age frames from the training set. Compared to the annotation procedure that
requires months of work for experts with extensive basketball knowledge [54],
our approach provides a more affordable, replicable and scalable option. Note
that these annotations are only for training the detectors; the generation of the
dataset per se is completely automated; see Sec. 3.

4.3 Position-aware module

NSVA supports modeling estimation of the distance from where the main player’s
actions take place to the basket. As examples, “Lonnie Walker missed 2’ cutting
layup shot” and “Canaan 26’ 3PT Pullup Jump Shot”, where the numbers in
bold denote the distance between the player and basket. Notably, distance is
strongly correlated with action; e.g., players cannot make a 3PT shot at two-
foot distance from the basket. While estimating such distances is important for
action recognition and caption generation, it is non-trivial owing to the need to
estimate separation between two 3D objects from their 2D image projections.

Instead of explicitly making such prediction directly on raw video frames, we
take advantage of prior knowledge that basketball courtlines are indicators of
object’s location. We use a pix2pix network [17] trained on synthetic data [64]
to generate courtline segmentation given images. We overlay the detected player
with ball and basket region, while blacking out other areas. Figure 2 shows an
exemplar image, Ipa, after such processing. We feed these processed images to
ViT for feature extraction, i.e., Fpa = ViT (Ipa) , where Fpa ∈ Rm×d are ViT
features extracted from position-aware image Ipa.

4.4 Visual transformer encoder

After harvesting the video, ball, basket and courtline features, we are ready to
feed them into the coarse encoder as well as the finer encoder for self-attention.
This step is necessary as the used backbones (i.e., ViT and TimeSformer) only
perform attention on frames within one second; there is no communication be-
tween different timestamps. For this purpose, we use one transformer to encode
video feature, Fc ∈ RN×d (1), and another transformer to encode aggregated
finer features, Ff ∈ RM×2d, which is from the concatenation of position-aware
feature, Fpa, and the summation of object-level features. Empirically, we find
summation sufficient, i.e.,

Ff = CONCAT(SUM(Fball,Fbasket,Fpb),Fpa) (3)

The overall encoding process is given as

Vc = Transformer (Fc) ,Vf = Transformer (Ff ) , (4)

where Vc ∈ Rn×d and Vf ∈ Rm×d.
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4.5 Cross encoder for feature fusion

The coarse and fine encoders mainly focus on separate information. To make
them fully interact, we follow existing work and adopt a cross encoder [32],
which takes coarse features, Vc, and fine features, Vf , as input. Specifically,
these features are combined along the sequence dimension via concatenation
and a transformer is used to generate the joint representation, i.e.,

M = Transformer(CONCAT(Vc,Vf )), (5)

where M is the final output of the encoder. To generate a caption, a transformer
decoder is used to attend M and output text autoregressively, cf., [47,6,41].

4.6 Learning and inference

Finally, we calculate the loss as the sum of negative log likelihood of correct
caption at each step according to

L(θ) = −
T∑

t=1

logPθ (yt | y<t,M) , (6)

where θ is the trainable parameters, y<t is the ground-truth words sequence
before step t and yt is the ground truth word at step t.

During inference, the decoder autoregressively operates a beam search algo-
rithm [33] to produce results, with beam size set empirically; see Sec. 5.1.

4.7 Adaption to other tasks

In NSVA, action and identity also are sequential data. So, we adopt the same
model, shown in Figure 2, for all three tasks and swap the caption supervision
signal in (6), y1:t, with either one-hot action labels or player name labels. Simi-
larly, inference operates beam search decoding. Details are in the supplement.

5 Empirical evaluation

5.1 Implementation details

We use hidden state dimension of 768 for all encoders/decoders. We use the
BERT [14] vocabulary augmented with 356 action types and player names en-
tries. The transformer encoder, cross-attention and decoder are pretrained on
a large instructional video dataset, Howto100M [34]. We keep the pre-trained
model and fine tune it on NSVA, as we found the pre-trained weights speed up
model convergence. The maximum number of frames for the encoder and the
maximum output length are set to 30. The number of layers in the feature en-
coder, cross encoder and decoder are 6, 3 and 3, respectively. We use the Adam
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Model Feature C M B@1 B@2 B@3 B@4 R L

MP-LSTM [50] S3D 0.500 0.153 0.325 0.236 0.167 0.121 0.332
TA [55] S3D 0.546 0.156 0.331 0.242 0.175 0.128 0.340
Transformer [43] S3D 0.572 0.161 0.346 0.254 0.181 0.131 0.357
UniVL∗ [32] S3D 0.717 0.192 0.441 0.309 0.226 0.169 0.401

T 0.956 0.217 0.467 0.363 0.274 0.209 0.468
S3D+BAL+BAS+PB+PA 0.986 0.227 0.479 0.371 0.281 0.216 0.466
T+BAL 0.931 0.228 0.496 0.383 0.289 0.220 0.484
T+BAS 1.023 0.232 0.500 0.387 0.292 0.223 0.486

Our Model T+PB 1.055 0.231 0.500 0.387 0.292 0.223 0.487
T+PA 1.064 0.238 0.511 0.398 0.301 0.231 0.498
T+BAL+BAS 1.074 0.243 0.508 0.398 0.306 0.237 0.499
T+BAL+BAS+PB 1.096 0.242 0.519 0.408 0.312 0.242 0.506
T+BAS+BAL+PB+PA 1.139 0.243 0.522 0.410 0.314 0.243 0.508

Table 3: Performance comparison of our model vs. alternative video captioning models
on the NSVA test set. T denotes TimeSformer feature. BAL, BAS and PB denote ViT
features for ball, basket and player with ball, respectively. PA is the position-aware
feature. ∗As our model adopts the framework of UniVL as backbone, results in the row
of UniVL+S3D equals to those of our model only using S3D features.

optimizer with an initial learning rate of 3e-5 and employ a linear decay learning
rate schedule with a warm-up strategy. We used a batch size of 32 and trained
our model on a single Nvidia Tesla T4 GPU for 12 epochs over 6 hours. The
hyperparameters were chosen based on the top performer on the validation set.

In testing we adopt beam search [33] with beam size 5. For extraction of the
TimeSformer feature, we sample video frames at 8 fps. For extraction of other
features, we sample at 12 vs 4 fps when the ball is vs is not detected in the
basket area. We record the time when the ball first is detected and keep 100
frames before and after. This step saves about 70% storage space compared to
sampling the entire video at 8 fps, but still keeps the most important frames.

5.2 Video captioning

Baseline and evaluation metrics. The main task of NSVA is video captioning.
To assess our proposed approach, we compare our results with four state-of-the-
art video captioning systems: MP-LSTM [50], TA [55], Transformer [43] and
UniVL [32] on four widely-used evaluation metrics: CIDEr (C) [49], Bleu (B)
[37], Meteor (M) [3] and Rouge-L (R L) [25]. Results are shown in Table 3. To
demonstrate the effectiveness of our approach against the alternatives, we train
these models on NSVA using existing codebases [56,32].

Main results. Comparing results in the first two rows with results in other
rows of Table 3, we see that transformer models outperform LSTM models,
which confirms the superior capability of a transformer on the video captioning
task. Moveover, it is seen that TimeSformer features achieve much better results
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Fig. 3: Qualitative analysis of captions generated by our proposed approach and others.
It is seen that captions from our full approach are the most close to references.

compared to S3D in modeling video context. We conjecture that this is due to
its ability to model long spatiotemporal dependency in videos; see 4th and 5th

rows. This result suggests that TimeSformer features are not only useful for
video understanding tasks but also video captioning. Comparing results on the
4th and 6th rows, we find that after fusing S3D features with those extracted
by our proposed modules (but not the TimeSformer), improvements are seen on
all metrics. A possible explanation is that our features add additional semantic
information (e.g., pertaining to ball, player and court) and thereby lead to higher
quality text. The best result is achieved by fusing TimeSformer features with
our proposed features. These results suggest that (1) TimeSformer features are
well suited to video captioning and (2) our proposed features can be fused with
a variety of features for video understanding to improve performance further.
From the 7th to final row of Table 3, we ablate our finer-grained features. It
is seen that our model benefits from every proposed finer module, and when
combining all modules, we observe the best result; see last row. This documents
the effectiveness of our proposed method for the video captioning task on NSVA.
More discussions on the empirical results can be found in the supplement.

Qualitative analysis. Figure 3 shows two example outputs generated by four
different models, as compared to the ground-truth reference. From the left ex-
ample output, we see that our full model is able to generate a high quality
caption, albeit with relatively minor mistakes. After replacing the TimeSformer
features with S3D features, the model fails to identify the player who gets the
rebound and mistakes a jump shot for a hook shot. When using TimeSformer
or S3D feature alone, the result further deteriorate by misidentifying all play-
ers. We also notice that our devised features, i.e., PB+BAL+BAS+PA, can
greatly help capture a player’s position, e.g., with 10’ as the reference, models
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Fig. 4: Visualization of a sub-tree from our fine-grained basketball action space. There
are 172 fine-grained categories that comprise three levels of sport event details:Action-
C (coarse), Action-F (fine) and Action-E (event). Some categories have finer descen-
dants (e.g., Shot), while others are solitary (e.g., Jump Ball and Block). The full list
of action categories is in the supplement.

with PB+BAL+BAS+PA features output 11’ and 8’, compared to 15’ and 25’
output by TimeSformer only and S3D only.

The right column shows an example where all models successfully recognize
the action, i.e., jump shot, except the S3D only model. Our full model can
identify most players but still mistakes Jarret Allen for Joel Embiid. As we will
discuss in Sec. 5.4, player identification is the bottleneck of our model as it is
trained with a very weak supervision signal, which points to future research.

5.3 Fine-grained basketball action recognition

As elaborated in Sec. 3, NSVA has massive video clips that cover almost every
moment of interest, and these events have been provided by the NBA for the
purpose of statistics tracking, which allows fine-grained action recognition. A
glimpse of how our action labels are hierarchically organized is shown at Figure 4.

Action hierarchy. NSVA enjoys three levels of granularity in the basketball
action domain. (1) On the coarsest level, there exist 14 actions that describe
the on-going sport events from a very basic perspective. Some representative
examples include: { Shot, Foul, Turnover }. (2) If further dividing the coarse
actions into their finer sub-divisions, we can curate 124 fine-grained actions.
Taking the shot category as an example, it has the following sub-categories: {
Shot Dunk , Shot Pullup Jumpshot , Shot Reverse Layup, etc. }. All of these finer
actions enrich the coarse ones with informative details (e.g., diverse styles for
the same basketball movement). (3) On the finest level, there exists 24 cate-
gories that depicts the overall action from the event perspective, which includes
the coarse action name, the fine action style and the overall event result, e.g., {
Shot-Pullup-Jumpshot-Missed }. Thanks to the structured labelling, NSVA can
support video action understanding on multiple granularity levels. We demon-
strate some preliminary results using our proposed approach in Table 4.
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Action-C Action-F Action-E

Feature-backbone PB BAL BAS PA SR↑ Acc.↑ mIoU↑ SR↑ Acc.↑ mIoU↑ SR↑ Acc.↑ mIoU↑

TimeSformer ✓ ✓ ✓ ✓ 60.14 61.20 66.61 46.88 51.25 57.08 37.67 42.34 46.45
TimeSformer ✓ ✓ ✓ - 60.02 60.79 65.33 46.42 50.64 57.19 36.44 42.29 42.14
TimeSformer ✓ ✓ - - 58.06 60.31 63.71 44.31 49.01 55.78 34.53 39.34 46.45
TimeSformer ✓ - - - 57.74 58.13 60.48 44.20 50.18 55.91 34.50 39.14 42.72
TimeSformer - - - - 55.83 58.01 60.19 42.55 49.66 53.81 33.63 37.50 40.84

S3D - - - - 54.46 57.91 59.91 41.92 48.81 53.77 33.09 37.11 40.77

Table 4: Action recognition accuracy (%) on NSVA at all granularities.

Evaluation. As exemplified in Figure 1, our action labels do not always assign
a single ground-truth label to a clip. In fact, they contain as many actions as
happens within the length of a unit clip. The example in Figure 1 shows a
video clip that has two consecutive actions, i.e., [ 3-pt Jump-Shot Missed →
Defensive Rebound ]. To properly evaluate our results in this light, we adopt
metrics from efforts studying instructional videos [10,5,61], and report: (1) mean
Intersection over Union (mIoU), (2) mean Accuracy (Acc.) and (3) Success Rate
(SR). Detailed explanation can be found in the supplement. We provide action
recognition results using the same feature design introduced in Sec. 4 and provide
an ablation study on the used features.

Results on multiple granularity recognition. From the results in Table 4,
we can summarize several observations: (1) Overall, actions in NSVA are quite
challenging to recognize, as the best result on the coarsest level only achieves
61.2% accuracy (see columns under Action-C). (2) When the action space is fur-
ther divided into sub-actions, the performance becomes even weaker (e.g., 51.25%
for Action-F and 42.43 % for Action-E), meaning that subtle and challenging
differences can lead to large drops in recognizing our actions. (3) TimeSformer
features perform better than S3D counterparts at all granularity levels, which
suggests NSVA benefits from long-term modeling. (4) We observe solid improve-
ments by gradually incorporating our devised finer features, which once again
demonstrates the utility of our proposed approach.

5.4 Player identification

We adopt the same training and evaluation strategy as in action recognition to
measure the performance of our model on player identification, due to these tasks
having the same format, i.e., a sequence of player names involved in the depicted
action; Fig. 5 has results. Resembling observations in the previous subsection, we
find the quality of identified player names increases as we add more features and
our full approach (top row) once again is the best performer. It also is seen that
the results on all metrics are much worse than those of action recognition, cf.,
Table 4. To explore this discrepancy, we study some failure cases in the images
along the top of Fig. 5. It is seen that failure can be mostly attributed to blur,
occlusion from unrelated regions and otherwise missing decisive information.
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Feature-backbone PB BAL BAS PA SR ↑ Acc ↑ mIoU ↑

TimeSformer ✓ ✓ ✓ ✓ 4.63 6.97 6.86
TimeSformer ✓ ✓ ✓ - 4.20 6.83 6.89
TimeSformer ✓ ✓ - - 4.17 6.45 6.68
TimeSformer ✓ - - - 3.97 6.33 6.52
TimeSformer - - - - 3.66 5.98 6.07

S3D - - - - 3.57 5.91 5.49

Fig. 5: (Top) Visual explanations revealing difficulty in player identification. Left: Al-
though our detector captures the ball and player correctly, the face, jersey and size of
the key player are barely recognizable due to blur. Middle: The detected player area is
crowded and the ball handler is occluded by defenders. Right: A case where the ball is
missing; thus, the model cannot find decisive information on the key player. (Bottom)
Player identification results in percentage (%) with our full approach and ablations on
choice of features.

6 Conclusion

In this work, we create a large-scale sports video dataset (NSVA) supporting
multiple tasks: video captioning, action recognition and player identification.
We propose a unified model to tackle all tasks and outperform the state of the
art by a large margin on the video captioning task. The creation of NSVA only
relies on webly data and needs no extra annotation. We believe NSVA can fill the
opening for a benchmark in fine-grained sports video captioning, and potentially
stimulate the application of automatic score keeping.

The bottleneck of our model is player identification, which we deem the most
challenging task in NSVA. To this end, a better algorithm is needed, e.g., oppor-
tunistic player recognition when visibility allows, with subsequent tracking for
fuller inference of basketball activities. There also are two additional directions
we will explore: (1) We will investigate more advanced video feature representa-
tions (e.g., Video Swin transformer [29]) on NSVA and compare to TimeSformer.
(2) Prefix Multi-task learning [23] has been proposed to learn several tasks in
one model. Ideally, a model can benefit from learning to solve all tasks and gain
extra performance boost on each task. We will investigate NSVA in the Prefix
Multi-task learning setting with our task head.
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