
Supplementary Material for: Grounding Visual
Representations with Texts for Domain

Generalization

Seonwoo Min1 , Nokyung Park2 , Siwon Kim3 ,
Seunghyun Park4 , and Jinkyu Kim2

1 LG AI Research, South Korea
2 Computer Science and Engineering, Korea University, South Korea

3 Electrical and Computer Engineering, Seoul National University, South Korea
4 Clova AI Research, NAVER Corp., South Korea

Correspondence: jinkyukim@korea.ac.kr

This supplementary material contains details of our paper which we could
not provide in the main manuscript due to page limits. We provide (1) details
of the CUB-DG data split procedure, (2) implementation details, (3) additional
single-domain DG results, (4) additional ablation studies results, (5) analysis
with Grad-CAM, and (5) detailed DomainBed experiment results.
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Fig. S1. Data split procedures for the CUB-DG dataset. We start from the official split
of the CUB dataset. We divide the train-validation set into three disjoint groups, e.g.
Group 0, Group 1, and Group 2. For the multi-source DG task, we select a different
group from each source domain (gray boxes), so that the different domains do not share
the siblings of the same image. For the single-source DG task, we use all three groups
from a source domain.
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Details of CUB-DG Data Split Procedure. In Figure S1, we show an
overview of our data split procedure for the CUB-DG dataset. Note that we
tried to make it close to real-life scenarios where versions of the same images do
not appear in different domains.

Implementation Details. We follow the implementations of DomainBed [7],
which is a unified testbed useful for evaluating DG algorithms. We use ResNet-
50 [8] as the backbone of different algorithms. It is pre-trained on ImageNet [4]
and produces a 2,048-dimensional latent representation from the last layer. We
train each DG algorithm for 5,000 steps using Adam optimizer with a batch size
of 32 for each source domain. Standard image augmentations (i.e. random crop-
ping, horizontal flipping, color jittering, grayscale conversion, and normalization)
are used during the training. For the model and training hyperparameters of each
algorithm, we use the default values used in the DomainBed. In our case, we use
1.0 for λalign and 1.0 for λexpl. The learning rate is set to 5e−5 for the backbone
parameters and 5e−4 for the newly introduced parameters.

Additional Single-Source DG Results. We provide additional results in
the single-source DG task on the CUB-DG dataset. In Figure S2, we provide
a heatmap that more clearly demonstrates the performance differences between
ours and two baselines, i.e., ERM [24] and SD [17]. Each cell contains accuracy
differences for source-target combinations, and the color blue indicates that ours
performs better. Next, we provide the full results for comparing our model with
six DG algorithms. Note that we excluded some algorithms (e.g. CORAL [23]
and Mixup [27]). Since those algorithms explicitly match distributions across
different domains, they are inapplicable for the single-source DG setting.

-

-

-

-

(Ours - SD)

-

-

-

-

Differences between Ours and SD
(Ours - ERM)

Differences between Ours and ERM

(O
ur

s 
is

 b
et

te
r)

(E
R

M
 is

 b
et

te
r)

(O
ur

s 
is

 b
et

te
r)

(S
D

 is
 b

et
te

r)

Fig. S2. Out-of-distribution test accuracies in the single-source DG setting where we
train our model with a single source domain (rows) and evaluate with other remaining
target domains (columns). We show performance differences between ours and two
baselines (i.e. ERM [24] and SD [17]). Blue indicates that ours is better.
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Table S1. Out-of-distribution test accuracies on the CUB-DG benchmark dataset.
Here we compare six DG algorithms in the single-source DG setting. For each target
domain, we report the averaged results from three models independently trained with
each of the remaining domains. Note that we use the validation set (from source do-
mains) for the model selection.

Model
Source Domain

Avg

Photo Cartoon Art Paint

Ours w/ PTE 69.6 48.1 41.1 24.0 45.7

Ours w/ STE 69.0 48.1 39.2 24.9 45.3

SD [17] 64.6 41.9 36.9 23.6 41.7

SagNet [15] 56.0 38.1 28.7 22.2 36.3

VREX [10] 55.1 36.2 27.3 19.8 34.6

ERM [24] 55.0 35.6 27.9 19.7 34.5

ARM [28] 54.9 36.9 28.0 20.6 35.1

IRM [1] 53.1 35.6 27.6 19.3 33.9

Table S2. Results from additional ablation studies. We vary our base model in several
directions and measured the performance on the multi-source DG task.

Pre-trained
Textual Encoder

Target Domain
Avg

Photo Cartoon Art Paint

Base CLIP [18] 74.6 64.2 52.2 37.0 57.0

(C)
MPNet [22] 74.5 63.1 49.8 37.7 56.3

DistillBERT [20] 74.2 62.2 50.4 38.4 56.3

MiniLM [26] 73.6 64.7 51.4 35.7 56.3

In Table S1, we report the averaged results from three models independently
trained with each of the remaining domains. We observe that the proposed mod-
els outperform the others. Cross-modality supervision is especially effective in
the single-source DG setting where visual representations alone deliver little in-
formation for domain invariances.

Additional Ablation Studies Results. We provide additional results from
the ablation studies. We report averaged results across three independent runs in
the multi-source DG setting. In Figure S3, we provide a heatmap for more exten-
sive range of λexpl (rows) and λalign (columns). Again, we can see that the former
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Fig. S3. Additional results from ablation studies. We report out-of-distribution test
accuracies in the multi-source DG setting where we train our model with a λexpl (rows)
and λalign (columns)

is more crucial in the training of our proposed model. In Table S2, we compare
the impact of embeddings from other PTEs, i.e. MPNet [22], DistillBERT [20],
and MiniLM [26]. The results show that different PTEs also successfully produce
domain-invariant representations.

Analysis with Grad-CAM. As shown in Figure S4, we use Grad-CAM [21]
to highlight image regions where the model attends to classify the given object.
We provide two examples for different target domains (i.e. Cartoon and Photo)
where we compare the model’s attention maps. We observe that our proposed
model captures the class-discriminative features (i.e. short pointy beak), which
are compatible with the generated sentence. Note that red is the attended region.

Detailed DomainBed Experiment Results. In Table S3–S7, we provide per-
domain results on each of the five multi-domain datasets from the large-scale
DomainBed [7] experiments. Following their experiment protocols, we report
the averaged results from three independent trials. In each trial, entire random
choices (e.g. dataset splits, hyperparameter search, and weight initialization) in
the study are renewed. Note that we use the validation set (from source domains)
for the model selection.
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Generated sentences by ours:
“This bird has a black crown red eyes and a black bill.”

Input Attention Maps

Generated sentences by ours:
“This bird has a red crown a long black bill and a white belly.”

Input Attention Maps

Fig. S4. We provide visualizations of attention maps (i.e. where the model sees) by
Grad-CAM for ours as well as the generated sentences.

Table S3. Per-domain out-of-distribution test accuracies on the VLCS [5] dataset.
The results of compared DG algorithms are excerpted from DomainBed [7]. Note that
we use the train domain validation set (from source domains) for the model selection.

Method Caltech LabelMe SUN09 VOC2007 Avg

Ours w/ PTE 98.8 ± 0.1 64.0 ± 0.3 75.2 ± 0.5 77.9 ± 1.0 79.0

CORAL [23] 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8

DANN [6] 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6

IRM [1] 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.5

VREx [10] 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3

SagNet [15] 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8

ARM [28] 98.7 ± 0.2 63.6 ± 0.7 71.3 ± 1.2 76.7 ± 0.6 77.6

ERM [24] 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5

MMD [13] 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5

CDANN [14] 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5

Mixup [27] 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4

MLDG [12] 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2

MTL [3] 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2

RSC [9] 97.9 ± 0.1 62.5 ± 0.7 72.3 ± 1.2 75.6 ± 0.8 77.1

GroupDRO [19] 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7
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Table S4. Per-domain out-of-distribution test accuracies on the PACS [11] dataset.
The results of other compared DG algorithms are brought from DomainBed [7]. Note
that we use the train domain validation set (from source domains) for the model se-
lection.

Method Art Painting Cartoon Photo Sketch Avg

Ours w/ PTE 87.9 ± 0.3 78.4 ± 1.0 98.2 ± 0.1 75.7 ± 0.4 85.1

SagNet [15] 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3

CORAL [23] 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2

ERM [24] 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5

RSC [9] 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2

ARM [28] 86.8 ± 0.6 76.8 ± 0.5 97.4 ± 0.3 79.3 ± 1.2 85.1

MLDG [12] 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9

VREx [10] 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9

Mixup [27] 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6

MMD [13] 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.6

MTL [3] 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6

GroupDRO [19] 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4

DANN [6] 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6

IRM [1] 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5

CDANN [14] 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6

Table S5. Per-domain out-of-distribution test accuracies on the OfficeHome [25]
dataset. The results of other compared DG algorithms are brought from DomainBed [7].
Note that we use the train domain validation set (from source domains) for the model
selection.

Method Art Clipart Product Real-world Avg

Ours w/ PTE 66.3 ± 0.1 55.8 ± 0.4 78.2 ± 0.4 80.4 ± 0.2 70.1

CORAL [23] 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7

Mixup [27] 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1

SagNet [15] 63.4 ± 0.2 54.8 ± 0.4 75.8 ± 0.4 78.3 ± 0.3 68.1

MLDG [12] 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8

ERM [24] 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5

MTL [3] 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4

VREx [10] 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4

MMD [13] 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.3

GroupDRO [19] 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0

DANN [6] 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9

CDANN [14] 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.8

RSC [9] 60.7 ± 1.4 51.4 ± 0.3 74.8 ± 1.1 75.1 ± 1.3 65.5

ARM [28] 58.9 ± 0.8 51.0 ± 0.5 74.1 ± 0.1 75.2 ± 0.3 64.8

IRM [1] 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
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Table S6. Per-domain out-of-distribution test accuracies on the TerraIncognita [2]
dataset. The results of other compared DG algorithms are brought from DomainBed [7].
Note that we use the train domain validation set (from source domains) for the model
selection.

Method L100 L38 L43 L46 Avg

Ours w/ PTE 53.9 ± 1.3 41.8 ± 1.2 58.2 ± 0.9 38.0 ± 0.6 48.0

SagNet [15] 53.0 ± 2.9 43.0 ± 2.5 57.9 ± 0.6 40.4 ± 1.3 48.6

Mixup [27] 59.6 ± 2.0 42.2 ± 1.4 55.9 ± 0.8 33.9 ± 1.4 47.9

MLDG [12] 54.2 ± 3.0 44.3 ± 1.1 55.6 ± 0.3 36.9 ± 2.2 47.7

IRM [1] 54.6 ± 1.3 39.8 ± 1.9 56.2 ± 1.8 39.6 ± 0.8 47.6

CORAL [23] 51.6 ± 2.4 42.2 ± 1.0 57.0 ± 1.0 39.8 ± 2.9 47.6

DANN [6] 51.1 ± 3.5 40.6 ± 0.6 57.4 ± 0.5 37.7 ± 1.8 46.7

RSC [9] 50.2 ± 2.2 39.2 ± 1.4 56.3 ± 1.4 40.8 ± 0.6 46.6

VREx [10] 48.2 ± 4.3 41.7 ± 1.3 56.8 ± 0.8 38.7 ± 3.1 46.4

ERM [24] 49.8 ± 4.4 42.1 ± 1.4 56.9 ± 1.8 35.7 ± 3.9 46.1

CDANN [14] 47.0 ± 1.9 41.3 ± 4.8 54.9 ± 1.7 39.8 ± 2.3 45.8

MTL [3] 49.3 ± 1.2 39.6 ± 6.3 55.6 ± 1.1 37.8 ± 0.8 45.6

ARM [28] 49.3 ± 0.7 38.3 ± 2.4 55.8 ± 0.8 38.7 ± 1.3 45.5

GroupDRO [19] 41.2 ± 0.7 38.6 ± 2.1 56.7 ± 0.9 36.4 ± 2.1 43.2

MMD [13] 41.9 ± 3.0 34.8 ± 1.0 57.0 ± 1.9 35.2 ± 1.8 42.2

Table S7. Per-domain out-of-distribution test accuracies on the DomainNet [16]
dataset. The results of other compared DG algorithms are brought from DomainBed [7].
Note that we use the train domain validation set (from source domains) for the model
selection.

Method Clip Info Paint Quick Real Sketch Avg

Ours w/ PTE 62.4 ± 0.4 21.0 ± 0.0 50.5 ± 0.4 13.8 ± 0.3 64.6 ± 0.4 52.4 ± 0.2 44.1

CORAL [23] 59.2 ± 0.1 19.7 ± 0.2 46.6 ± 0.3 13.4 ± 0.4 59.8 ± 0.2 50.1 ± 0.6 41.5

MLDG [12] 59.1 ± 0.2 19.1 ± 0.3 45.8 ± 0.7 13.4 ± 0.3 59.6 ± 0.2 50.2 ± 0.4 41.2

ERM [24] 58.1 ± 0.3 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9

MTL [3] 57.9 ± 0.5 18.5 ± 0.4 46.0 ± 0.1 12.5 ± 0.1 59.5 ± 0.3 49.2 ± 0.1 40.6

SagNet [15] 57.7 ± 0.3 19.0 ± 0.2 45.3 ± 0.3 12.7 ± 0.5 58.1 ± 0.5 48.8 ± 0.2 40.3

Mixup [27] 55.7 ± 0.3 18.5 ± 0.5 44.3 ± 0.5 12.5 ± 0.4 55.8 ± 0.3 48.2 ± 0.5 39.2

RSC [9] 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.2 ± 0.2 55.7 ± 0.7 47.8 ± 0.9 38.9

DANN [6] 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.8 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3

CDANN [14] 54.6 ± 0.4 17.3 ± 0.1 43.7 ± 0.9 12.1 ± 0.7 56.2 ± 0.4 45.9 ± 0.5 38.3

ARM [28] 49.7 ± 0.3 16.3 ± 0.5 40.9 ± 1.1 9.4 ± 0.1 53.4 ± 0.4 43.5 ± 0.4 35.5

IRM [1] 48.5 ± 2.8 15.0 ± 1.5 38.3 ± 4.3 10.9 ± 0.5 48.2 ± 5.2 42.3 ± 3.1 33.9

VREx [10] 47.3 ± 3.5 16.0 ± 1.5 35.8 ± 4.6 10.9 ± 0.3 49.6 ± 4.9 42.0 ± 3.0 33.6

GroupDRO [19] 47.2 ± 0.5 17.5 ± 0.4 33.8 ± 0.5 9.3 ± 0.3 51.6 ± 0.4 40.1 ± 0.6 33.3

MMD [13] 32.1 ± 13.3 11.0 ± 4.6 26.8 ± 11.3 8.7 ± 2.1 32.7 ± 13.8 28.9 ± 11.9 23.4
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