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Abstract. The recent focus on Fine-Grained Sketch-Based Image Re-
trieval (FG-SBIR) has shifted towards generalising a model to new cat-
egories without any training data from them. In real-world applications,
however, a trained FG-SBIR model is often applied to both new cate-
gories and different human sketchers, i.e., different drawing styles. Al-
though this complicates the generalisation problem, fortunately, a hand-
ful of examples are typically available, enabling the model to adapt to the
new category/style. In this paper, we offer a novel perspective – instead
of asking for a model that generalises, we advocate for one that quickly
adapts, with just very few samples during testing (in a few-shot manner).
To solve this new problem, we introduce a novel model-agnostic meta-
learning (MAML) based framework with several key modifications: (1)
As a retrieval task with a margin-based contrastive loss, we simplify the
MAML training in the inner loop to make it more stable and tractable.
(2) The margin in our contrastive loss is also meta-learned with the rest
of the model. (3) Three additional regularisation losses are introduced in
the outer loop, to make the meta-learned FG-SBIR model more effective
for category/style adaptation. Extensive experiments on public datasets
suggest a large gain over generalisation and zero-shot based approaches,
and a few strong few-shot baselines.
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1 Introduction

Significant progress has been made towards making sketch an input modality for
image retrieval [7, 55,18,61,32,47,12,49]. As an input modality complementary
to text, sketch finds its competitive advantage especially when it comes to fine-
grained instance-level retrieval [7, 38, 45, 37], where the problem lies with intra-
category retrieval as opposed to the conventional category-level setting [13,12].

Early attempts at fine-grained sketch-based image retrieval (FG-SBIR) mainly
focused on tackling the sketch-photo domain gap, where triplet-based networks
have by now been established as the de facto choice [59,7,38,53]. As performance
under the supervised learning setting have recently started to saturate, the re-
search focus has shifted onto the problem of data scarcity, where the challenge
is to build generalisable and zero-shot models for unseen categories [14, 36, 16].
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However, retrieval performances of these models are typically much weaker com-
pared to supervised models. We attribute this to two factors (i) the stringent
assumption of no additional sketch-photo pairs from the new categories, and
more importantly, (ii) drawing styles of input sketches vary significantly amongst
different users (see Figure 1-c) – the latter of which remains untackled to date.
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Fig. 1: Graphs illustrating how (a) category-adaptive FG-SBIR (b) user-adaptive
FG-SBIR can significantly improve the retrieval performance on unseen cate-
gories and users using only 5 samples during inference, respectively. (c) Exam-
ples showing the varying style of sketching with different level of abstraction for
the same photo with respect to different users (drawers).

The first contribution is thus a practical problem setting, namely cate-
gory/style adaptive FG-SBIR. Instead of asking for a model that generalises
to categories [14,36,16], we advocate for one that quickly adapts. That is, we are
after a single FG-SBIR model that can quickly adapt to a new style/category,
with just a few samples during testing. Achieving this offers a best-of-both-worlds
solution – (i) the model has a better chance at adaptation having observed new
style/category data, as opposed to no data for generalisation or zero-shot, and
(ii) the few samples requirement still falls within the practical remit of sketch
data, i.e., one can always sketch just a few. We show by experiments that our
quick adaptation (few-shot) approach (category-level) offers about 6% gain over
generalisation-based models (9− 10% over no adaptation baseline), with just 5
new samples during testing only (Figure 1 offers a summary). Our ultimate vi-
sion for commercial adaption of FG-SBIR is therefore – to deploy a single model,
where the end users can easily adapt to their specific categories and drawing
styles, by sketching very few (≤10) new samples.

Our second contribution is to devise a novel meta-learning framework to
solve this new problem of adaptive FG-SBIR. Essentially, we build upon model-
agnostic meta-learning (MAML) [20], which learns a common initialisation point
encoding knowledge shared across different tasks such that it adapts quickly for
a new task (i.e., specific category or user) using a few training samples. Unique
to conventional few-shot approaches [35,50], this suits us ideally as it yields one
model, and needs only a few (usually one) gradient update steps during testing.

However, getting a MAML-based framework to work with the specific prob-
lem of FG-SBIR is non-trivial. First, unlike few-shot classification – for which
MAML was initially proposed – triplet-based (margin-based contrastive loss)
cross-modal FG-SBIR networks typically involve three forward passes for an-
chor, positive and negative instances; and adopting MAML off-the-shelf would
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additionally incur heavy computation due to their second-order gradient compu-
tation [41] during backpropagation. We propose to side-step these difficulties by
performing inner loop updates only for the final joint-feature embedding layer
(see Figure 2). This importantly avoids an over-fitted model during adaptation,
as not all parameters are updated during adaptation process. Besides performing
meta-learning upon intermediate latent-space, we also meta-learn the margin
used in the contrastive loss to adapt it to new categories. To further tackle the
sketch-photo domain gap [23], we additionally introduce a domain discrimination
module to regularize the intermediate latent-space at the outer loop.

Our next contribution lies with how to tailor our meta-learning framework
to best work with user- and category-wise adaptation. For that, we aim to make
the intermediate latent space, upon which meta-learning is performed, be cat-
egory/style discriminative. This discriminative objective is handled through an
auxiliary classification head for category-level adaptation. Whereas, due to ab-
sence of abundant data for every user, we substitute for an auxiliary contrastive
learning head for the style-adaptation setting. Furthermore, we add an extra
semantic reconstruction head to encourage category-level transfer (akin to zero-
shot SBIR [14, 16, 17]). In brief, both category and style adaptation are regu-
larised by domain adaptation and the discriminative objective, while semantic
relatedness is specifically modelled for category-level adaptation.

Our contributions can be summarised as follows: (a) We set out a vision
for practical FG-SBIR by proposing a new problem setting, where rather than
seeking for generalisation, we advocate for quick adaptation at testing time.
(b) We introduce a novel FG-SBIR framework based on gradient-based meta-
learning that adapts to a new category or user sketching style based on a few
training examples. (c) The framework is based on the existing MAML but with
significantly different formulations tailored for the specific challenges of either
category or style-level adaptation. (d) Extensive experiments on public datasets
suggest a significant increase in performance over generalisation and zero-shot
approaches, and few strong few-shot baselines.
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Fig. 2: Our framework for cat-
egory/user adaptation involves
a bi-level optimisation process.
While the inner loop (red)
aims to adapt via pseudo-
updating M using support set,
the outer loop (blue) exe-
cutes meta-optimisation to learn
better initialisation parameter.
Moreover, meta-learning is per-
formed in the intermediate la-
tent space F(·) which is regu-
larised by auxiliary heads. Dis-

criminative head is modelled by either C (with loss LC) or T (with loss Lud) for
category and user level adaptation, respectively. G is only used for category-level adap-
tation. More details is in Section 3.3. Note that only the inner loop path (red) is used
to obtain category/user-specialised model during inference.
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2 Related Works

Fine-Grained SBIR: Unlike category-level SBIR [13,33, 17, 61, 12, 46, 44, 4, 3],
the goal of fine-grained SBIR [10,6,2,11] is instance-level matching. While Li et
al. [30] first introduced it using deformable part models and graph matching, Yu
et al. [58] employed deep learning via deep triplet network to learn a common
embedding space from heterogeneous domains. Later methods improved upon
this via attention mechanism with higher order retrieval loss [53], reinforcement
learning for on-the-fly retrieval [7] and using mixed modal jigsaw solving for a
better pre-training strategy [38]. In this paper, we introduce a new fine-grained
SBIR setting, i.e. category/style adaptive FG-SBIR, which is relevant to real-
world applications given the performance gain.
Cross-Category Generalisation for SBIR: Mostly studies have been done
on category level SBIR [16,14,33, 17] for cross-category generalisation. Starting
with sketch-photo translation pseudo tasks using conditional GANs [57] that
learn embedding, zero-shot SBIR has been handled by regularising embedding
space, with semantic information across different classes by reconstructing word-
vectors [14], semantically paired cycle consistency [33]. Cross-category general-
isation for FGSBIR has only been attempted via a domain-generalisation ap-
proach by modelling a universal manifold of prototypical visual sketch traits [36]
to dynamically represent the sketch/photo. Contrary to the domain-invariant
representation learning [36], we follow a few-shot adaptation [20] approach and
additionally address the user-specific style-adaptation problem.
Meta-Learning: Meta-learning has been studied intensively for quick model
adaptation to new tasks with few training samples. Representative methods
such as memory network [35] or metric-based [50] meta-learning methods are
mostly architecture dependant [9] and generally designed for few-shot classi-
fication. They are thus unsuitable for our retrieval model adaptation problem.
Recently there has been a significant attention towards optimisation based meta-
learning algorithms [20,21,31] due to their model agnostic nature. In particular,
model-agnostic meta-learning (MAML) [20] aims to learn optimal initialisation
parameters that allows quick adaptation at test-time using few gradient de-
scent updates. Later on, it was further augmented with sets of tricks to sta-
bilise the training in MAML++ [1], learnable learning rate in MetaSGD [31],
meta-optimisation in a low-dimensional latent space in LEO [43], or a simpli-
fied inner-loop update by recently introduced Sign-MAML [19]. While MAML
in theory can be applied to our problem, we have to introduce a number of sig-
nificant modifications to make it more tractable and well suited to the specific
challenges associated with category/style-adaptive FG-SBIR.

To eliminate disparity among users [29], several user adaptive models [27, 5]
are developed for activity and emotion recognition by transfer learning [24], and
user interface via recurrent network [51]. Conversely, we use meta-learning that
realises our goal of a user adaptive AI agent.

3 Methodology
Overview: We devise a fine-grained SBIR framework that could be instantly
adapted for either specific category or user. The category/user specific train-
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ing and testing data consists of DS = {DS
1 ,DS

2 , · · · ,DS
|NS| ∋ |N

S| > 1} and

DT = {DT
1 ,DT

2 , · · · ,DT
|NT| ∋ |N

T| ≥ 1}, where NS and NT are the disjoint sets

of training and testing categories/users (styles) respectively, i.e. NS ∩NT = ∅.
Furthermore, we have access to smaller fine-tuning sets of data corresponding
to every testing category/user as DF = {DF

1 ,DF
2 , · · · ,DF

|NT | ∋ |N
T | ≥ 1} for

category/user specific instantaneous adaptation. The i-th category/user in ei-
ther of the three sets consists of Ki paired sketch (x) and photo (y) images as

Di = {xj, yj}K
i

j=1. During training, we intend to meta-learn a retrieval model FM

with the optimal initialisation point, by modelling the shared knowledge across
different category/user from the training set DS – such that it can quickly adapt
to any new category/user using few examples. During inference, given K sketch-
photo pairs from the fine-tuning set of a particular category/user DF

i , we obtain
a category/user specialised model via a single gradient update: FM 7→ F i

M .

3.1 Baseline FG-SBIR Model

We use Siamese network with spatial attention [14] as the baseline retrieval
model. It consists of two components: (i) Given a photo or a rasterized sketch
image I, we extract backbone feature map B = fB(I) ∈ Rh×w×c where fB is
initialised from a pre-trained InceptionV3 [7] model; and h, w, and c represent
the height, width and channels respectively. The attention normalised feature are
fused with backbone feature via a residual connection to give Batt = B+ B · fatt(B),
followed by a global-average pooling operation to get a latent feature vector rep-
resentation of size Rc. This CNN comprising fB and fatt produces an intermedi-
ate latent feature embedding F, parameterised by θF. (ii) The extracted feature
vector is passed through a fully-connected layer followed by l2 normalisation to
embed the photo and sketch images into a shared embedding space of dimension
Rd. We call this component as M with parameters θM.

Overall, the final representation is obtained through staged operation de-
noted as M ◦ F. The training data are triplets {a, p, n} containing sketch an-
chor, positive and negative photos respectively. Accordingly, Triplet loss is used
for training [56], which aims at increasing the distance between sketch anchor
and negative photo β− = ∥M ◦ F(a)−M ◦ F(n)∥2 while reducing that between
sketch anchor and positive photo β+ = ∥M ◦ F(a)−M ◦ F(p)∥2. Let µ be the
margin-hyperparameter, the triplet loss calculated across a batch of size N:

LT =
1

N

N∑
i=1

max{0, µ+ β+
i − β−

i }. (1)

In multi-category FG-SBIR where a single model handles instance-specific re-
trieval from multiple categories (e.g. Sketchy [48]), hard triplets are used in
training, i.e., the negative photo is from the same class but of different instances.

3.2 Background: Gradient based Meta-Learning

Given a set of related tasks with some distribution p(T ), the objective of MAML
[20] is to meta-learn a good initialisation θ of some parametric model fθ such
that only a few examples is necessary to adapt to any new task Ti ∼ p(T ). Each
sampled task Ti ∈ {Dtr, Dval} consists of a support set of examples Dtr and
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a query/target set of examples Dval. Given Dtr and a loss function LTi
, the

parameters θ are first adapted to θ
′

i using one or more gradient descent updates

via inner-loop (performs adaptation) feedback as follows: θ
′

i ← θ−α∇θLDtr

Ti
(fθ).

The inner-loop learning rate α can either be fixed, or meta-learned concurrently
like Meta-SGD [31]. As the aim is to optimise θ in such a way that one or a
few gradient based updates will enable maximally effective performance on any
Ti, meta-optimisation is conducted in the outer-loop update, with respect to θ

as: θ ← θ − β∇θ

∑
Ti∼p(T ) LDval

Ti
(fθ′

i
). Updating θ via the outer-loop essentially

implies gradient through a gradient, or differentiating through the inner-loop
to minimise the meta-objective using task-specific adapted models fθ′

i
on their

corresponding target set Dval. This is computationally demanding due to the
second order gradient computation on θ.

3.3 Meta-Learning for FG-SBIR

Overview: A number of modifications are needed to make MAML suitable for
our category/user adaptive FG-SBIR problem. The first challenge of adopting
MAML for FG-SBIR is to alleviate the high computational cost brought about
by the nested optimisation in the inner and outer loops. Inspired by a recent
study [41] which suggests that inner loop simplification in MAML has little
impact on its effectiveness, we exclude F from the inner loop update, and only
meta-learn the final feature embedding layerM by adapting parameter θM inside
the inner loop. In other words, meta-learning is performed on the intermediate
latent feature space extracted by F.

We further introduce regularizers for handling problems specific to fine-
grained SBIR. More specifically, there is a meta-learning head of final feature
embedding layer M (used during inner loop update) and multiple regularisa-
tion heads upon the extracted latent representation F(·) ∈ Rc (see Figure 2).
These regularizers serve two major purposes: (a) minimising the sketch-photo
domain gap in the intermediate latent space, and (b) allowing the intermediate
latent space to be more discriminative across different categories/styles. Further-
more, we add an extra regularisation head to aid in semantic transfer to unseen
categories in category-level adaptation. Note that this is only for category adap-
tation and not used for user style adaptation as no varying semantic concepts
exist across different users [16].

Moreover, all regularizers are removed during inference, and we only use
M ◦ F where the final joint-feature embedding head M is updated through a
single gradient update using few support set examples for quick adaptation. In
a nutshell, during adaptation, M grabs the specialised knowledge from support
set examples to generalise better for a specific target category/user. Next we
describe these regularizers in detail.

Minimising Sketch-Photo Domain Gap: Bridging the domain-gap be-
tween sketch and photo images is a key objective behind learning feature rep-
resentation in a common embedding space for any sketch-based image retrieval
system [14]. Therefore, we add a discriminator D : Rc 7→ [0, 1] with parameter
θD which learns to predict the domain of an input (i.e. sketch vs photo) from
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the latent features of size Rc from F. By maximising this discriminator loss
through Gradient Reversal Layer (GRL) [23], the network F learns to extract
domain-agnostic latent feature upon which the meta-learning head M can gen-
eralise better. Given the binary domain label t (which is 0 and 1 for sketch and
photo domain respectively) for input I, the binary cross-entropy loss to train the
domain-adaptation head is defined as:

LD = t · log(D(F(I))) + (1− t) · log(1−D(F(I))) (2)

Discriminative Intermediate Latent Space: While triplet loss over the
output of M distinguishes between instances of a particular category, a class
discrimination objective [25] helps towards learning to separate between different
categories in a multi-category FG-SBIR model. In order to make the latent space
F(·) class-discriminative, we add a cross-entropy loss using a classification head

C : Rc 7→ R|NS| with parameters θC. Let the class label be cl ∈ NS with respect
to input either sketch or photo image I, the classification loss is defined as:

LC = Cross Entropy(cl, softmax(C(F(I)))). (3)

For some datasets such as QMUL-ShoeV2 [58, 7] where user-level adaptation
is required but all sketch-photo images belong to the same shoe category, this
classification loss is clearly not applicable. In this case, we want the intermedi-
ate latent space F(·) to be discriminative across different user’s sketching styles
instead. As the number of samples per user is limited, we use a metric learn-
ing based approach. Concretely, a triplet loss is used where anchor (a′) and
positive (p′) sketch-photo pairs come from the same user, and negative (n′)
sample is from any other user. Directly imposing triplet loss over the latent
space F(·) can be a very hard constraint [15], potentially hurting generalisation
during instant adaptation to new users; thus we use an auxiliary embedding
network T : Rc+c 7→ Rd′

, where concatenated features of paired sketch-photo
are fed as input. Note that we are imposing triplet loss on the output of T but
the gradient flows back through F making its F(·) user-discriminative. Given
β′− = ∥T(F(a′))−T(F(n′))∥2, β′+ = ∥T(F(a′))−T(F(p′))∥2, and µ′ being
the margin-hyperparameter, the triplet loss is computed as:

Lud = max{0, β′− + β′+ + µ′}. (4)

Semantic Transfer for Category-Level Adaptation: Unlike single-category
FG-SBIR [58, 7], multi-category FG-SBIR (e.g. Sketchy) further dictates the
transfer of class-specific semantic concept [22] from seen to unseen categories.
For that, meta-learning is additionally performed in the semantically enriched
intermediate latent-space F(·) by using relationship between different categories.
Specifically, we use a semantic decoder head over F(·) to reconstruct the word-
embedding representation of the category label with respect to either sketch or
photo. Let G be the semantic decoder (three fully connected layers with ReLU)
with parameter θG, input (sketch or photo) be I with class label cl ∈ NS and
word-embedding from pre-trained FastText [8] model be Sw= embedding(cl).
We use simple cosine-similarity distance as semantic reconstruction loss:

LS =
1

2

(
1− ⟨G(F(I)), Sw⟩
∥G(F(I))∥2 · ∥Sw∥2

)
(5)
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Task Sampling: In meta-learning [26], a model is trained episodically, such
that a task sampled in each episode, imitates the few-training-sample scenario
appearing during testing. For us, sampling a task Ti ∼ p(T ) across a cate-
gory/user means: (i) we first randomly select the i-th category/user DS

i out of
NS sets of training category/user. (ii) Next, from DS

i , we construct the support
Dtr and validation set Dval by randomly sampling K sketch-photo pairs for each
respectively. Inner loop is updated over Dtr, and outer loop over Dval. Within
every set, hard negatives are created by selecting different photo instances.

Meta Optimisation on the Loss Margin: The triplet loss contains the
hyper-parameter, margin µ, whose optimal value is empirically found to be vary-
ing (§ 4.3) across different categories. Since the intra-class distribution or spread
among sampled sketches is unlikely to be identical for each class, it is intuitive
to have a class-specific optimal margin value. Therefore, we decide learning to
learn the margin-hyperparameter inside our meta-learning process that would
adaptively decide the optimal µ value for a specific category at test time.

For the i-th task, given K-shot training examples from Dtr
i = {(xk, yk) | k =

1, · · · ,K}, the latent representation of sketch (xk) is concatenated with that
of its corresponding photo (yk), to obtain the per-instance sketch-photo rep-
resentation: fk

xy = concat(F(xk),F(yk)) ∈ Rc+c. Given the set of all {fkxy}Kk=1,
different per-instance sketch-photo representations {fm

xy, f
n
xy} where (m ̸= n) are

concatenated pair-wise, resulting in a total of K ′ = K(K − 1) pairs. All such
pairs can be aggregated into a matrix for task i as Si ∈ RK′×(2c+2c). This is
subsequently processed by a relational network R with parameter θR that feeds
every row-vector to each time step of bidirectional GRU to model the relation
among all samples in support set. A max-pool operation is performed over the
output from all time steps. The resultant vector is then fed to a linear layer that
finally predicts a sigmoid normalised scalar value representing the learnable mar-
gin value for each task i as µi = R(Si). Therefore, given the task specific triplet
loss Lµi

Ti
(Eqn. 1) with its margin hyperparameter µi and learning rate α both

being meta-learned concurrently following Meta-SGD [31], the parameter of the
M is now adapted in the inner loop using Dtr

i as follows:
θ′M = θM − α · ∇θMLµi

T (θF, θR, θM;Dtr
i ). (6)

On the other side, the overall regularisation loss for category level adaptation
becomes Lreg =

∑
a,p,n

1
3 (LD + LC + LS) which is calculated over anchor (a),

positive (p) and negative (n) samples. Similarly, for user-specific adaptation the
regularisation loss becomes Lreg =

∑
a,p,n

1
3LD +Lud. As there is no inner-loop

step, we calculate the regularisation loss over concatenated samples from both
support and validation set together (say Di).
Let all parameters related to regularisation be denoted as θreg, e.g., for category
adaptation θreg = {θD, θC, θS} and user style adaptation θreg = {θD, θT}. Meta-
learning pipeline is trained along with regularisation loss to optimise a combined
loss. The optimisation objective for the outer loop is thus formulated as:

argmin
θF,θM,θR,α,θreg

LT (θF, θR, α, θ′M;Dval
i ) + λ · Lreg(θF, θreg;Di) (7)

where λ is a weighting hyperparameter. Note that the task specific adapted θ′M
is used to compute a validation loss. As θ′M is dependant on θM, θR and α via
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inner-loop update (Eqn. 6), a higher order gradient is computed in the outer
loop optimisation. Note that the model is updated by averaging gradient over
meta-batch size of B sampled tasks and trained in an end-to-end manner.

Discussion: (a) Significance of Semantic-Relatedness Loss: For multi-category
FG-SBIR (Sketchy), sketch-photo pairs are from the same category, grouped to-
gether using the class discriminative objective. Every category holds a semantic
concept, which may help control the positioning of class-specific groups in the
embedding space, such that class-specific concepts can be transferred from seen
to unseen categories (akin to zero-shot SBIR [14, 16]). This entire objective is
handled by the semantic relatedness module. It should not be confused with the
instance-specific separation criteria for fine-grained retrieval (already handled by
triplet-loss). Please see § Supp. for an illustration of latent space. (b) Difference
with classical few-shot learning: Standard few-shot literature usually deals with
classification [20], whereas ours is the first work employing few-shot adaptation
for fine-grained retrieval. We show potential under two objectives: category and
user’s style adaptation. (c) Novelty behind Triplet-Loss+MAML: Dou et al. [15]
adopted MAML for domain generalisation purpose where triplet loss acts as
an auxiliary loss to encourage class specific feature clustering. On the contrary,
ours involves a few-shot adaptation paradigm which requires executing inner
loop update using triplet-loss during inference. Therefore, the design of inner-
loop update using triplet loss is more critical to our framework. Furthermore,
unlike [15], margin value of inner-loop triplet loss is meta-learned to facilitate
better and stable adaptation. (d) Why FG-SBIR undergoes such generalization
issue (unlike person ID/re-ID): Domain gap existing across various categories in
multi-category FG-SBIR, is much larger than different person-identities in Re-
ID, as shape morphology varies highly across new categories (not limited to just
human shapes). Note that FG-SBIR model tries to learn shape correspondences
between sketches and photos. As shape itself becomes almost unknown for unseen
categories, discovering fine-grained correspondence becomes even harder.

4 Experiments

Datasets: For category-level adaptation, we use the Sketchy dataset [48] which
contains 125 categories with 100 photos each. Each photo has at least 5 sketches
with fine-grained associations. In contrast, QMUL-Shoe-V2 dataset [7, 38, 53]
contains sketches of only one category (shoes) annotated with user ID and fine-
grained sketch-photo correspondence, making it the only option for user/style-
level adaptation. We consider users having at least 10 sketch samples, which leads
to a total of 306 users having 5480 sketches and corresponding 1877 photos.

Experimental Setup: We demonstrate the potential of our framework in two
scenarios. (a) Category-level adaptation: Following [57,36], we split the 125
Sketchy categories to 104 for training and the rest 21 for testing, ensuring no
test categories are present in the 1000 ImageNet classes [42]. We create random
adaptation sets of 10 photos each from each unseen category along with their
respective sketches, leaving the rest photos and sketches for testing. (b) User-
level adaptation: We consider 60 users with a sketch/gallery-photo size of
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560/200 for testing, and the rest for training. This ensures gallery-photos and
users to be mutually exclusive for training and testing.
Implementation Details: Inception-V3 network pretrained on ImageNet [42]
is used as our backbone feature extractor. The intermediate latent space F(·) is
of size c = 2048, and we set d = 64 as the dimension of our final joint-feature
embedding layer M(·). Following the traditional supervised learning protocol
[52,7], the Adam-optimiser [28] with a learning rate of 0.0001 is first used to pre-
train the baseline model for 60 epochs with a triplet loss, having a fixed margin
of 0.3 with batch size 16. Thereafter, we add regularizer heads and perform meta-
optimisation (Eqn. 7) for 40 epochs. The reported performance uses only one
inner-loop update during inference unless otherwise mentioned (ablative study
done later). We use meta-batch size of B = 8, and set the size of support and
validation set as K = 5. We use Adam as meta-optimiser with an outer-loop
learning rate of 0.0001. Note that the margin value of inner-loop triplet loss is
meta-learned, that for outer-loop is set to 0.3. Furthermore, we set λ, d′, and µ′

to 0.5, 64 and 0.2, respectively. We implemented our framework in PyTorch [39]
conducting experiments on a 11 GB Nvidia RTX 2080-Ti GPU. We use pre-
computed word-embeddings provided by Doodle2search [7], which ensures no
leakage of class information. Please note that semantic relatedness module is
used only for category-level adaptation on Sketchy; not for user style adaptation
(on Shoe-V2), as no varying semantic concepts exist across different users. Please
refer to § Supplementary (Supp.) for more details.
Evaluation Setup: During inference, K sketch-photo pairs are used to con-
struct triplets for adaptation, where negative images are randomly sampled.
We consider k ∈ {1, 5, 10} on Sketchy, and k ∈ {1, 5} on Shoe-V2 due to data
constraint. For Shoe-V2, adaptation set is randomly sampled from each unseen
user, and evaluation of adapted model is done on the rest samples. Only the
final feature-embedding layer M is updated via inner loop update (Eqn. 6) for
adaptation. For fair evaluation, we make sure the adaptation and evaluation sets
remain the same for all experiments. We evaluate the fine-grained retrieval per-
formance using Acc.@q accuracy, i.e., percentage of sketches having true-match
photos appearing in the top-q list. Average accuracy is reported by repeating
every experiment five times.

4.1 Competitors

To the best of our knowledge, there has been no prior work dealing with either
category or user-level adaptation for SBIR. We thus design several baselines
from four different perspectives to justify our framework. (i) SOTA FG-
SBIR Methods: We compare with popular Triplet-SN [58] (Sketch-A-Net+
triplet loss) and Triplet-HOLEF [53]. Results are cited at sketch-completion
point for Triplet-RL. Furthermore, we compare with Mixed-Jigsaw employing
self-supervised pre-training, and recently introduced StyleMeUP [46]. (ii) Gen-
eralisation Approach: CC-DG [36] aims to model a universal manifold of pro-
totypical visual sketch traits that dynamically embeds sketch and photo, to gen-
eralise for unseen categories. Following a very recent few-shot classification work,
we employ sequential distillation upon our baseline FG-SBIR model using l2 loss
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on the absolute sketch/photo feature and evaluate it on unseen category/user
without updating the model during inference. We term this few-shot competitor
from non-MAML family as Distill [54]. (iii) Zero-Shot SBIR: We also com-
pare with four state-of-the-art ZS-SBIR methods, namely CVAE-Regress [57],
Sem-Pyc [16], Doodle2Search [14], SAKE [33]. (iv) Adaptation Based Ap-
proach: (a) We compare with standard Fine-Tuning approach; (b) Off-the-shelf
MAML [20] has been employed on the top of our baseline FG-SBIR model ad-
ditionally following the tricks introduced in [1]. (c) Following ANIL [41], which
only updates the final classification layer for few-shot classification, we update
final embedding layer M within the inner loop in meta-optimisation process.
We use fixed margin-hyperparameter value of 0.3 for both inner and outer loop
in case of MAML, sign-MAML [19] (recently introduced low-cost variant) and
ANIL baselines. Uniform backbone is used in all self-designed baselines and mar-
gin is meta-learned only in our final model.

Through preliminary experiments, we infer that adding a classification head
is necessary for reasonable performance when dealing with multi-category FG-
SBIR on Sketchy dataset. We thus add a classification head upon F(·) for all our
self-designed competitors (having uniform feature extractor) while experimenting
on Sketchy, and train using both triplet and classification losses with weights 1
and 0.01 respectively for a fair comparison.

Table 1: Comparing among our baseline FG-SBIR, naive Fine-tuning, Generali-
sation [36] approach, and our proposed Category (Sketchy) and User(Shoe-V2)-
adaptive FG-SBIR. GAPB and GAPG represent the Acc@1 gap of ours with
Baseline and Generalisation respectively.

Datasets
Baseline Fine-Tuning Generalisation [36] Proposed (k=5)

Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5 GAPB GAPG

Sketchy (Category Level) 18.4% 37.3% 18.5% 37.5% 22.7% 42.1% 28.1% 51.8% 9.7↑ 5.4↑
Shoe-V2 (User Level) 33.7% 70.2% 33.8% 70.2% 33.8% 70.4% 38.3% 76.6% 4.6↑ 4.5↑

Table 2: Performance analysis using different approaches.
Sketchy (Category) Shoe-V2 (User ) Sketchy (Category) Shoe-V2 (User )
Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5

Our Baseline 18.4% 37.3% 33.7% 70.2%

A
d
a
p
ta
ti
o
n
B
a
se
d
A
p
p
ro
a
ch
es

Fine-Tuning
k=1 18.4% 37.3% 33.7% 70.2%

Our Baseline + Reg. 19.2% 39.6% 33.9% 71.3% k=5 18.5% 37.5% 33.8% 70.2%
Upper-Bound 29.8% 53.7% – – k=10 18.6% 37.5% – –

S
O
T
A

Triplet-SN [60] 15.3 % 34.0% 28.5% 67.3%
MAML [20]

k=1 19.5% 38.7% 34.2% 70.7%
Triplet-HOLEF [53] 16.7% 35.9% 31.4% 69.1% k=5 22.8% 42.3% 35.5% 74.6%

Triplet-RL [7] 4.7% 7.8% 34.1% 70.2% k=10 26.4% 48.9% – –
Mixed-Jigsaw [36] 16.7% 34.3% 33.5% 71.4%

sign-MAML [19]
k=1 19.1% 38.2% 33.8% 69.6%

StyleMeUp [46] 19.6% 39.7% 36.4% 81.8% k=5 20.5% 39.6% 34.1% 70.8%

G
A CC-DG [36] 22.7% 42.1% 33.8% 70.4%

ANIL [41]
k=1 19.7% 38.9% 34.5% 70.9%

Distill(non-MAML) [36] 18.9% 38.1% 33.9% 70.9% k=5 23.2% 42.8% 35.7% 75.3%

Z
S
-S
B
IR

CVAE-Regress [57] 2.4% 9.5% 1.8% 3.1% k=10 26.9% 48.3% – –
Sem-Pyc [16] 4.9% 17.3% 2.1% 4.7%

Ours

k=1 21.8% 42.5% 34.9% 71.4%
Doodle2Search [14] 14.8% 34.5% 28.1% 66.9% k=5 28.1% 51.8% 38.3% 76.6%

SAKE [33] 6.4% 20.3% 3.6% 5.7% k=10 32.7% 53.5% – –

4.2 Performance Analysis

Table 1 shows our adaptation (5-shot) based framework to outperform baseline
FG-SBIR (§ 3.1) and Generalisation based approach [36] by a significant mar-
gin of 9.7% (4.6%) and 5.4% (4.5%) in Acc@1, respectively for category(user)
level adaptation. Furthermore, we compare with four different classes of alter-
native approaches in Table 2, including an upper-bound for Sketchy, where we
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re-train the model on the testing (unseen) categories with available samples.
Category-Level Adaptation: We can make the following observations: (i)
SOTA FG-SBIR Methods: Almost every existing state-of-the-arts model includ-
ing our baseline performs poorly on unseen testing sketchy classes, indicating
that adaptation is necessary. Note that, among them our baseline FG-SBIR
model is notably better compared to earlier SOTA triplet-loss based frameworks,
Triplet-SN and Triplet-HOLEF, due to more recent backbone feature extractor
(Inception-V3) with spatial attention. While Triplet-RL fails to converge for
large Sketchy dataset as the reward diminishes to zero during RL-based fine-
tuning, Mixed-Jigsaw/StyleMeUP are found to be less effective [38] on Sketchy.
(ii) Generalisation Approach: CC-DG (our re-implementation) is the only excep-
tion that performs comparatively better than other SOTA methods, as it models
category agnostic abstract sketch traits [36] for better cross-category generalisa-
tion. Nevertheless, it does not provide any option to obtain category specialised
model during inference; hence its performance is much lower than our adapta-
tion based pipeline. Distill (non-MAML baseline) gives very marginal gain over
our baseline. (iii) Zero-Shot SBIR: Every ZS-SBIR method was designed for
category-level retrieval, not instance-level, thus limiting its efficacy in FG-SBIR.
Doodle2search [14] performs relatively better due to triplet loss (unlike the rest),
which is critical for instance-level matching in FG-SBIR. (iv) Adaptation Based
Approach: Notably naive Fine-Tuning hardly helps over few-shot setting. It can
be seen that ANIL performs better than MAML. This suggests that simplifying
the inner loop update in MAML to reduce the high computational cost associ-
ated with second order gradients over a large parameter space is indeed useful.
However, its performance is still lower than ours. We also tried our first-order
approximated version of MAML and very recently introduced sign-MAML [19],
but found no significant difference to MAML. To summarise, our meta-learning
based adaptive fine-grained SBIR framework outperforms existing SOTA meth-
ods, alternative generalisation and zero-shot approaches by a large margin, as
well as exceeds some strong few-shot baselines by a significant margin. (v) Most
importantly, accuracy even after adding all the respective regularizers to base-
line FG-SBIR model falls behind our method by a significant margin of 9− 10%
(Sketchy) and 4 − 5% (Shoe) – thus proving the contribution of our bi-level
meta-learning framework. The Qualitative results are shown in Figure 3.
User-Level Adaptation: Compared to the striking boost obtained in the
category-level adaptation experiments by our method, improvements for user
level adaptation (Table 1 and 2) are relatively small (difference of 4.6% Acc@1)
compared to our baselines. One explanation is that modelling user-specific subtle
differences is more challenging compared to category-level modelling. Neverthe-
less, the overall pattern is fairly similar to that of category-level adaptation and a
same set of conclusions can be drawn regarding the effectiveness of our approach.

Fig. 3: Category (left) and user (right) level adaptive model vs. baseline [(·):
matching photo’s rank] (more in supplementary).
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4.3 Ablative Studies

Contributions of Regularizers: Ablative studies in Table 3 evaluate the con-
tribution of different regularizers used for optimisation. (i) We notice LD, miti-
gating the domain gap between sketch and photos, has a relatively uniform effect

Table 3: Ablative study (Acc@1); k = 5

LD LS LC
Sketchy

LD Lud
Shoe-V2

Category Level User Level
✓ ✓ ✓ 28.1% ✓ ✓ 38.3%
× ✓ ✓ 26.3% × ✓ 37.1%
× × ✓ 23.7% × × 35.8%
× × × 16.5% - - -

on both category and user level adap-
tation. (ii) Classification head, em-
ploying a classification loss LC is the
most critical one while dealing with
multi-category FG-SBIR on Sketchy
dataset to maintain class discrimina-
tive information. Removing only LC

leads to a drop of 7.5% under k = 5 on Sketchy. For multi-category FG-SBIR,
class specific grouping (classification loss) followed by instance specific separa-
tion (hard triplet loss) is necessary. (iii) Semantic loss LS plays a vital role in
adapting to unseen Sketchy categories to transfer knowledge from seen training
classes to unseen ones. (iv) Removing Lud, that helps in learning discriminative
information across different users’ sketching styles, drops accuracy by 1.8% for
user-level adaptation k = 5 on Shoe-V2 dataset.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 5 10 15 21

0.3

0.6

1.0
µ

Optimal Hard-Mined µ

Model Predicted µ

Fig. 4: (a) Hard-mined µ over 10 ran-
dom classes. (b) Model predicted µ
over 21 testing classes. (both Sketchy)

0 1 2 3 4 5 32 64 128 256 512

25
30
35
40

Adaptation Steps Feature Dimension

Acc@1

User Category

Fig. 5: Varying (a) adaptation steps
(b) feature dimension (k=5).

Effect of meta-learning µ: A direct way of judging the contribution of
the learnable margin hyper-parameter µ, is to replace it by a fixed value of
0.3 (optimised) in the inner loop loss calculation. Consequently, we notice a
significant drop of 1.8% Acc@1 (k = 5) for category-level adaptation respectively.
To verify if µ really varies across different Sketchy classes, we randomly choose 10
classes to perform exhaustive hyper-parameter search with bin size 0.05 around
global optimum µ of 0.3. Figure 4 (a) shows that the optimal value indeed varies.
Such a search for the test categories obviously is infeasible due to the lack of data.
In Figure 4 (b), our model-predicted average µ over different classes is plotted
against the 21 Sketchy testing classes – the value clearly varies contributing
to the performance boost. However, the effect of learnable margin is almost
negligible (a 0.06% boost) in case of user-level adaptation as all images belong
to a single category for Shoe-V2 dataset. The reported numbers on Shoe-V2 are
hence based on fixed inner loop margin value of 0.3.

Cross-Dataset Adaptation: Model trained on Sketchy training classes gives
10.3% Acc@1 on QMUL-ShoeV2 [7], however upon adaptation using 5 (10) ran-
dom sketch-photo pairs from respective datasets, Acc@1 jumps to 22.3% (26.4%),
respectively. In contrast to complete-training dataset supervised performance of
33.7%, this demonstrates our cross-dataset generalisation capability.
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Further Analysis: (i) From Figure 5 (a), the optimal accuracy is observed at
joint feature-embedding space dimension d = 64. (ii) The number of gradient-
update steps are varied as well – Figure 5 (b) shows that a single gradient
step update, used in all the experiments, provides the highest performance gain.
(iii) We explore other word-embedding techniques for auxiliary semantic loss
LS , but found that Glove [40] and word2vec [34] give 27.5% and 27.7% for
unseen category-level adaptation compared to 28.1% in case of fast-text [8] using
k = 5. (iv) One could have used a simple sum or average pooling operation to
accumulate information for predicting learnable µ. However a performance drop
(Acc@1) of 1.2%/0.6%/0.8% during sum/average/max pooling operation under
category setup (k = 5) demonstrates the relevance of relational network which
encodes the joint relationship between all sketch-photo pairs in support set for
predicting learnable µ. (v) For 5-shot single gradient step adaptation on our
baseline model, an Intel(R) Xeon(R) W-2123 CPU @ 3.60GHz takes 32.1ms.

20 40 60 80 100 125
20
25
30
35
40
45

Number of Categories (k)

A
cc

.@
1

Single model for k categories
k individual models for k categories

20 40 60 80 100 125
0

20

40

60

Sketchy Categories

Baseline FG-SBIR
Ours (5-shot Adapted) Fig. 6: Graph (left) shows how

baseline FG-SBIR model falls
behind with rise in categories
(also during training) to be
served by a single FG-SBIR
model, compared to having mul-

tiple individual models for each category in Sketchy. Right shows benefit of adaptation.

Is adaptation useful even for seen classes?: Instead of designing indi-
vidual FG-SBIR model for each category, cost-effective deployment requires a
single model handling instance-specific retrieval from multiple categories. How-
ever, as the number of categories to be handled by a single model increases,
the retrieval performance starts decreasing drastically even for the seen classes
that the model has been trained upon, as shown in Figure 6. For instance, sin-
gle model trained from all the 125 Sketchy classes, gives average Acc@1 of only
25.6% on the test set. Whereas, on re-training 125 individual models for each
category, the same value rises up to 43.1%, although it is quite impractical to
have 125 separate models. In such a scenario, using our method on a single model
to adapt to just one of the seen training categories with only 5/10 sketch-photo
pairs, we obtain an average Acc@1 of 34.9/38.7%.

5 Conclusion

We have introduced a FG-SBIR framework which retains a single model that
can quickly adapt to (i) sketching style of a particular user, or (ii) a new cat-
egory, with just very few examples during the inference process. To this end,
we design a meta-learning framework based on the existing MAML model but
with crucial modification to our retrieval problem, including a simplified inner
loop optimisation and introduction of the learnable contrastive loss margin to the
meta-learning process. The intermediate latent space, upon which meta-learning
is performed, is further constrained using three additional regularisation losses
to facilitate learning the adaptation process during meta-optimisation.



Adaptive Fine-Grained Sketch-Based Image Retrieval 15

References

1. Antoniou, A., Edwards, H., Storkey, A.: How to train your maml. In: ICLR (2018)
2. Bhunia, A.K., Chowdhury, P.N., Sain, A., Yang, Y., Xiang, T., Song, Y.Z.: More

photos are all you need: Semi-supervised learning for fine-grained sketch based
image retrieval. In: CVPR (2021)

3. Bhunia, A.K., Chowdhury, P.N., Yang, Y., Hospedales, T.M., Xiang, T., Song,
Y.Z.: Vectorization and rasterization: Self-supervised learning for sketch and hand-
writing. In: CVPR (2021)

4. Bhunia, A.K., Gajjala, V.R., Koley, S., Kundu, R., Sain, A., Xiang, T., Song, Y.Z.:
Doodle it yourself: Class incremental learning by drawing a few sketches. In: CVPR
(2022)

5. Bhunia, A.K., Ghose, S., Kumar, A., Chowdhury, P.N., Sain, A., Song, Y.Z.:
Metahtr: Towards writer-adaptive handwritten text recognition. In: CVPR (2021)

6. Bhunia, A.K., Koley, S., Khilji, A.F.U.R., Sain, A., Chowdhury, P.N., Xiang, T.,
Song, Y.Z.: Sketching without worrying: Noise-tolerant sketch-based image re-
trieval. In: CVPR (2022)

7. Bhunia, A.K., Yang, Y., Hospedales, T.M., Xiang, T., Song, Y.Z.: Sketch less for
more: On-the-fly fine-grained sketch based image retrieval. In: CVPR (2020)

8. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. TACL (2017)

9. Choi, M., Choi, J., Baik, S., Kim, T.H., Lee, K.M.: Scene-adaptive video frame
interpolation via meta-learning. In: CVPR (2020)

10. Chowdhury, P.N., Bhunia, A.K., Gajjala, V.R., Sain, A., Xiang, T., Song, Y.Z.:
Partially does it: Towards scene-level fg-sbir with partial input. In: CVPR (2022)

11. Chowdhury, P.N., Sain, A., Bhunia, A.K., Xiang, T., Gryaditskaya, Y., Song, Y.Z.:
Fs-coco: Towards understanding of freehand sketches of common objects in context.
In: ECCV (2022)

12. Collomosse, J., Bui, T., Jin, H.: Livesketch: Query perturbations for guided sketch-
based visual search. In: CVPR (2019)

13. Collomosse, J., Bui, T., Wilber, M.J., Fang, C., Jin, H.: Sketching with style: Visual
search with sketches and aesthetic context. In: ICCV (2017)

14. Dey, S., Riba, P., Dutta, A., Llados, J., Song, Y.Z.: Doodle to search: Practical
zero-shot sketch-based image retrieval. In: CVPR (2019)

15. Dou, Q., de Castro, D.C., Kamnitsas, K., Glocker, B.: Domain generalization via
model-agnostic learning of semantic features. In: NeurIPS (2019)

16. Dutta, A., Akata, Z.: Semantically tied paired cycle consistency for zero-shot
sketch-based image retrieval. In: CVPR (2019)

17. Dutta, A., Akata, Z.: Semantically tied paired cycle consistency for any-shot sketch-
based image retrieval. IJCV (2020)

18. Dutta, T., Singh, A., Biswas, S.: Adaptive margin diversity regularizer for handling
data imbalance in zero-shot sbir. In: ECCV (2020)

19. Fan, C., Ram, P., Liu, S.: Sign-maml: Efficient model-agnostic meta-learning by
signsgd. arXiv preprint arXiv:2109.07497 (2021)

20. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: ICML (2017)

21. Finn, C., Xu, K., Levine, S.: Probabilistic model-agnostic meta-learning. In:
NeurIPS (2018)

22. Fu, Z., Xiang, T., Kodirov, E., Gong, S.: Zero-shot object recognition by semantic
manifold distance. In: CVPR (2015)



16 Bhunia et al.

23. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation.
In: ICML (2015)

24. Garcia-Ceja, E., Riegler, M., Kvernberg, A.K., Torresen, J.: User-adaptive models
for activity and emotion recognition using deep transfer learning and data aug-
mentation. User Modeling and User-Adapted Interaction (2020)

25. Horiguchi, S., Ikami, D., Aizawa, K.: Significance of softmax-based features in
comparison to distance metric learning-based features. IEEE-TPAMI (2019)

26. Hospedales, T., Antoniou, A., Micaelli, P., Storkey, A.: Meta-learning in neural
networks: A survey. arXiv preprint arXiv:2004.05439 (2020)

27. Hsieh, P.L., Ma, C., Yu, J., Li, H.: Unconstrained realtime facial performance
capture. In: CVPR (2015)

28. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

29. Lane, N.D., Xu, Y., Lu, H., Hu, S., Choudhury, T., Campbell, A.T., Zhao, F.:
Enabling large-scale human activity inference on smartphones using community
similarity networks (csn). In: UbiComp (2011)

30. Li, Y., Hospedales, T.M., Song, Y.Z., Gong, S.: Fine-grained sketch-based image
retrieval by matching deformable part models. In: BMVC (2014)

31. Li, Z., Zhou, F., Chen, F., Li, H.: Meta-sgd: Learning to learn quickly for few-shot
learning. arXiv preprint arXiv:1707.09835 (2017)

32. Liu, L., Shen, F., Shen, Y., Liu, X., Shao, L.: Deep sketch hashing: Fast free-hand
sketch-based image retrieval. In: CVPR (2017)

33. Liu, Q., Xie, L., Wang, H., Yuille, A.: Semantic-aware knowledge preservation for
zero-shot sketch-based image retrieval. In: ICCV (2019)

34. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. In: ICLR (2014)
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