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In the supplementary material, we provide the following content: (A) the
statistical details of the Single-source subset of the AVSBench; (B) additional
ablation studies on our components and settings; (C) more discussion about the
model training and inference; (D) additional qualitative results of the proposed
AVS framework compared to the methods from SSL, VOS, and SOD tasks.
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Fig.A1. Statistics of the Single-source subset of AVSBench. The texts rep-
resent the category names. For example, the ‘helicopter’ category contains 311 video
samples.

A Dataset Statistics

The Single-source subset of AVSBench contains 4, 932 videos over 23 categories.
We provide the category names and their corresponding video numbers in Fig. A1.
Some video samples are also listed in Fig. A2. Additionally, we provide some
video samples and their annotations in the “dataset sample.zip” file, containing
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both the visual and audio contents, covering the Single-source and Multi-sources
sets.

cap gun shooting

cat meowing
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chainsawing trees

man with bird

man with ukulele

piano with guitar

man with dog

(a) Video examples in Single-source subset (b) Video examples in Multiple-sources subset
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dog barking

horse clip-clop

man with piano

violin with piano

baby with dog

man with piano

Fig.A2. AVSBench samples. The AVSBench dataset contains the Single-source
subset (Left) and Multi-sources subset (Right). Each video is divided into 5 clips. The
annotated clips are indicated by brown rectangles and the name of sounding objects
is highlighted by red texts. For the Single-source training set, only the first frame of
each video is annotated, whereas for other sets all the five frames are annotated.

B Ablation Study

Cross-modal fusion at various stages. The detailed architecture of the pro-
posed TPAVI module is provided in Fig. A3. It is a plug-in architecture that can
be applied in any stage for cross-modal fusion. As shown in Table A1, when the
TPAVI module is used in different single stage, the segmentation performance
fluctuates. For the variant based on the ResNet50 backbone, the model performs
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Fig.A3. The TPAVI module takes the i-th stage visual feature Vi and the audio
feature A as inputs. The colored boxes represent 1 × 1 × 1 convolutions, while the
yellow boxes indicate reshaping operations. The symbols “⊗” and “⊕” denote matrix
multiplication and element-wise addition, respectively.

Table A1. Cross-modal fusion at various stages, measured by mIoU. For both
the S4 and MS3 settings, the model achieves the best performance when the TPAVI
module is used in all four stages.

Setting Backbone
i-th stage of Encoder, i ∈ {1, 2, 3, 4}

1 2 3 4 3,4 2,3,4 1,2,3,4

S4
ResNet50 68.55 69.56 71.30 69.99 71.29 71.98 72.79
PVT-v2 78.30 78.58 78.02 77.70 78.19 78.47 78.74

MS3
ResNet50 41.62 42.37 43.02 42.29 44.84 45.98 47.88
PVT-v2 46.16 48.79 47.35 49.01 49.79 50.53 54.00

best when employing the TPAVI module at the third stage under both S4 and
MS3 settings. As for the PVT-v2 based model, it is better to use the TPAVI
module at the second stage under the S4 setting, and at the fourth stage un-
der the MS3 setting. For all the settings, using TPAVI at the first stage cannot
achieve the best performance, and we attribute it to that the visual features at
the first stage enjoy limited semantics. Since our decoder architecture adopts a
skip-connection, it would be beneficial to apply the TPAVI modules in multiple
stages, as verified in the right part of Table A1. For example, under the MS3
setting, applying the TPAVI modules at all the four stages would increase the
metric mIoU from 49.01% to 54.00%, with a gain of 4.99%. It indicates the model
has the ability to fuse and balance the features from multiple stages.
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Table A2. Performance with different initialization strategies under the
MS3 setting. Compared to training from scratch on the Multi-sources subset, we
observe a significant performance improvement if pre-training the model on the Single-
source subset first. Note the proposed LAVM loss is used in all the experiments of the
Table. The metric is mIoU.

AVS method
From scratch Pretrained on Single-source

ResNet50 PVT-v2 ResNet50 PVT-v2

wo. TPAVI 43.56 48.21 45.50 50.59
w. TPAVI 47.88 54.00 54.33 57.34

C Discussion of the model training and inference

Pre-training on the Single-source subset. As introduced in Sec. 3 of the
paper, the videos in the Multi-sources subset share similar categories to those in
the Single-source subset. A natural idea is whether we can pre-train the model
on the Single-source subset to help deal with the MS3 problem. As shown in
Table A2, we test two initialization strategies, i.e., from scratch or pretrained on
the Single-source subset. It is verified that the pre-training strategy is beneficial
in all the settings, whether we use the audio information (“AVS w. TPAVI”)
or not (“AVS wo. TPAVI”). Taking the PVT-v2 based AVS model for example,
the mIoU is improved from 48.21% to 50.59% (by 2.38%) and from 54.00%
to 57.34% (by 3.34%), respectively without or with TPAVI. The phenomenon
is more obvious if using ResNet50 as the backbone and adopting the TPAVI
module, where the mIoU increases from 47.88% to 54.33% (by 6.45%). With
pre-training on the Single-source subset, the model can learn prior knowledge
about the audio-visual correspondence, i.e., the matching relationship between
the visual objects and sounds. This kind of knowledge is naturally beneficial.

Segmenting unseen objects. The proposed AVS framework is trained without
accessing the category labels of the sounding objects, and hence it can be used
to predict the videos which do not strictly lie in the category vocabulary of
AVSBench dataset, though may have a performance drop for unseen objects.
We display some qualitative examples on real-world videos whereas the sounding
objects are barely not appeared in the training set of AVS model. As shown in
Fig. A4, the pretrained AVS model has a certain ability to segment the correct
sounding objects in the case of single sound source (a), multiple visible objects
(b, c), and multiple sound sources (d). We speculate that the pretrained AVS
model learned some prior knowledge about audio-visual correspondence from
AVSBench dataset that helps it to generalize to even unseen videos and give
possibly accurate pixel-level segmentation.
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Fig.A4. Qualitative examples of applying the pretrained AVS model to un-
seen videos. The caption in each sub-figure indicates the sounding object(s) accord-
ingly. There are almost no videos having the same category as these sounding objects
during AVS model training. The pretrained AVS model gains the ability to segment
the correct sounding object(s) in both single and multi sources.
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Fig.A5. Qualitative examples of the SSL methods and our AVS framework,
under the fully-supervised MS3 setting. The SSL methods (LVS [1] and MSSL [3]) can
only generate rough location maps, while the AVS framework can accurately segment
the pixels of sounding objects and nicely outline their shapes.

D Qualitative Samples

Qualitative comparison between AVS and SSL. We provide some quali-
tative examples to compare our AVS framework with the SSL methods, LVS [1]
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and MSSL [3]. As shown in the left sample of Fig. A5, LVS over-locates the
sounding object violin. At the same time, MSSL fails to locate the piano of the
right sample. Both the results of these two methods are blurry and they cannot
accurately locate the sounding objects. Instead, our AVS framework can not only
accurately segment all the sounding objects, but also nicely outline the object
shapes.
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Fig.A6. Qualitative examples of the VOS, SOD, and our AVS methods, un-
der the fully-supervised MS3 setting. We pick the state-of-the-art VOS method SST [2]
and SOD method LGVT [4]. As can be verified in the left sample, SST or LGVT can-
not capture the change of sounding objects (from ‘baby’ to ‘baby and dog’), while the
AVS accurately conducts prediction under the guidance of the audio signal.

Qualitative comparison between AVS and VOS/SOD. We compare the
proposed AVS framework with the state-of-the-art methods from VOS and SOD,
i.e., SST [2] and LGVT [4], respectively. As shown in Fig. A6, SST and LGVT
can predict their objects of interest in a pixel-wise manner. However, their pre-
dictions rely on the visual saliency and the dataset prior, which cannot satisfy
our problem setting. For example, in the left sample of Fig. A6, the dog keeps
quiet in the first two frames and should not be viewed as an object of interest.
Our AVS method correctly follows the guidance of the audio signal, i.e., accu-
rately segmenting the baby at the first two frames and both the sounding objects
at the last three frames, with their shapes complete. Instead, the VOS method
SST misses the barking dog at the last three frames. The SOD method LGVT
masks out both the baby and dog over all the frames mainly because these two
objects usually tend to be ‘salient’, which is not desired in this sample. When
it comes to the right sample of Fig. A6, we can observe that LGVT almost fails
to capture the violin, since the violin is relatively small. The VOS method SST
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can find the rough location of the violin, with the help of the information from
temporal movement. In contrast, our AVS framework can accurately depict the
shapes and locations of the violin and piano.
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