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Abstract. A comprehensive representation of an image requires under-
standing objects and their mutual relationship, especially in image-to-
graph generation, e.g., road network extraction, blood-vessel network ex-
traction, or scene graph generation. Traditionally, image-to-graph gener-
ation is addressed with a two-stage approach consisting of object detec-
tion followed by a separate relation prediction, which prevents simulta-
neous object-relation interaction. This work proposes a unified one-stage
transformer-based framework, namely Relationformer that jointly pre-
dicts objects and their relations. We leverage direct set-based object
prediction and incorporate the interaction among the objects to learn
an object-relation representation jointly. In addition to existing [obj]-
tokens, we propose a novel learnable token, namely [rln]-token. Together
with [obj]-tokens, [rln]-token exploits local and global semantic reason-
ing in an image through a series of mutual associations. In combination
with the pair-wise [obj]-token, the [rln]-token contributes to a computa-
tionally efficient relation prediction. We achieve state-of-the-art perfor-
mance on multiple, diverse and multi-domain datasets that demonstrate
our approach’s effectiveness and generalizability. 4

Keywords: Image-to-Graph Generation, Road Network Extraction, Ves-
sel Graph Extraction, Scene Graph Generation.

1 Introduction

An image contains multiple layers of abstractions, from low-level features to
intermediate-level objects to high-level complex semantic relations. To gain a
complete visual understanding, it is essential to investigate different abstrac-
tion layers jointly. An example of such multi-abstraction problem is image-to-
graph generation, such as road-network extraction [18], blood vessel-graph ex-
traction [41], and scene-graph generation [55]. In all of these tasks, one needs to
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Fig. 1. Examples of relation prediction tasks. Note that the 2D road network extraction
and 3D vessel graph extraction tasks have undirected relations while the scene graph
generation task has directed relations.

explore not only the objects or the nodes, but also their mutual dependencies or
relations as edges.

In spatio-structural tasks, such as road network extraction (Fig. 1a), nodes
represent road-junctions or significant turns, while edges correspond to struc-
tural connections, i.e., the road itself. The resulting spatio-structural graph con-
struction is crucial for navigation tasks, especially with regard to autonomous
vehicles. Similarly, in 3D blood vessel-graph extraction (Fig. 1b), nodes repre-
sent branching points or substantial curves, and edges correspond to structural
connections, i.e., arteries, veins, and capillaries. Biological studies relying on a
vascular graph representation, such as detecting collaterals [52], assessing struc-
tural robustness [21], emphasize the importance of efficient extraction thereof.
In case of spatio-semantic graph generation, e.g. scene graph generation from
natural images (Fig. 1c), the objects denote nodes and the semantic-relation
denotes the edges [22]. This graphical representation of natural images is com-
pact, interpretable, and facilitates various downstream tasks like visual question
answering [19,25]. Notably, different image-to-graph tasks have been addressed
separately in previous literature (see Sec. 2), and to the best of our knowledge,
no unified approach has been reported so far.

Traditionally, image-to-graph generation has been studied as a complex mul-
tistage pipeline, which consist of an object detector [43], followed by a separate
relation predictor [24,32]. Similarly, for spatio-structural graph generation, the
usual first stage is segmentation, followed by a morphological operation on bi-
nary data. While a two-stage object-relation graph generation approach is mod-
ular, it is usually trained sequentially, which increases model complexity and
inference time and lacks simultaneous exploration of shared object-relation rep-
resentations. Additionally, mistakes in the first stage may propagate into the
later stages. It should also be noted that the two-stage approach depends on
multiple hand-designed features, spatial [59], or multi-modal input [8].

We argue that a single-stage image-to-graph model with joint object and rela-
tion exploration is efficient, faster, and easily extendable to multiple downstream
tasks compared to a traditional multi-stage approach. Crucially, it reduces the
number of components and simplifies the training and inference pipeline (Fig.
2). Furthermore, intuitively, a simultaneous exploration of objects and relations
could utilize the surrounding context and their co-occurrence. For example, Fig.
1c depicting the “kid” “on” a “board” introduces a spatial and semantic incli-
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nation that it could be an outdoor scene where the presence of a “tree” or a
“helmet”, the kid might wear, is highly likely. The same notion is analogous
in a spatio-structural vessel graph. Detection of a “bifurcation point” and an
“artery” would indicate the presence of another “artery” nearby. The mutual
co-occurrence captured in joint object-relation representation overcomes indi-
vidual object boundaries and leads to a more informed big picture.

Recently, there has been a surge of one-stage models in object detection
thanks to the DETR approach described in [7]. These one-stage models are
popular due to the simplicity and the elimination of reliance on hand-crafted
designs or features. DETR exploits a encoder-decoder transformer architecture
and learns object queries or [obj]-token for object representation.

To this end, we propose Relationformer, a unified one-stage framework for
end-to-end image-to-graph generation. We leverage set-based object detection of
DETR and introduce a novel learnable token named [rln]-token in tandem with
[obj]-tokens. The [rln]-token captures the inter-dependency and co-occurrence
of low-level objects and high-level spatio-semantic relations. Relationformer di-
rectly predicts objects from the learned [obj]-tokens and classifies their pairwise
relation from combinations of [obj-rln-obj]-tokens. In addition to capturing
pairwise object-interactions, the [rln]-token, in conjunction with relation in-
formation, allows all relevant [obj]-tokens to be aware of the global semantic
structure. These enriched [obj]-tokens in combination with the relation token,
in turn, contributes to the relation prediction. The mutually shared representa-
tion of joint tokens serves as an excellent basis for an image-to-graph generation.
Moreover, our approach significantly simplifies the underlying complex image-
to-graph pipeline by only using image features extracted by its backbone.

We evaluate Relationformer across numerous publicly available datasets,
namely Toulouse, 20 US Cities, DeepVesselNet, and Visual Genome, compris-
ing 2D and 3D, directed- and undirected image-to-graph generation tasks. We
achieve a new state-of-the-art for one-stage methods on Visual Genome, which
is better or comparable to the two-stage approaches. We achieve state-of-the-art
results on road-network extraction on the Toulouse and 20 US Cities dataset.
To the best of our knowledge, this is the first image-to-graph approach working
directly in 3D, which we use to extract graphs formed by blood vessels.

2 Related Work

Transformer in Vision: In recent times, transformer-based architectures
have emerged as the de-facto gold standard model for various multi-domain
and multi-modal tasks such as image classification [13], object detection [7] and
even its application of out-of-distribution detection [23] . DETR [7] proposed
an end-to-end transformer-based object detection approach with learnable ob-
ject queries ([obj]-tokens) and direct set-based prediction. DETR eliminates
burdensome object detection pipelines (e.g., anchor boxes, NMS) of traditional
approaches [43] and directly predicts objects. Building on DETR, a series of
object detection approaches improved DETR’s slow convergence [62], adapted a
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Fig. 2. This illustrates a general architectural evolution of transformers in computer
vision and how Relationformer advances the concept of a task-specific learnable token
one step further. The proposed Relationformer is also shown in comparison to the
conventional two-stage relation predictor. The amalgamation of two separate stages
not only simplifies the architectural pipeline but also co-reinforces both of the tasks.

pure sequence-to-sequence approach [15], and improved detector efficiency [50].
In parallel, the development of the vision transformer [13] for image classifica-
tion offered a powerful alternative. Several refined idea [53,34] have advanced
this breakthrough and transformer in general emerges as a cutting-edge research
topic with focus on novel design principle and innovative application. Fig. 2,
shows a pictorial overview of transformer-based image classifier, object detector,
and relation predictor including our proposed method, which we referred to as
Relationformer.

Spatio-structural Graph Generation: In a spatio-structural graph, the most
important physical objects are edges, i.e., roads for a road network or arteries
and veins in vessel graphs. Conventionally, spatio-structural graph extraction
has only been discussed in 2D with little-to-no attention on the 3D counterpart.
For 2D road network extraction, the predominant approach is to segment [37,4]
followed by morphological thinning to extract the spatial graph. Only few ap-
proaches combine graph level information processing, iterative node generation
[3], sequential generative modelling [9], and graph-tensor-encoding [18]. Belli et
al. [5] for the first time, adopted attention mechanisms in an auto-regressive
model to generate graphs conditioned on binary segmentation. Importantly, to
this date, none of these 2D approaches has been shown to scale to 3D.

For 3D vessel-network extraction, segmentation of whole-brain microscopy
images [52,39] has been combined with rule-based graph extraction algorithms
[49]. Recently, a large-scale study [41] used the Voreen [38] software to extract
whole-brain vascular graph from binary segmentation, which required compli-
cated heuristics and huge computational resources. Despite recent works on 3D
scene graphs [1] and temporal scene graphs [20], to this day, there exists no
learning-based solution for 3D spatio-structural graph extraction.

Considering two spatio-structural image-to-graph examples of vessel-graph
and road-network, one can understand the spatial relation detection task as a link
prediction task. In link-prediction, graph neural networks, such as GraphSAGE
[16], SEAL [60] are trained to predict missing links among nodes using node
features. These approaches predict links on a given set of nodes. Therefore,
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link prediction can only optimize correct graph topology. In comparison, we
are interested in joint node-edge prediction, emphasizing correct topology and
correct spatial location simultaneously, making the task even more challenging.

Spatio-semantic Graph Generation: Scene graph generation (SGG) [35,55]
from 2D natural images has long been studied to explore objects and their inter-
dependencies in an interpretable way. Context refinement across objects [55,59],
extra modality of features [35,48] or prior knowledge [46] has been used to model
inter-dependencies of objects for relation prediction. RTN [24,26] was one of the
first transformer approaches to explore context modeling and interactions be-
tween objects and edges for SGG. Li et al. [29] uses DETR like architecture to
separately predict entity and predicate proposal followed by a graph assembly
module. Later, several works [12,36] explored transformers, improving relation
predictions. On the downside, such two-stage approaches increase model size,
lead to high inference times, and rely on extra features such as glove vector [42]
embedding or knowledge graph embedding [47], limiting their applicability. Re-
cently, Liu et al. [33] proposed a fully convolutional one-stage SGG method. It
combined a feature pyramid network [31] and a relation affinity field [61,40] for
modeling a joint object-relation graph. However, their convolution-based archi-
tecture limits the context exploration across objects and relations. Contemporary
to us [10] used transformers for the task of SGG. However, their complex pipeline
for a separate subject and object further increases computational complexity.
Crucially, there has been a significant performance gap between one-stage and
two-stage approaches. This paper bridges this gap with simultaneous contextual
exploration across objects and relations.

3 Methodology

In this section, we formally define the generalized image-to-graph generation
problem. Each of the presented relation prediction tasks in Figure 1 is a special
instance of this generalized image-to-graph problem. Consider an image space
I ∈ RD×#ch, where D =

∏d
i=1 dim[i] for a d dimensional image and #ch denotes

the number of channels and dim[i] denotes the dimension of the ith spatial axis.
Now, an image-to-graph generator F predicts F(I) = G for a given image I,
where G = (V, E) represents a graph with vertices (or objects) V and edges (or
relations) E . Specifically, the ith vertex vi ∈ V has a node or object location
specified by a bounding box vi

box ∈ R2×d and a node or object label vicls ∈ ZC .

Similarly, each edge eij ∈ E has an edge or relation label eijrln ∈ ZL, where we
have C number of object classes and L types of relation classes. Note that G
can be both directed and undirected. The algorithmic complexity of predicting
graph G depends on its size, |G| = |V|+ |E| which is of order complexity O(N2)
for |V| = N . It should be noted that object detection as a special case of the
generalized image-to-graph generation problem, where E = ϕ. In the following,
we briefly revisit a set-based object detector before expanding on our rationale
and proposed architecture.
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3.1 Preliminaries of Set-based Object Detector

Carion et al. [7] proposed DETR, which shows the potential of set-based ob-
ject detection, building upon an encoder-decoder transformer architecture [54].
Given an input image I, a convolutional backbone [17] is employed to extract
high level and down scaled features. Next, the spatial dimensions of extracted
features are reshaped into a vector to make them sequential. Afterwards, these
sequential features are coupled with a sinusoidal positional encoding [6] to mark
an unique position identifier. A stacked encoder layer, consisting of a multi-head
self-attention and a feed-forward network, processes the sequential features. The
decoder takes N number of learnable object queries ([obj]-tokens) in the input
sequence and combines them with the output of the encoder via cross-attention,
where N is larger than the maximum number of objects.

DETR utilizes the direct Hungarian set-based assignment for one-to-one
matching between the ground truth and the predictions from N [obj]-tokens.
The bipartite matching assigns a unique predicted object from the N predictions
to each ground truth object. Only matched predictions are considered valid. The
rest of the predictions are labeled as ∅ or ‘background’. Subsequently, it com-
putes the box regression loss solely for valid predictions. For the classification
loss, all predictions, including ‘background’ objects, are considered.

In our work, we adopt a modified attention mechanism, namely deformable
attention from deformable-DETR (def-DETR) [62] for its faster convergence and
computational efficiency. In DETR, complete global attention allows each token
to attend to all other tokens and hence capture the entire context in one image.
However, information about the presence of an object is highly localized to a spa-
tial position. Following the concept of deformable convolutions [11], deformable
attention enables the queries to attend to a small set of spatial features deter-
mined from learned offsets of the reference points. This improves convergence
and reduces the computational complexity of the attention operation.

3.2 Object-Relation Prediction as Set-prediction and Interaction

A joint object-relation graph generation requires searching from a pairwise com-
binatorial space of the maximum number of expected nodes. Hence, a naive joint-
learning for object-relations requires O(N2) number of tokens for N number of
objects. This is computationally intractable because self-attention is quadratically-
complex to the number of tokens. We overcome this combinatorially challeng-
ing task with a carefully engineered inductive bias. Here it is to exploit learned
pair-wise interactions among N [obj]-tokens and combine refined pair-wise [obj]-

tokens with an additional (N + 1)
th

token, which we refer to as [rln]-token. One
can think of the [rln]-token as a query to pair-wise object interaction.

The [rln]-token captures the additional context of pair-wise interactions
among all valid predicted classes. In this process, related objects are incentivized
to have a strong correlation in an embedding space of, and unrelated objects are
penalized to be dissimilar. The [rln]-token attends to all N [obj]-tokens along
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Fig. 3. Specifics of the Relationformer architecture. The image is first processed by
a feature extractor, which generates [patch]-tokens for the input of the transformer
encoder. Next, transformer decoder takes learnable [obj]-tokens and a [rln]-token along
with output from encoder. Decoder processes them through a series of self- and cross-
attention operations. The object head processes the final [obj]-tokens from the decoder
to produce the bounding box and object classes. The relation head takes a tuple of
the final [obj-rln-obj]-token combination and classifies their relation. Combining the
output of the object and relation head yields the final graph.

with contextualized image features that enrich its local pairwise and global im-
age reasoning. Finally, we classify a pair-wise relation by combining the pair-wise
[obj]-tokens with the [rln]-token. Thus, instead of O(N2) number of tokens,
we only need N + 1 tokens in total. These consist of N [obj]-tokens and one
[rln]-token. This novel formulation allows relation detection with a marginally
increased cost compared to one-stage object detection.

Here, one could present a two-fold argument: 1) There is no need for an extra
token as one could directly classify joint pairwise [obj]-tokens. 2) Instead of one
single [rln]-token, one could use as many as all object-pairs. To answer the first
question, we argue that relations can be viewed as a higher order topological
entity compared to objects. Thus, to capture inter-dependencies among the re-
lations the model requires additional expressive capacity, which can be shared
among the objects. The [rln]-token reduces the burden on the [obj]-tokens by
specializing exclusively on the task of relation prediction. Moreover, [obj]-tokens
can also attend to the [rln]-token and exploit a global semantic reasoning. This
hypothesis is confirmed in our ablation. For the second question, we argue that
individual tokens for all possible object-pairs will lead to a drastic increase in
the decoder complexity, which may results in computationally intractability.

3.3 Relationformer

The Relationformer architecture is intuitive and without any bells and whistles,
see Fig. 3. We have four main components: a backbone, a transformer, an object
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detection head and a relation prediction head. In the following, we describe each
of the components and the set-based loss formulations specific to joint object-
relation graph generation in detail.

Backbone: Given the input image I, a convolutional backbone [17] extracts
features f I ∈ RDf×# emb, where Df is the spatial dimensions of the features
and # emb denotes embedding dimension. Further, this feature dimension is
reduced to demb, the embedding dimension of the transformer, and flattened by
its spatial size. The new sequential features coupled with the sinusoidal positional
encoding [6] produce the desired sequence which is processed by the encoder.

Transformer: We use a transformer encoder-decoder architecture with de-
formable attention [62], which considerably speeds up the training convergence
of DETR by exploiting spatial sparsity of the image features.

Encoder: Our encoder remains unchanged from [62], and uses multi-scale de-
formable self-attention. We use a different number of layers based on each task’s
requirement, which is specified in detail in the supplementary material.

Decoder: We use N + 1 tokens for the joint object-relation task as inputs to the
decoder, where N represents the number of [obj]-tokens preceded by a single
[rln]-token. Contextualized image features from the encoder serve as the second
input of our decoder. In order to have a tractable computation and to leverage
spatial sparsity, we use deformable cross-attention between the joint tokens and
the image features from the encoder. The self-attention in the decoder remains
unchanged. The [obj]-tokens and [rln]-token go through a series of multi-hop
information exchanges with other tokens and image features, which gradually
builds a hierarchical object and relational semantics. Here, [obj]-tokens learn to
attend to specific spatial positions, whereas the [rln]-token learns how objects
interact in the context of their semantic or global reasoning.

Object Detection Head: The object detection head has two components.
The first one is a stack of fully connected network or multi layer-perceptron
(MLP), which regresses the location of objects, and the second one is a sin-
gle layer classification module. For each refined [obj]-token oi, the object de-
tection head predicts an object class ṽicls = W cls(o

i) and an object location
ṽi
box = MLPbox(o

i), ṽi
box ∈ [0, 1]2×d in parallel, where d represents the image

dimension, W cls is the classification layer, and MLPbox is an MLP. We use the
normalized bounding box co-ordinate for scale invariant prediction. Note that for
the spatio-structural graph, we create virtual objects around each node’s center
by assuming an uniform bounding box with a normalized width of ∆x.

Relation Prediction Head: In parallel to the object detection head, the input
of the relation head, given by a pair-wise [obj]-token and a shared [rln]-token,
is processed as ẽijrln = MLPrln({oi, r, oj}i ̸=j). Here, r represents the refined [rln]-
token and MLPrln a three-layer fully-connected network headed by layer normal-
ization [2]. In the case of directional relation prediction (e.g., scene graph), the
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Table 1. Brief summary of the datasets used in our experiment. For more details
regarding dataset preparation, please refer to supplementary material.

Dataset
Description Data Split

Edge Type 2D/3D Image Type Image Size Train Val Test

Toulouse [5] Undirected 2D Binary 64x64 80k 12k 19k
20 US cities[18] Undirected 2D RGB 128x128 124k 13k 25k
Synthetic vessel [51] Undirected 3D Grayscale 64x64x64 54k 6k 20k
Visual Genome [27] Directed 2D RGB 800x800 57k 5k 26k

ordering of the object token pairs {oi, r, oj}i ̸=j determines the direction i → j.
Otherwise (e.g., road network, vessel graph), the network is trained to learn
object token order invariance as well.

3.4 Loss Function

For object detection, we utilize a combination of loss functions. We use two stan-
dard box prediction losses, namely the ℓ1 regression loss (Lreg) and the general-
ized intersection over union loss (LgIoU) between the predicted ṽbox and ground
truth vbox box coordinates. Besides, we use the cross-entropy classification loss
(Lcls) between the predicted class ṽcls and the ground truth class vcls.

Stochastic Relation Loss: In parallel to object detection, their pair-wise rela-
tions are classified with a cross-entropy loss. Particularly, we only use predicted
objects that are assigned to ground truth objects by the Hungarian matcher.
When two objects have a relation, we refer to their relation as a ‘valid’-relation.
Otherwise, the relation is categorized as ‘background’. Since ‘valid’-relations are
highly sparse in the set of all possible permutations of objects, computing the
loss for every possible pair is burdensome and will be dominated by the ‘back-
ground’ class, which may hurt performance. To alleviate this, we randomly sam-
ple three ‘background’-relations for every ‘valid’-relation. From sampled ‘valid’-
and ‘background’-relations, we obtain a subset R of size M , where R ⊆ NP 2.
To this end, Lrln represents a classification loss for the predicted relations in R.
The total loss for simultaneous object-relation graph generation is defined as:

Ltotal =
∑N

i=1

[
1vi

cls /∈∅(λregLreg(v
i
box, ṽ

i
box) + λgIoULgIoU(v

i
box, ṽ

i
box))

]
+ λcls

∑N
i=1 Lcls(v

i
cls, ṽ

i
cls) + λrln

∑
{i,j}∈R Lrln(e

ij
rln, ẽ

ij
rln) (1)

where λreg, λgIoU, λcls and λrln are the loss functions specific weights.

4 Experiments

Datasets: We conducted experiments on four public datasets for road network
generation (20 US cities [18], Toulouse [5]), 3D synthetic vessel graph generation
[51], and scene-graph generation (Visual Genome [27]). The road and vessel
graph generation datasets are spatio-structural with a binary node and edge
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Table 2. Quantitative comparison of Relationformer with the different baselines for
undirected graph generation datasets. Relationformer achieves a near-perfect solution
for the Toulouse dataset and improves the results on the 20 US Cities dataset over
baseline models. Relationformer translates a similar trend in 3D and significantly out-
performs the heuristic-based approach on the synthetic vessel dataset.

Dataset Model
Graph-level Metrics Node Det. Edge Det.

SMD ↓ Prec. ↑ Rec. ↑ F1 ↑ mAP ↑ mAR ↑ mAP ↑ mAR ↑

Toulouse
(2D)

RNN [5] 0.04857 65.41 57.52 61.21 0.50 5.01 0.21 2.56
GraphRNN [5] 0.02450 71.69 73.21 72.44 1.34 4.15 0.34 1.01
GGT [5] 0.01649 86.95 79.88 83.26 2.94 13.31 1.62 9.75

Relationformer 0.00012 99.76 98.99 99.37 94.59 96.76 83.30 89.87

20 US Cities
(2D)

RoadTracer[3] N.A. 78.00 57.44 66.16 N.A. N.A. N.A. N.A.
Seg-DRM[37] N.A. 76.54 71.25 73.80 N.A. N.A. N.A. N.A.
Seg-Orientation[4] N.A. 75.83 68.90 72.20 N.A. N.A. N.A. N.A.
Sat2Graph [18] N.A. 80.70 72.28 76.26 N.A. N.A. N.A. N.A.

Relationformer 0.04939 85.28 77.75 81.34 29.25 42.84 21.78 33.19

Synthetic Vessel

(3D)
U-net[45]+heuristics 0.01982 N/A N/A N/A 18.94 29.81 17.88 27.63

Relationformer 0.01107 N/A N/A N/A 78.51 84.34 78.10 82.15

*N.A. indicates scores are not readily available. † N/A indicates that the metric is not applicable.

classification task, while the scene-graph generation dataset is spatio-sematic
and has 151 node classes and 51 edge classes, including ‘background’ class.
Evaluation Metrics: Given the diversity of tasks at hand, we resort to widely-
used task-specific metrics. Following is a brief description, while details can be
found in the supplementary material. For Spatio-Structural Graphs, we use four
different metrics to capture spatial similarity alongside the topological simi-
larity of the predicted graphs. 1) Street Mover Distance (SMD)[5] computes
a Wasserstein distance between predicted and ground truth edges; 2) TOPO
Score[18] includes precision, recall, and F-1 score for topological mismatch; 3)
Node Detection yields mean average precision (mAP) and mean average recall
(mAR) for the node; and 4)Edge Detection yields mAP and mAR for the edges.
For Spatio-semantic Graphs, the scene graph detection (SGDet) metric is the
most challenging and appropriate for joint object-relation detection, because it
does not need apriori knowledge about object location or class label. Hence, we
compute recall@K, mean-recall@K, and no-graph constraint (ng)-recall@K for
K = {20, 50, 100} on the SGDet following Zellers et al. [59]. Further, we evaluate
the quality of object detection using average precision, AP@50 (IoU=0.5) [30].

4.1 Results

Spatio-structural Graph Generation: In spatio-structural graph generation, both
correct graph topology and spatial location are equally important. Note that the
objects here are represented as points in 2D/3D space. For practical reasons, we
put a hypothetical box of ∆x = 0.2 at the points and treat the boxes as objects.

The Toulouse dataset poses the least difficulty as we predict a graph from
a binary segmentation. We notice that existing methods perform poorly. Our
method improves the SMD score by three orders of magnitude. All other metrics,
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such as TOPO-Score (prec., rec., and F-1), indicate near-optimal topological ac-
curacy of our method. At the same time, our performance in node and edge mAP
and mAR is vastly superior to all competing methods. For the more complex 20
U.S. cities dataset, we observe a similar trend. Note that due to the lack of exist-
ing scores from competing methods (SMD, mAP, and mAR), we only compare
the TOPO scores, which we outperform by a significant margin. However, when
compared to the results on the Toulouse dataset, Relationformer yields lower
node detection scores on the 20 U.S. cities dataset, which can be attributed
to the increased dataset complexity. Furthermore, the edge detection score also
deteriorates. This is due to the increased proximity of edges, i.e., parallel roads.

For 3D data, such as vessels, no learning-based comparisons exist. Hence, we
compare to the current best practice [49], which relies on segmentation, skele-
tonization, and heuristic pruning of the dense skeleta extracted from the binary
segmentation [14]. The purpose of pruning is to eliminate redundant neighboring
nodes, which is error-prone due to the voxelization of the connectivity, leading to
poor performances. Table 2 clearly depicts how our method outperforms the cur-
rent method. Importantly, we find that our method effortlessly translates from
2D to 3D without major modifications. Moreover, our 3D model is trained end-
to-end from scratch without a pre-trained backbone. To summarize, we propose
the first reliable learning-based 3D spatio-structural graph generation method
and show how it outperforms existing 2D approaches by a considerable margin.

Scene Graph Generation: We extensively compare our method to numerous exist-
ing methods, which can be grouped based on three concepts. One-stage methods,
two-stage methods utilizing only image features, and two-stage methods utiliz-
ing extra features. Importantly, Relationformer represents a one-stage method
without the need for extra features. We find that Relationformer outperforms
all one stage methods in Recall and ng-Recall despite using a simpler backbone.
In terms of mean-Recall, a metric addressing dataset bias, we outperform [33]
and our contemporary [10] @50 and perform close to [10] @20.

In terms of object detection performance, we achieve an AP@50 of 26.3, which
is close to the best performing one- and two-stage methods, even though we use
a simpler backbone. Note that the object detection performance varies sub-
stantially across multiple backbones and object detectors. For example, BGNN
[28] uses X-101FPN, FCSGG [33] uses HRNetW48-5S-FPN, whereas Relation-
former and its contemporary RelTR [10] use a simple ResNet50 [17] backbone.

Comparing our Relationformer to two-stage models, we outperform all mod-
els that use no extra features in all metrics. Moreover, we perform almost equal
to the remaining two-stage models, which use powerful backbones [28], bi-label
graph resampling [28], custom loss functions [32], and extra features such as word
[24] or knowledge graph embeddings [8]. Therefore, we can claim that we achieve
competitive performances without custom loss functions or extra features while
using significantly fewer parameters. We also achieve much faster processing
times, measured in frames per second (FPS)(see Table 3). For example, BGNN
[28], which was the top performer in a number of metrics, requires three times
more parameters and is an order of magnitude slower than our method.
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Table 3. Quantitative results of Relationformer in comparison with state-of-the-art
methods on the Visual Genome dataset. Relationformer achieves new one-stage state-
of-the-art results and bridges the performance gap with two-stage models, while reduc-
ing model complexity and inference time significantly without the need for any extra
features (e.g., glove vector, knowledge graph, etc.). Importantly, Relationformer out-
performs two-stage models that previously reported mean-Recall@100 and ng-Recalls.

Method
Extra Recall mean-Recall ng-Recall AP #param

FPS ↑
Feat. @20 @50 @100 @20 @50 @100 @20 @50 @100 @50 (M)↓

T
w
o
-S
ta
g
e

MOTIFS [59] ✓ 21.4 27.2 30.5 4.2 5.7 6.6 - 3 0.5 35.8 20.0 240.7 6.6
KERN [8] ✓ 22.3 27.1 - - 6.4 - - 30.9 35.8 20.0 405.2 4.6

GPS-Net [32] ✓ 22.3 28.9 33.2 6.9 8.7 9.8 - - - - - -
BGT-Net [12] ✓ 23.1 28.6 32.2 - - 9.6 - - - - - -

RTN [24] ✓ 22.5 29.0 33.1 - - - - - - - - -
BGNN [28] ✓ 23.3 31.0 - 7.5 10.7 - - - - 29.0 341.9 2.3
GB-Net [58] ✓ - 26.3 29.9 - 7.1 8.5 - 29.3 35.0 - - -
IMP+ [56] ✗ 14.6 20.7 24.5 2.9 3.8 4.8 - 22.0 27.4 20.0 203.8 10.0

G-RCNN[57] ✗ - 11.4 13.7 - - - - 28.5 35.9 23.0 - -

O
n
e-

S
ta
g
e

FCSGG [33] ✗ 16.1 21.3 - 2.7 3.6 - 16.7 23.5 29.2 28.5 87.1 8.3∗

RelTR [10] ✗ 20.2 25.2 - 5.8 8.5 - - - - 26.4 63.7 16.6

Relationformer ✗ 22.2 28.4 31.3 4.6 9.3 10.7 22.9 31.2 36.8 26.3 92.9 18.2∗

#param are taken from [10]. * Frame-per-second (FPS) is computed in Nvidia GTX 1080 GPU.

Note that ‘-’ indicates that the corresponding results are not available to us.

Fig. 4 shows qualitative examples for all datasets used in our experiments.
Qualitative and quantitative results from both spatio-structural and spatio-
semantic graph generation demonstrate the efficiency of our approach and the
importance of simultaneously leveraging [obj]-tokens and the [rln]-token. Re-
lationformer achieves benchmark performances across a diverse set of image-to-
graph generation tasks suggesting its wide applicability and scalability.

4.2 Ablation Studies

In our ablation study, we focus on two aspects. First, how the [rln]-token and
relation-head guide the graph generation; second, the effect of the sample size in
training transformers from scratch. We select the complex 3D synthetic vessel
and Visual Genome datasets for the ablation. Further ablation experiments can
be found in the supplementary material.

Table 4 (Left) evaluate the importance of the [rln]-token and different
relation-head types. First, we train def-DETR only for object detection as pro-
posed in [7,62], second, we evaluate Relationformer w/ and w/o [rln]-token and
use a linear relation classification layer (models w/o the [rln]-token use only con-
catenated pair-wise [obj]-tokens for relation classification). Third, we replace the
linear relation head with an MLP and repeat the same w/ and w/o [rln]-tokens.

We observe that a linear relation classifier w/o [rln]-token is insufficient to
model the mutual relationships among objects and diminishes the object detec-
tion performance as well. In contrast, we see that the [rln]-token significantly
improves performance despite using a linear relation classifier. Using an MLP
instead of a linear classifier is a better strategy whereas the Relationformer w/
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Table 4. (Left) shows ablation on the [rln]-token and relation head type on Visual
Genome. [rln]-token significantly improves relation prediction for both types of relation
heads. Importantly, the improvement is larger for the linear classifier than for the MLP.
(Right) shows ablation on the [rln]-token and train-data size on synthetic vessel. [rln]-
token significantly improves both node and edge detection. Additionally, the scores
improves with train-data size, suggesting further scope by training on more data.

Visual Genome Synthetic Vessel

Model
[rln]-

token
Rel.
Head

AP
@50

SGDet Recall [rln]-

token
Train
Data SMD

Node Det. Edge Det.
@20 @50 @100 mAP mAR mAP mAR

def-DETR N/A N/A 26.4 N/A N/A N/A N/A 100% N/A 77.5 83.5 N/A N/A

Relationformer ✗ Linear 24.1 16.6 22.0 25.2 ✗ 100% 0.0129 75.5 81.6 76.3 80.4
Relationformer ✓ Linear 25.3 20.1 25.4 28.3 ✓ 25% 0.0138 17.0 32.1 11.5 28.3

Relationformer ✗ MLP 26.0 19.2 26.4 29.4 ✓ 50% 0.0124 39.2 53.5 33.3 48.9
Relationformer ✓ MLP 26.3 22.2 28.4 31.3 ✓ 100% 0.0110 78.5 84.3 78.1 82.1

[rln]-token shows a clear benefit. Unlike the linear layer, we hypothesize that the
MLP provides a separate and adequate embedding space to model the complex
semantic relationships for [obj]-tokens and our [rln]-token.

From ablation on 3D vessel (Table 4 (Right)), we draw the same conclu-
sion that [rln]-token significantly improve over Relationformer w/o [rln]-token.
Further, a high correlation between performance and train-data size indicates
scope for improvement by increasing the sample size while training from scratch.

Limitations and Outlook: In this work, we only use bipartite object matching,
and future work will investigate graph-based matching [44]. Additionally, incor-
porating recent transformer-based backbones, i.e., Swin-transformer [34] could
further boost the performance without compromising the simplicity.

5 Conclusion

Extraction of structural- and semantic-relational graphs from images is the
key for image understanding. We propose Relationformer, a unified single-stage
model for direct image-to-graph generation. Our method is intuitive and easy
to interpret because it is devoid of any hand-designed components. We show
consistent performance improvement across multiple image-to-graph tasks us-
ing Relationformercompared to previous methods; all while being substantially
faster and using fewer parameters which reduce energy consumption. Relation-
former opens up new possibilities for efficient integration of a image-to-graph
models to downstream applications in an end-to-end fashion. We believe that
our method has the potential to shed light on many previously unexplored do-
mains and can lead to new discoveries, especially in 3D.
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765148). Rajat Koner is funded by the German Federal Ministry of Education
and Research (BMBF, Grant no. 01IS18036A). Bjoern Menze gratefully acknowl-
edges the support of the Helmut Horten Foundation.
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Fig. 4. Qualitative results (better viewed zoomed in) from road-network, vessel-graph,
and scene-graph generation experiments. Across all datasets, we observe that Rela-
tionformer is able to produce correct results. The segmentation map is given for better
interpretability of road network satellite images. For vessel-graphs, we surface-render
the segmentation of corresponding greyscale voxel data. For scene graphs, we visualize
the attention map between detected [obj]-tokens and [rln]-token, which shows that
the [rln]-token actively attends to objects that contribute to relation formation.
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