Feature Representation Learning for Unsupervised Cross-domain Image Retrieval Supplementary Material

Conghui $Hu^{[0000-0002-4984-3960]}$ and Gim Hee $Lee^{[0000-0002-1583-0475]}$

National University of Singapore, Singapore {conghui,gimhee.lee}@nus.edu.sg

1 Qualitative Retrieval results

Office-Home dataset

Fig. 1: Top 10 retrieval results on Office-Home. Row 1, 6: Retrieval results of ID [3]; Row 2, 7: Retrieval results of ProtoNCE [2]; Row 3, 8: Retrieval results of CDS [1]; Row 4, 9: Retrieval results of PCS [4]; Row 5, 10: Retrieval results of our framework. The green and red boxes indicate correct and incorrect retrievals, respectively.

Fig. 2: Top 10 retrieval results on Office-Home. Row 1, 6, 11: Retrieval results of ID [3]; Row 2, 7, 12: Retrieval results of ProtoNCE [2]; Row 3, 8, 13: Retrieval results of CDS [1]; Row 4, 9, 14: Retrieval results of PCS [4]; Row 5, 10, 15: Retrieval results of our framework. The green and red boxes indicate correct and incorrect retrievals, respectively.

DomainNet dataset

Fig. 3: Top 10 retrieval results on DomainNet. Row 1, 6, 11: Retrieval results of ID [3]; Row 2, 7, 12: Retrieval results of ProtoNCE [2]; Row 3, 8, 13: Retrieval results of CDS [1]; Row 4, 9, 14: Retrieval results of PCS [4]; Row 5, 10, 15: Retrieval results of our framework. The green and red boxes indicate correct and incorrect retrievals, respectively.

Fig. 4: Top 10 retrieval results on DomainNet. Row 1, 6: Retrieval results of ID [3]; Row 2, 7: Retrieval results of ProtoNCE [2]; Row 3, 8: Retrieval results of CDS [1]; Row 4, 9: Retrieval results of PCS [4]; Row 5, 10: Retrieval results of our framework. The green and red boxes indicate correct and incorrect retrievals, respectively.

2 Hyper-parameter Analysis

Here, we analyze the effect of different hyper-parameters on the Clipart-Sketch pair. Grid search can be employed to find the optimal hyper-parameters. From Table 1, we make the following observations: 1) 0.5 is the suitable value for α . The retrieval performance is not optimal when α is set to a smaller or larger value. 2) Warm-up stage with only instance-wise contrastive loss is necessary by setting T_1 to be a value greater than 0. 3) Fixing the increasing weight for cluster-wise contrastive loss at $T_2 = 75$ yields the best results. 4) $\phi = 0.01$ is the desirable temperature for clustering probability calculation. 5) Setting the weight (β) as 0.1 brings the best performance out of our distance-to-distance loss. 6) The retrieval performance remains stable while changing the value of γ from 0.1 to 1. 7) When the cluster number K is set to 5 which is smaller than the real category number, the retrieval accuracy drops significantly.

$ \frac{2}{44.97} \\ 45.48 \\ 100 \\ \overline{47.32} $				
44.97 45.48 100 47.32				
45.48 100 47.32				
100				
100 $\overline{47.32}$				
47.32				
±1.02				
48.41				
Influence of T_2 in Eq. 4				
125				
46.04				
46.05				
Influence of ϕ in Eq. 5				
0.02				
45.06				
45.37				
Influence of β in Eq. 11				
0.15				
43.28				
43.24				
Influence of γ in Eq. 11				
1				
47.55				
47.44				
Influence of cluster number K				
21				
45.04				
45.32				

Table 1: Cross-domain Retrieval Accuracy (P@200 (%)). Influence of α in Eq. 4

References

- Kim, D., Saito, K., Oh, T.H., Plummer, B.A., Sclaroff, S., Saenko, K.: Cds: Crossdomain self-supervised pre-training. In: ICCV (2021) 1, 2, 3, 4
- Li, J., Zhou, P., Xiong, C., Hoi, S.C.: Prototypical contrastive learning of unsupervised representations. ICLR (2020) 1, 2, 3, 4
- 3. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via nonparametric instance discrimination. In: CVPR (2018) 1, 2, 3, 4
- Yue, X., Zheng, Z., Zhang, S., Gao, Y., Darrell, T., Keutzer, K., Vincentelli, A.S.: Prototypical cross-domain self-supervised learning for few-shot unsupervised domain adaptation. In: CVPR (2021) 1, 2, 3, 4