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This supplementary material provides additional information about our ViCo
dataset and our responsive listening head generation baseline. In Appendix [A]
we provide the more detailed statistical information about the ViCo dataset.
In Appendix B we further include the YouTube copyright and discuss the IRB
approval. In Appendix [C] we show more details of our responsive listening head
generation pipeline. In Appendix [D] we further include more additional experi-
mental results. Applications and limitations are discussed in Appendix

A Dataset Details

A.1 Clip Length / Duration Distribution

We counted the distribution of clip lengths and the corresponding duration per-
centage in ViCo, and the results are shown in Fig.
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Fig. A1: The clip length distribution and the corresponding duration percentage
in ViCo dataset.
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A.2 Identities

The ViCo dataset contains 92 identities. In the Fig. we picked a random
image for each identity. It can be found that there are different genders and races;
thus, the potential ethics problems can be reduced, i.e., the dataset represent
the diversity of the community.
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Fig. A2: Ninty-two identities with different genders and races in our dataset.

Some identities in our dataset may act as different roles (speaker/listener)
and present different listener patterns under different attitudes. So, we statis-
tic the identity distribution in Fig. This demonstrates the diversity of our
dataset.
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Fig. A3: The identity distribution in our dataset. If an identity in a certain role
(speaker /listener) shows a certain attitude ( ) and ), then
the corresponding cell is colored, and the number of clips is also attached.
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B IRB Approval

The YouTube community has a strict censorship mechanism to avoid violent
or dangerous content [2]. And as shown in the copyrightﬂ research purpose
is considered fair use, which is allowed the reuse of copyright-protected mate-
rial without getting permission from the copyright owner. This guarantees our
dataset is congruence with the ethics guidelines.

C Pipeline Detalils

C.1 3DMM Coefficients

We extract the 3DMM coefficients following [If5], with the commonly used
toolkitﬂ and the guides of PIRendeIEL we can obtain a parametric represen-
tation of the face: {a, 8,6, p,7} which denote the identity, expression, texture,
pose and lighting, respectively. Here, o € R80, 3 € R%* § € R®, and v € R?" for
RGB channels in three-bands Spherical Harmonics [3/4] representations, p € RS
to represent rotations with SO(3)€ R? and translations in R3.

Therefore, the relative fixed, identity-dependent features Z = (a, d,7) is in
R¥7 and the relative dynamic, identity-independent features m = (3, p) is in
R, Additionally, to better model the head movements and make it compatible
with PIRender [5], we use a new “crop” parameter of R? in practice. This guides
where we will place and size the parametric 3D face in the original image.

C.2 Model Complexity

Our proposed model is lightweight (248K params) and efficient (941K flops for
30 frames input) with the 3DMM coefficients.

D Additional Experimental Results

Qualitative Results with Different Modality Inputs We conduct an ab-
lation study on the impact of different speaker signals for listening head model-
ing. The qualitative results are shown in Fig. We sample three frames from
Diest (Fig. and D,.q (Fig. to make a simplified but clear visualization.
From Fig. show that models with only a single input have less head motion
and expression variations, and furthermore, the audio only model is able to ex-
press some expressions (columns 1, 2) as full input model, while the video only
model performs even worse in expression modeling, which may indicate that the
speaker’s audio signals contributes more on listener’s expression. From Fig.
we can find that the listener is more likely to lose focus in the absence of video
input (columns 2, 3), which may indicate that the speaker’s visual signals can
guide the listener where to focus.

! https://www.youtube.com/howyoutubeworks/policies/copyright/#fair-use
2 https://github.com/microsoft/Deep3DFaceReconstruction
3 https://github.com/RenYurui/PIRender
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Fig. A4: Qualitative comparisons of listening head generation with different
speaker signals (shown in rows). The attitude is positive for all listening heads

Table Al: The Feature Distance (x100) of generations with different modality
inputs and architectures across all attitudes (Averaged) on D;eg;.

Method angle exp trans
Audio only 8.69 17.19 8.49
Visual only 8.06 18.85 7.54
Non-sequential Model 8.40 18.50 7.06
Ours 7.79 15.04 6.52

Comparisons with Non-sequential Model Furthermore, we also experi-
mented generate the listener frames in a “purely parallel (non-sequential) man-
ner” rather than our “auto-regressive decoder manner”, by removing the tem-
poral connections and converting the LSTM cells to fully-connected layers with
similar #params. The results are shown in Tab. [AT]which worse than our model,
since the “non-sequential model” results in noise and unnatural head motion
caused by the lack of temporal constraint, as shown in Fig.

E Applications and Limitations

Applications Active listening faces ineffective communication and plays an
important role in human-to-human interaction. People are encouraged to learn
to actively listen to others in many scenarios, such as doctor - patient, teacher
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Fig. A5: The magnitude of variation for feature angle and trans between frame
t and frame ¢t + 1 with L distance

- student, salesperson - customer, etc. Our proposed responsive listening head
generation task fills a gap in modeling face-to-face communication in the com-
puter vision area. It can be applied to many scenarios, such as human-computer
interaction, intelligence assistance, virtual human, etc. It would contribute to
the mutual interaction between the virtual human and the real human. It can
also be adopted to virtual audience modeling or providing guidance about how
to act as an active listener.

Limitations One potential limitation of our constructed dataset is that the
attitude is assumed to be consistent across the clips, since we cut and annotate
short clips from the candidate video. However, as shown in the qualitative re-
sults, the generated head sequences can vary from one common head respecting
different attitudes. We may deduce that our model is feasible to the attitude-
transferable conversations.
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