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Abstract. This document provides supplementary information on (1)
the derivation of camera-centric IMU preintegration, (2) the derivation
of camera-centric EKF propagation, (3) the derivation of camera-centric
EKF update, and (4) more qualitative generalization results on Make3D.

S1 Derivation of Camera-Centric IMU Preintegration

Let {pwbt , qwbt} and vw
t denote the translation and rotation from the body frame

to the world frame, and the velocity expressed in the world frame at time t,
where qwbt is the corresponding quaternion of Rwbt . The first-order derivatives
of {p,v, q} read: ˙pwbt = vw

t , ˙vw
t = aw

t , and ˙qwbt = qwbt ⊗ [0, 1
2w

bt ]T . Then the
continuous IMU motion dynamics from time i to j is given by:

pwbj = pwbi + vw
i ∆t+

∫ ∫
t∈[i,j]

(Rwbta
bt − gw)dt2, (1)

vw
j = vw

i +

∫
t∈[i,j]

(Rwbta
bt − gw)dt, (2)

qwbj =

∫
t∈[i,j]

qwbt ⊗ [0,
1

2
wbt ]Tdt, (3)

where∆t is the time gap between i and j, and⊗ denotes quaternion multiplication.
By leveraging the multiplicative property of rotation, i.e., qwbt = qwbi ⊗ qbibt ,
we have:

pwbj = pwbi + vw
i ∆t− 1

2
gw∆t2 +Rwbiαbibj , (4)

vw
j = vw

i − gw∆t+Rwbiβbibj , (5)

qwbj = qwbi ⊗ qbibj , (6)
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where the three integration terms that can be pre-computed read:

αbibj =

∫ ∫
t∈[i,j]

(Rbibta
bt)dt2, (7)

βbibj =

∫
t∈[i,j]

(Rbibta
bt)dt, (8)

qbibj =

∫
t∈[i,j]

qbibt ⊗ [0,
1

2
wbt ]Tdt, (9)

Given the extrinsics {Rcb,pcb} and {Rbc,pbc} between the IMU and the
camera frames, based on Eq. (9), we can first derive the camera-centric IMU
preintegrated rotation Řckck+1

as:

ˇRckck+1
= RcbF−1(qbkbk+1

)Rbc, (10)

where F denotes the transformation from rotation matrix to quaternion. Then
by rearranging Eq. (4), we have:

αbkbk+1
= Rbkw(pwbk+1

− pwbk)−Rbkwv
w
i ∆t+

1

2
Rbkwg

w∆t2 (11)

= pbkbk+1
− vbk

i ∆t+
1

2
gbk∆t2 (12)

= Rbkck(pckbk+1
− pckbk)− vbk

i ∆t+
1

2
gbk∆t2. (13)

By left-multiplying Rcb to both sides of Eq. (13), we have:

Rcbαbkbk+1
= pckbk+1

− pcb − vck
i ∆t+

1

2
gck∆t2. (14)

Then we consider the following two equations w.r.t. translation:

pcb = −Rcbpbc, (15)

pckbk+1
= pckck+1

−Rckbk+1
pbk+1ck+1

(16)

= pckck+1
−Rckck+1

Rck+1bk+1
pbk+1ck+1

(17)

= pckck+1
−Rckck+1

Rcbpbc. (18)

By inserting Eq. (15-18) into Eq. (14) and rearranging the resulting formula,
we obtain the camera-centric IMU preintegrated translation:

ˇpckck+1
= Rcbαbkbk+1

+Rckck+1
Rcbpbc −Rcbpbc + vck∆t− 1

2
gck∆t2. (19)

S2 Derivation of Camera-Centric EKF Propagation

Let ck denote the camera frame at time tk, and {bt} denote the IMU frames
between tk and time tk+1 when we receive the next visual measurement. We
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then propagate the IMU information according to the state transition model:
xt = f(xt−1,ut)+wt, where ut is the IMU record at time t, wt is the noise term,
and xt = [ϕT

ckbt
,pckbtT ,v

ckT , gckT , bbtTw , bbtTa ]T is the state vector expressed in
the camera frame ck except for {bw, ba}. ϕckbt denotes the so(3) Lie algebra
of the rotation matrix Rckbt s.t. Rckbt = exp([ϕckbt ]

∧), where [·]∧ denotes the
operation from a so(3) vector to the corresponding skew symmetric matrix.
To facilitate the derivation of the propagation process, we further separate
the state into the nominal states denoted by (̄·), and the error states δxbt =
[δϕT

ckbt
, δpT

ckbt
, δvckT , δgckT , δbbtTw , δbbtTa ]T , such that:

Rckbt = R̄ckbtexp([δϕckbt ]
∧), pckbt = p̄ckbt + δpckbt , (20)

vck = v̄ck + δvck , gck = ḡck + δgck , (21)

bbtw = b̄w
bt + δbbtw , bbta = b̄a

bt + δbbta . (22)

The nominal states can be computed using the preintegration terms, while
the error states are used for propagating the covariances. It is noteworthy that
the state transition model of δxbt is non-linear, which prevents a naive use of
the Kalman filter. EKF addresses this problem and performs propagation by
linearizing the state transition model at each time step using the first-order
Taylor approximation. Therefore, let ˙(·) denote the derivative w.r.t. time t, we
derive the continuous-time propagation model for the error states as:

δẋbt = F δxbt +Gn, (23)

where n = {nT
w,n

T
bw,n

T
a ,n

T
ba}. nw and na denote the white Gaussian noise in

the commonly-used IMU noise model, and nbw and nba denote the Gaussian steps
for the white Gaussian random walks bbtw and bbta , respectively. The derivations
of F and G are given as following.

We first consider ˙δgck . Since δgck is a constant w.r.t. time t, we have:

˙δgck = 0. (24)

And by the definition of the Gaussian random walks {bbtw , bbtw }, we have:

˙
δbbtw = nbw, (25)

˙δbbta = nba, (26)

We then come to δ ˙ϕckbt . Since δϕckbt presents a small amount increment, by
using Eq. (20) and first-order Taylor expansion, we have:

Rckbt = R̄ckbtexp([δϕckbt ]
∧) (27)

≈ R̄ckbt(I + [δϕckbt ]
∧). (28)

Then by using the derivative of Rckbt w.r.t. time t, i.e., ˙Rckbt = Rckbt [w
bt ]∧, we

can take the derivative of both sides of Eq. (28), leading to:

Rckbt [w
bt ]∧ ≈ R̄ckbt [w̄

bt ]∧(I + [δϕckbt ]
∧) + R̄ckbt

˙δϕckbt , (29)
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where w̄bt denotes the nominal angular velocity expressed in the IMU body frame
at time t. By inserting Eq. (28) into Eq. (29), we have:

R̄ckbt(I + [δϕckbt ]
∧)[wbt ]∧ ≈ R̄ckbt [w̄

bt ]∧(I + [δϕckbt ]
∧) + R̄ckbt

˙[δϕckbt ]
∧.
(30)

By cancelling R̄ckbt in Eq. (30) and rearranging the formula, we have:

˙[δϕckbt ]
∧ ≈ (I + [δϕckbt ]

∧)[wbt ]∧ − [w̄bt ]∧(I + [δϕckbt ]
∧) (31)

= (I + [δϕckbt ]
∧)[w̄bt + δwbt ]∧ − [w̄bt ]∧(I + [δϕckbt ]

∧) (32)

= (I + [δϕckbt ]
∧)([w̄bt ]∧ + [δwbt ]∧)− [w̄bt ]∧(I + [δϕckbt ]

∧). (33)

By rearranging Eq. (33) and using the equation [u∧v]∧ = u∧v∧ − v∧u∧:

˙[δϕckbt ]
∧ ≈ [δwbt ]∧ + [δϕckbt ]

∧[δwbt ]∧ + [δϕckbt ]
∧[w̄bt ]∧ − [w̄bt ]∧[δϕckbt ]

∧

(34)

≈ [δwbt ]∧ + [δϕckbt ]
∧[δwbt ]∧ + [[δϕckbt ]

∧w̄bt ]∧. (35)

By neglecting the high-order small term [δϕckbt ]
∧[δwbt ]∧, and using the equation

u∧v = −v∧u, we have:

˙[δϕckbt ]
∧ ≈ [δwbt ]∧ + [[δϕckbt ]

∧w̄bt ]∧ (36)

= [δwbt + [δϕckbt ]
∧w̄bt ]∧. (37)

˙δϕckbt ≈ δϕckbt ]
∧w̄bt (38)

= −[w̄bt ]∧δϕckbt + δwbt (39)

We then derive w̄bt and δwbt to complete Eq. (39) for ˙δϕckbt . Recall that we
have the following noise model for the gyroscope measurement:

wbt
m = wbt + bbtw + nw, nw ∼ N(0, σ2

wI). (40)

By inserting Eq. (22) in to Eq. (40) and rearranging the formula:

wbt = wbt
m − b̄btw − δbbtw − nw. (41)

By separating the nominal and stochastic terms in Eq. (41), we have:

w̄bt = wbt
m − b̄btw , (42)

δwbt = −δbbtw − nw., (43)

which complete the derivation of ˙δϕckbt in Eq. (39) w.r.t. δxbt and n.
We next derive ˙δpckbt . Taking the derivative w.r.t. both sides of Eq. (20), i.e.,

pckbt = p̄ckbt + δpckbt , and rearranging the resulting equation leads to:

˙δpckbt = ˙pckbt − ˙̄pckbt (44)

= vck
t − v̄ck

t . (45)
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By approximating vck
t and v̄ck

t by vck and v̄ck , and inserting Eq. (21) into the
approximated Eq. (45), we have:

˙δpckbt ≈ v̄ck
t + δvck − v̄ck

t (46)

= δvck . (47)

Finally, we give the derivation of ˙δvck as following. We first take the derivative
to both sides of Eq. (21) and rearrange the formula, leading to:

˙δvck = ˙vck − ˙̄vck (48)

= ack − āck . (49)

ack and āck can be derived as:

ack = Rckbta
bt (50)

= R̄ckbtexp([δϕckbt ]
∧)(ābt + δabt) (51)

≈ R̄ckbt(I + [δϕckbt ]
∧)(ābt + δabt), (52)

āck = R̄ckbt ā
bt . (53)

By inserting Eq. (52-53) to Eq. (49), we have:

˙δvck ≈ R̄ckbt ā
bt + R̄ckbtδa

bt + R̄ckbt [δϕckbt ]
∧ābt

+ R̄ckbt [δϕckbt ]
∧δabt − R̄ckbt ā

bt (54)

= R̄ckbtδa
bt + R̄ckbt [δϕckbt ]

∧ābt + R̄ckbt [δϕckbt ]
∧δabt . (55)

By neglecting the high-order small term R̄ckbt [δϕckbt ]
∧δabt in Eq. (55) and using

the equation u∧v = −v∧u, we have:

˙δvck ≈ R̄ckbtδa
bt − R̄ckbt [ā

bt ]∧δϕckbt . (56)

We then derive ābt and δabt to complete Eq. (56). Recall that we have the
following noise model for the accelerometer measurement:

abt
m = abt +Rbtckg

ck + bbta + na, na ∼ N(0, σ2
wI). (57)

By inserting Eq. (20-22) to Eq. (57) and using RT = R−1, we have:

abt
m = abt + [R̄ckbtexp([δϕckbt ]

∧)]T (ḡck + δgck)

+ b̄bta + δbbta + na. (58)

We rearrange the second term in Eq. (58) as below:

[R̄ckbtexp([δϕckbt ]
∧)]T (ḡck + δgck) (59)

≈[R̄ckbt(I + [δϕckbt ]
∧)]T (ḡck + δgck) (60)

=[R̄ckbt + R̄ckbt [δϕckbt ]
∧]T (ḡck + δgck) (61)

=(R̄T
ckbt

+ [[δϕckbt ]
∧]T R̄T

ckbt
)(ḡck + δgck). (62)
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Since [δϕckbt ]
∧ is a skew symmetric matrix, Eq. (62) can be rewritten as:

[R̄ckbtexp([δϕckbt ]
∧)]T (ḡck + δgck) (63)

≈(R̄T
ckbt

+ [[δϕckbt ]
∧]T R̄T

ckbt
)(ḡck + δgck) (64)

=(R̄T
ckbt

− [δϕckbt ]
∧R̄T

ckbt
)(ḡck + δgck). (65)

By inserting Eq. (65) into Eq. (58) and rearranging the resulting formula:

abt = abt
m − b̄bta − δbbta − na − R̄T

ckbt
ḡck − R̄T

ckbt
δgck

+ [δϕckbt ]
∧R̄T

ckbt
ḡck + [δϕckbt ]

∧R̄T
ckbt

δgck . (66)

By separating the nominal and stochastic terms in Eq. (66), we have:

ābt = abt
m − R̄T

ckbt
ḡck − b̄bta , (67)

δabt = − δbbta − na − R̄T
ckbt

δgck

+ [δϕckbt ]
∧R̄T

ckbt
ḡck + [δϕckbt ]

∧R̄T
ckbt

δgck (68)

≈ − δbbta − na − R̄T
ckbt

δgck + [δϕckbt ]
∧R̄T

ckbt
ḡck , (69)

where the high-order small term [δϕckbt ]
∧R̄T

ckbt
δgck in Eq. (68) is neglected. By

inserting Eq. (69) into Eq. (56), we have:

˙δvck ≈ − R̄ckbtδb
bt
a − R̄ckbtna − R̄ckbtR̄

T
ckbt

δgck

+ R̄ckbt [δϕckbt ]
∧R̄T

ckbt
ḡck − R̄ckbt [ā

bt ]∧δϕckbt (70)

= − R̄ckbtδb
bt
a − R̄ckbtna − δgck

− R̄ckbt [R̄
T
ckbt

ḡck ]∧δϕckbt − R̄ckbt [ā
bt ]∧δϕckbt (71)

= − R̄ckbtδb
bt
a − R̄ckbtna − δgck

− R̄ckbt([R̄
T
ckbt

ḡck ]∧ + [ābt ]∧)δϕckbt (72)

= − R̄ckbtδb
bt
a − R̄ckbtna − δgck

− R̄ckbt [R̄
T
ckbt

ḡck + ābt ]∧δϕckbt . (73)

Based on Eq. (24,25,26,39,47,73) and the continuous-time error propagation
model Eq. (23), F and G can be written as:

F =


−[w̄bt ]∧ 0 0 0 −I3 0

0 0 I3 0 0 0

−R̄ckbt [R̄
T
ckbt

ḡck + ābt ]∧ 0 0 −I3 0 −R̄ckbt

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,G =


−I3 0 0 0
0 0 0 0
0 0 −R̄ckbt 0
0 0 0 0
0 I3 0 0
0 0 0 I3

 .

(74)

w̄bt and ābt are given in Eq. (42) and Eq. (67), respectively.
Given the continuous error propagation model and the initial condition

Φtτ ,tτ = I18, the discrete state-transition matrix Φ(tτ+1,tτ ) can be found by
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solving Φ̇(tτ+1,tτ ) = Ftτ+1
Φ(tτ+1,tτ ) [3]:

Φtτ+1,tτ = exp(

∫ tτ+1

tτ

F (s)ds) ≈ I18 + F δt+
1

2
F 2δt2, δt = tτ+1 − tτ . (75)

Let P̌ and P̂ denote the prior and posterior covariance estimates during
propagation and after an update given new observations. Then we have [1,3]:

ˇPtτ+1
= Φtτ+1,tτ P̌tτΦ

T
tτ+1,tτ +Qtτ , (76)

Qtτ =

∫ tτ+1

tτ

Φs,tτGQGTΦT
s,tτds ≈ Φtτ+1,tτGQGTΦT

tτ+1,tτ δt, (77)

where Q = D([σ2
wI3, σ

2
bw
I3, σ

2
aI3, σ

2
ba
I3]). D is the diagonalization function.

S3 Derivation of Camera-Centric EKF Update

In general, given an observation measurement ξk+1 and its corresponding co-
variance Γk+1 from the camera sensor at time tk+1, we assume the following
observation model: ξk+1 = h(xk+1) + nr, nr ∼ N(0,Γk+1).

Let Hk+1 = ∂h(xk+1)
∂δxk+1

. Then the EKF update applies as following:

Kk+1 = P̌k+1H
T
k+1(Hk+1

ˇPk+1H
T
k+1 + Γk+1)

−1, (78)

P̂k+1 = (I18 −Kk+1Hk+1)P̌k+1, (79)

δx̂k+1 = Kk+1(ξk+1 − h(x̌k+1)). (80)

In DynaDepth, the observation measurement is defined as the ego-motion
predicted by Mp, i.e., ξk+1 = [ϕ̃T

ckck+1
, p̃T

ckck+1
]T . Accordingly, we define h(xk+1)

as h(xk+1) = [hT
ϕ(xk+1), h

T
p (xk+1)]

T . We first consider the observation model
hϕ(xk+1) for rotation. Assuming [·]∨ as the inverse function of [·]∧, then we have:

hϕ(xk+1) = ϕckck+1
= ln([Rckbk+1

Rbc]
∨). (81)

{Rbc,pbc} and {Rcb,pcb} denote the extrinsics between camera and IMU. By
inserting Eq. (20) into Eq. (81), we have:

hϕ(xk+1) = ln([Rckbk+1
Rbc]

∨) (82)

= ln([R̄ckbk+1
exp([δϕckbk+1

]∧)Rbc]
∨) (83)

= ln([R̄ckbk+1
RbcRcbexp([δϕckbk+1

]∧)Rbc]
∨). (84)

We then separate the expression in [·]∨ in Eq. (84) into the following two parts:

R̄ckbk+1
Rbc = R̄ckck+1

= exp([ϕ̄ckck+1
]∧), (85)

Rcbexp([δϕckbk+1
]∧)Rbc ≈ Rcb(I + [δϕckbk+1

]∧)Rbc (86)

= I +Rcb[δϕckbk+1
]∧Rbc. (87)
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By using the equation [Rδϕ]∧ = R[δϕ]∧RT , Eq. (87) can be rewritten as:

Rcbexp([δϕckbk+1
]∧)Rbc ≈ I + [Rcbδϕckbk+1

]∧ (88)

≈ exp([Rcbδϕckbk+1
]∧). (89)

By inserting Eq. (85) and Eq. (89) into Eq. (84), and approximating the resulting
exponential function using the Baker–Campbell–Hausdorff (BCH) approximation
formula [1], we have:

hϕ(xk+1) ≈ ln([exp([ϕ̄ckck+1
]∧)exp([Rcbδϕckbk+1

]∧)]∨) (90)

≈ ϕ̄ckck+1
+ J−1

l (−ϕ̄ckck+1
)Rcbδϕckbk+1

. (91)

The definition of the inversed SO(3) left Jacobian J−1
l (·) is given by [1]:

J−1
l (ϕ) =

ϕ

2
cot

ϕ

2
1+ (1− ϕ

2
cot

ϕ

2
)ααT − ϕ

2
α∧, (92)

where ϕ = |ϕ| and α = ϕ/ϕ. Based on Eq. (91), we can compute the nominal
prior and the derivative w.r.t. δxk+1 for the rotation as:

hϕ(x̌k+1) = ϕ̄ckck+1
, (93)

∂hϕ(xk+1)

∂δxk+1
=

[
Jl(−ϕ̄ckck+1

)−1Rcb 0 0 0 0 0
]
. (94)

We then derive the observation model hp(xk+1) for the translation as below:

hp(xk+1) = pckck+1
= Rc+kbk+1

pbc + pckbk+1
. (95)

By inserting Eq. (20) into Eq. (95) and using the equation u∧v = −v∧u:

hp(xk+1) = Rc+kbk+1
pbc + pckbk+1

(96)

= R̄ckbk+1
exp([δϕckbk+1

]∧)pbc + p̄ckbk+1
+ δpckbk+1

(97)

≈ R̄ckbk+1
(I + [δϕckbk+1

]∧)pbc + p̄ckbk+1
+ δpckbk+1

(98)

= R̄ckbk+1
pbc + R̄ckbk+1

[δϕckbk+1
]∧pbc + p̄ckbk+1

+ δpckbk+1
(99)

= R̄ckbk+1
pbc + p̄ckbk+1

− R̄ckbk+1
[pbc]

∧δϕckbk+1
+ δpckbk+1

. (100)

Based on Eq. (100), we can then compute the nominal prior and the derivative
w.r.t. δxk+1 for the translation as:

hp(x̌k+1) = R̄ckbk+1
pbc + p̄ckbk+1

, (101)

∂hp(xk+1)

∂δxk+1
=

[
−R̄ckbk+1

[pbc]
∧ I3 0 0 0 0

]
. (102)

To finish the camera-centric EKF update step, we combine the derivation
results in Eq. (93, 94, 101, 102), and write h(x̌k+1) and Hk+1 as:

h(x̌k+1) =

[
ϕ̄ckck+1

R̄ckbk+1
pbc + p̄ckbk+1

]
, (103)

Hk+1 =

[
Jl(−ϕ̄ckck+1

)−1Rcb 0 0 0 0 0
−R̄ckbk+1

[pbc]
∧ I3 0 0 0 0

]
. (104)
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w.o/ IMU w/ IMUInput Image

Fig. 1: More generalization results on Make3D using models trained on KITTI
with (w/) and without (w.o/) IMU.

Finally, by inserting Eq. (103-104) into Eq. (78-80), we can perform the camera-
centric EKF update step to get the updated posterior error states δx̂k+1 and
calculate the EKF updated camera ego-motion, based on δx̂k+1 and the prop-
agated nominal states which can be obtained from the camera-centric IMU
preintegration results, i.e., Eq. (10) and Eq.(19).

S4 More Generalization Results on Make3D

We present more generalization results on Make3D [4] using models trained on
KITTI [2] with (w/) and without (w.o/) IMU in Fig. 1-3. By using IMU, it can
be seen that the model generalizes better in unseen datasets, especially in the
glass and shadow areas, where the underlying assumption of visual photometric
consistency can be easily violated. In addition, the model using IMU recovers
more delicate texture details, which further justifies the benefit of using the IMU
motion dynamics that is independent with the visual information during training.
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w.o/ IMU w/ IMUInput Image

Fig. 2: More generalization results on Make3D using models trained on KITTI
with (w/) and without (w.o/) IMU.

w.o/ IMU w/ IMUInput Image

Fig. 3: More generalization results on Make3D using models trained on KITTI
with (w/) and without (w.o/) IMU.
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