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Fig. 1. We propose emergent occupancy as a novel self-supervised representation for
motion planning. Occupancy is independent of changes in sensor pose ∆y, which is in
contrast to prior work on self-supervised learning from LiDAR [28,29,15,9], specifically,
ego-centric freespace [9], which changes with (a-b) sensor pose motion ∆y and (b-
c) scene motion ∆s. We use differentiable raycasting to naturally decouple ego motion
from scene motion, allowing us to learn to forecast occupancy by self-supervision from
pose-aligned LiDAR sweeps.

Abstract. Motion planning for safe autonomous driving requires learn-
ing how the environment around an ego-vehicle evolves with time. Ego-
centric perception of driveable regions in a scene not only changes with
the motion of actors in the environment, but also with the movement of
the ego-vehicle itself. Self-supervised representations proposed for large-
scale planning, such as ego-centric freespace, confound these two motions,
making the representation difficult to use for downstream motion plan-
ners. In this paper, we use geometric occupancy as a natural alternative
to view-dependent representations such as freespace. Occupancy maps
naturally disentagle the motion of the environment from the motion of
the ego-vehicle. However, one cannot directly observe the full 3D occu-
pancy of a scene (due to occlusion), making it difficult to use as a signal
for learning. Our key insight is to use differentiable raycasting to “render”
future occupancy predictions into future LiDAR sweep predictions, which
can be compared with ground-truth sweeps for self-supervised learning.
The use of differentiable raycasting allows occupancy to emerge as an
internal representation within the forecasting network. In the absence
of groundtruth occupancy, we quantitatively evaluate the forecasting of
raycasted LiDAR sweeps and show improvements of upto 15 F1 points.
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For downstream motion planners, where emergent occupancy can be di-
rectly used to guide non-driveable regions, this representation relatively
reduces the number of collisions with objects by up to 17% as compared
to freespace-centric motion planners.

1 Introduction

To navigate in complex and dynamic environments such as urban cores, au-
tonomous vehicles need to perceive actors and predict their future movements.
Such knowledge is often represented in some form of forecasted occupancy [23],
which downstream motion planners rely on to produce safe trajectories. When
tackling the tasks of perception and prediction, standard solutions consist of per-
ceptual modules such as object detection, tracking, and trajectory forecasting,
which require a massive amount of object track labels. Such solutions do not
scale given the speed that log data is being collected by large fleets.

Freespace versus occupancy: To avoid the need for costly human an-
notations, and to enable learning at scale, self-supervised representations such
as ego-centric freespace [9] have been proposed. However, such a representation
couples the motion of the world with the motion of the ego-vehicle (Fig. 1). Our
key innovation in this paper is to learn an ego-pose independent and explain-
able representation for safe motion planning, which we call emergent occupancy.
Emergent occupancy decouples ego motion and scene motion using differentiable
raycasting: we design a network that learns to “space-time complete” the future
volumetric state of the world (in a world-coordinate frame) given past LiDAR
observations. Consider an ego-vehicle that moves in a static scene. Here, LiDAR
returns (even when aligned to a world-coordinate frame) will still swim along
the surfaces of the fixed scene (Fig. 2). This implies that even when the world
is static, most of what the ego-vehicle observes through the LiDAR sensor ap-
pears to move with complex nonlinear motion, but in fact those observations
can be fully explained by static geometry and ego-motion (via raycasting). Li-
DAR forecasters need to implicitly predict this ego-motion of the car to produce
accurate future returns. However, we argue that such prediction doesn’t make
sense for autonomous agents that plan their future motion. Importantly, our dif-
ferentiable raycasting network has access to future camera ego-poses as input,
both during training (since they are available in archival logs) and testing (since
state-of-the-art planners explicitly search over candidate trajectories).

Self-supervision: Note that ground-truth future volumetric occupancy is
largely unavailable without human supervision, because the full 3D world is
rarely observed; the ego-vehicle only sees a limited number of future views as
recorded in a single archival log. To this end, we apply a differentiable raycaster
that projects the forecasted volumetric occupancy into a LiDAR sweep, as seen
by the future ego-vehicle motion in the log. We then use the difference between
the raycasted sweep and actual sweep as a signal for self-supervised learning,
allowing us to train models on massive amounts of unannotated logs.

Planning: Lastly, we show that such forecasted space-time occupancy can
be jointly learned with space-time costmaps for end-to-end motion planning.
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Fig. 2. We pose-align two succesive LiDAR sweeps of a static scene s to a common
world coordinate-frame (using the notation of Fig. 1). Even though there is zero scene
motion ∆s, points appear to drift or swim across surfaces. This is due to the fact that
points are obtained by intersecting rays from a moving sensor ∆y with static scene
geometry. This in turn implies that points can appear to move since they are not tied
to physical locations on a surface. This apparent movement (∆s̃) is in general a complex
nonlinear transformation, even when the sensor motion ∆y is a simple translation (as
shown above). Traditional methods for self-supervised LiDAR forecasting [28,29,15,9]
require predicting the complex transformation ∆s̃ which depends on the unknown ∆y,
while our differentiable-raycasting framework assumes ∆y is an input, dramatically
simplifying the task of the forecasting network. From a planning perspective, we argue
that the future (planned) change-in-pose should be an input rather than an output.

Owing to LiDAR self-supervision, we are able to train on recent unsupervised
LiDAR datasets [13] that are orders of magnitude larger than their annotated
counterparts, resulting in significant improvement in accuracy for both forecasted
occupancy and motion plans. Interestingly, as we increase the amount of archival
training data at the cost of zero additional human annotation, object shape,
tracks, and multiple futures “emerge” in the arbitrary quantities predicted by
our model despite there being no direct supervision on ground-truth occupancy.

2 Related Work

Occupancy as a scene representation: Knowledge regarding what is around
an autonomous vehicle (AV) and what will happen next is captured in differ-
ent representations throughout the standard modular perception and predic-
tion (P&P) pipeline [11,26,4,24]. Instead of separate optimization of these mod-
ules [25,16], Sadat et al. [23] propose bird’s-eye view (BEV) semantic occupancy
that is end-to-end optimizable. As an alternative to semantic occupancy, Hu et
al. [10] propose BEV ego-centric freespace that can be self-supervised by ray-
casting on aligned LiDAR sweeps. However, the ego-centric freespace entangles
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motion from other actors, which is arguably more relevant for motion planning,
with ego-motion. In this paper, we propose emergent occupancy to isolate motion
of other actors. While we focus on self-supervised learning at scale, we acknowl-
edge that for motion planning, some semantic labelling is required (e.g., state of
a traffic light) which can be incorporated via semi-supervised learning.

Differentiable raycasting:Differentiable raycasting has shown great promise
in learning the underlying scene structure given samples of observations for
downstream novel view synthesis [14], pose estimation [30], etc. In contrast, our
application is best described as “space-time scene completion”, where we learn a
network to predict an explicit space-time occupancy volume. Furthermore, our
approach differs from existing approaches in the following ways. We use LiDAR
sequences as input and raycast LiDAR sweeps given future occupancy and sensor
pose. We work with explicit volumetric representations [12] for dynamic scenes
with a feed-forward network instead of test-time optimization [18].

Self-supervision: Standard P&P solutions do not scale given how fast log
data is collected by large fleets and how slow it is to curate object track labels. To
enable learning on massive amount of unlabeled logs, supervision from simula-
tion [8,5,6,7], auto labeling using multi-view constraints [20], and self-supervision
have been proposed. Notably, tasks that can be naturally self-supervised by Li-
DAR sweeps e.g., scene flow [15] have the potential to generalize better as they
can leverage more data. More recently, LiDAR self-supervision has been explored
in the context of point cloud forecasting [27,28,29]. However, when predicting
future sweeps given the history, as stated before, past approaches often tend to
couple motion of the world with the motion of the ego-vehicle [27].

Motion Planning: An understanding of what is around an AV and what will
happen next [25] is crucial. This is typically done in the bird’s eye-view (BEV)
space by building a modular P&P pipeline. Although BEV motion planning does
not precisely reflect planning in the 3D world, it is widely used as the highest-
resolution and computation- and memory-efficient representation [31,23,3]. How-
ever, training such modules often requires a massive amount of data. End-to-end
learned planners requiring less human annotation have emerged, with end-to-end
imitation learning (IL) methods showing particular promise [6,22,5]. Such meth-
ods often learn a neural network to map sensor data to either action (known
as behavior cloning) or “action-ready” cost function (known as inverse optimal
control) [17]. However, they are often criticized for lack of explainable inter-
mediate representations, making them less accountable for safety-critical appli-
cations [19]. More recently, end-to-end learned but modular methods producing
explainable representations, e.g., neural motion planners [31,23,3] have been pro-
posed. However, these still require costly object track labels. Unlike them, our
approach learns explainable intermediate representations that are explainable
quantities for safety-critical motion planning without the need of track labels.
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3 Method

Autonomous fleets provide an abundance of aligned sequences of LiDAR sweeps
x and ego vehicle trajectories y. How can we make use of such data to improve
perception, prediction, and planning? In the sections to follow, we first define
occupancy. Then we describe a self-supervised approach to predicting future
occupancy. Finally, we describe an approach for integrating this forecasted oc-
cupancy into neural motion planners. Note that in the text that follows, we use
ego-centric freespace and freespace interchangeably.

3.1 Occupancy

We define occupancy as the state of occupied space at a particular time instance.
We use z to denote the true occupancy, which may not be directly observable
due to visibility constraints. Let us write

z[u] ∈ {0, 1},u = (x, y, t),u ∈ U (1)

to denote the occupancy of a voxel u in the space-time voxel grid U, which
can be occupied (1) or free (0). The spatial index of u, i.e., (x, y) represents the
spatial location from a bird’s-eye view. Given a sequence of aligned sensor data
and ego-vehicle trajectory (x,y), there may be multiple plausible occupancy
states z that “explain” the sensor measurements. We denote this set of plausible
occupancy states as Z.

Forecasting Occupancy. Suppose we split an aligned sequence of LiDAR
sweeps and ego-vehicle trajectory (x,y) into a historic pair (x1,y1) and a future
pair (x2,y2). Our goal is to learn a function f that takes historical observations
(x1,y1) as input and predicts emergent future occupancy ẑ2. Formally,

ẑ2 = f(x1,y1), (2)

If the true occupancy z2 were observable, we could directly supervise our fore-
caster, f . Unfortunately, in practice, we only observe LiDAR sweeps, x. We show
in the next section how to supervise f with LiDAR sweeps using differentiable
raycasting techniques.

3.2 Raycasting

Given an occupancy estimate ẑ, sensor origin y and directional unit vectors for
rays r, a differentiable raycaster R can raycast LiDAR sweeps x̂. We use d̂ to
represent the expected distance these rays travel before hitting obstacles: d̂ =
R(r; ẑ,y). Then we can reconstruct the raycast LiDAR sweep x̂ as x̂ = y+ d̂∗r.

3.3 Learning to Forecast Occupancy

Given the predicted occupancy ẑ2 (Eq. 2), and the captured sensor pose y2, a dif-
ferentiable raycasterR can take rays r2 as input and produce d̂2 = R(r2; ẑ2,y2).
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Emergent occupancy

Differentiable Raycasting

Ego-centric freespace

Fig. 3. Differentiable procedure for estimating ego-centric freespace from volumetric
occupancy, necessary for computing the loss from (3). The left image depicts predicted
emergent occupancy, on which we perform a cumulative max along the LiDAR ray from
known sensor poses (middle), which is differentiable because it is essentially re-indexing.
The result is then inverted to produce (soft) visible ego-centric freespace estimates. To
identify BEV pixels along the LiDAR ray, we perform fast voxel traversal in 2D [1].

Note that this formulation allows us to decouple the motion of the world cap-
tured by change in occupancy, ẑ2, and the motion of the ego-vehicle captured
by change in sensor origin, y2.

This also allows us to supervise ẑ2 using a loss function that measures the
difference between the raycast distance d̂2 and the ground-truth distance d2.

Lr = loss(d̂2,d2) (3)

Loss function: One natural loss function might be distance between the ray-
cast depth and measured depth along each ray. In practice, we care most about
disagreements of freespace which can inform safe motion plans. To emphasize
such disagreements, we define voxels encountered along the ray as having a free
versus not-free binary label, and use a binary cross-entropy loss (summed over all
voxels encountered by each ray until the boundary of voxel grid, ref. Fig. 3). We
adopt an encoder-decoder architecture that predicts future emergent occupancy
given historical LiDAR sweeps, differentiably raycasts future LiDAR sweeps and
self-supervises using archival sweeps (ref. highlighted branch of Fig. 4 (a)).

3.4 Learning to Plan

The previous section described an approach for predicting future LiDAR returns
via differentiable raycasting of BEV space-time occupancy maps. We now show
that such costmaps can be integrated directly into an end-to-end motion planner
that makes use of space-time costmaps for scoring candidate trajectories. We
follow [9], but modify their derivation to take into account emergent occupancy.

Max-margin planning: We learn a model g to predict a space-time cost
map, c2, over future timestamps given past observations (x1,y1):

c2 = g(x1,y1), where c2[u] ∈ R,u ∈ U2 (4)
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where U2 represents the space-time voxel grid over future timestamps. We define
the cost of a trajectory as the sum of costs at its space-time way-points. The
best candidate future trajectory according to the cost map is the one with the
lowest cost:

ŷ∗
2 = arg min

ŷ∈Y2

C(ŷ; c2) = arg min
ŷ∈Y2

∑
u∈ŷ

c2[u] (5)

where Y2 represents the set of viable future trajectories.
Loss function: We use a max-margin loss function, where the target cost

of a candidate trajectory (ŷ) is equal to the cost of the expert trajectory (y2)
plus a margin. We can write the objective as follows:

Lp =

[
C (y2; c2)−

(
min
ŷ∈Y2

C (ŷ; c2)−D (ŷ,y2)

)]
+

(6)

where [·]+ = max(·, 0) and D is a function that quantifies the desired margin
between the cost of a candidate trajectory and the cost of an expert trajectory.
A common choice for D is Euclidean distance between pairs of way-points:

D(ŷ2,y2) = ||ŷ2,y2||2 (7)

Learning cost maps that reflect such cost margins only requires
expert demonstrations, which are readily available in archival log
data. However, sometimes candidates trajectories that are equally
distant from the expert one should bear different costs. We provide
an example (right) where the red trajectory should cost more than
blue in the presence of an obstacle despite both being equidistant
from the expert demonstration.

Guided planning: To further distinguish among candidate trajectories, one
could introduce extra penalty terms given additional supervision.

D(ŷ2,y2) = ||ŷ2,y2||2 + γ P (ŷ2) (8)

where P represents a penalty function and γ is a predefined scaling factor. Zeng
et al. [31] propose to define an additional penalty such that candidate trajectories
that collide with object boxes would cost an additional γ in addition to the
deviation from the expert demonstration. We refer to this approach as object-
guided planning, which is effective but costly as it requires object track labels.

More scalable alternatives to object supervision can be adopted, such as
formulation of the penalty term proposed by Hu et al. [9]. Concretely, candidate
trajectories that reach outside the freespace as observed by future LiDAR poses
would incur an additional penalty. We refer to this as freespace-guided planning.

Residual costmaps: Instead of directly predicting the cost map c2[u], we
follow prior work [9] and predict a residual cost map c̃2[u] that is added to the
cost map from freespace estimate based on predicted emergent occupancy.

c2[u] = c̃2[u] + α proj(ẑ2;y2)[u], u ∈ ŷ2 (9)
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Fig. 4. Overview of our training and inference-time planning architectures. Highlighted
network branch in (a) is used to learn future emergent occupancy, which is augmented
by the residual branch that predicts residual cost maps, eventually used in computing
a guided planning loss.

where α is a predefined constant and c̃2 represents the predicted residual cost
map. The operation proj(ẑ2;y2) is illustrated in Fig. 3.

Multi-task planning (new): In addition to the raycasting loss in Fig. 4, we
add Lp as an additional planning loss. In other words, the emergent occupancy
prediction architecture is augmented with another decoder branch to predict the
residual cost maps while sharing the encoder features. Because of this, emergent
occupancy forecasting becomes the auxiliary task for the end-to-end motion
planner. We illustrate the network architecture during training in Fig. 4 (a).

Test-time occupancy cost maps (new): At test time, to compute ego-
centric freespace cost maps based on predicted emergent occupancy, for each
candidate sample trajectory, one would need to perform raycasting from its way-
points, which is prohibitively expensive. Fortunately, this is exactly equivalent
to directly accessing emergent occupancy on the waypoints along the candidate
trajectory (because of the cumulative max-operation used in deriving freespace
from occupancy - see Fig. 3), as formally expressed in Eq. (10).

proj(ẑ2; ŷ2)[u] = ẑ2[u], u ∈ ŷ2 (10)

The simplified test-time architecture is illustrated in Fig. 4 (b). When opti-
mizing for future trajectories, we restrict the search space of future trajectories
to the ones with a smooth transition from the past trajectory [31,9]. Please
refer to the supplement for other implementation information such as detailed
network architecture.
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Dataset Diff. Raycast |d−d̂|
d

(↓) BCE (↓) F1 (↑) AP (↑)

nuScenes
- [9] 0.297 0.221 0.665 0.769
✓ 0.242 0.140 0.777 0.863

ONCE
- [9] 0.371 0.143 0.635 0.732
✓ 0.243 0.097 0.787 0.827

Table 1. Indirect evaluation of emergent occupancy forecasting with respect to
groundtruth LiDAR sweeps. On both nuScenes and ONCE, we significantly improve
forecasting accuracy across all metrics by using differentiable raycasting for decoupling
the scene and ego-motion, unlike Hu et al. [9].

4 Experiments

Datasets: We evaluate occupancy forecasting and motion planning on two
datasets: nuScenes [2] and ONCE [13]. nuScenes features real-world driving data
with 1,000 fully annotated 15 second logs. ONCE is the largest driving dataset
with 150 hours of real-world data including 1 million LiDAR sweeps, collected in
a range of diverse environments such as urban and suburban areas. As annotation
is expensive, only a small subset of logs in ONCE are fully annotated, making it
ideal for self-supervised learning. We include comparison against state-of-the-art
forecasting and planning approaches on both datasets. We also construct multi-
ple baselines for all ablative evaluation for bird’s eye-view motion planning. To
understand how our occupancy forecasting and motion planning performance
scales to an increasing amount of training data, we randomly curate different
training sets of the datasets. Since only a small subset of 8K samples in ONCE is
labeled, we do this by progressively increasing the number of training samples by
adding scenes from both their labeled and unlabeled-small splits, which include
8K, and 86K training samples respectively. Some of our analysis exists only on
the combined labeled and unlabeled-small split which totals to 94K samples.
For nuScenes, we randomly sample scenes from their official training set. For all
experiments that follow, we take in a historical LiDAR stack of 2 seconds and
forecast for the next 3 seconds.

4.1 Emergent Occupancy Forecasting

Metrics: Since, the groundtruth for true occupancy is unavailable, we quan-
titatively evaluate the LiDAR sweeps raycast from the emergent occupancy
predictions. Specifically, our first evaluation computes the absolute relative er-
ror between the groundtruth distance traveled by every ray starting from the
sensor origin, and the expected distance traveled by corresponding rays; where
the expected distance is obtained by casting rays through the forecasted occu-
pancy. Second, we score every BEV voxel traversed by a ray using its ‘free’ or
‘not-free’ state. This dense per-ray evaluation is equivalent to evaluating the
per-pixel binary classification of an ego-centric freespace map with respect to
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(a) nuScenes (b) ONCE-labeled (c) ONCE-unlabeled

Fig. 5. We highlight the merits of our self-supervised approach which can be given any
amount of unlabeled LiDAR data to train on, in the form of posed archival LiDAR
sweeps, thereby increasing the performance of emergent occupancy forecasting (evalu-
ated using classification metrics such as average-precision and F1). Please refer to the
supplement for corresponding tables.

its groundtruth, allowing us to compare to the baseline discussed below. We
compute the dense binary cross-entropy, average precision and the F1-score. All
metrics are averaged across all prediction timesteps (up to 3s).
Baseline: We re-implement the future-freespace architecture from [9] which
directly forecasts ego-centric freespace. For building our architecture, we adapt
this network to predict an arbitrary quantity which differentiably raycasts into
ego-centric freespace given a sensor location. On training this architecture in a
self-supervised manner, the arbitrary quantity emerges into emergent occupancy,
an explainable intermediate representation for downstream motion planners.
Main results: We compare the performance of both approaches in Tab. 1. Note
the drastic improvement in all metrics on using differentiable raycasting to de-
couple the scene motion from the ego-motion of the sensor on both nuScenes and
ONCE. With increase of up to 15% F1 points, we highlight the high-quality of
our predicted occupancy and the pronounced effect of adding differentiable ray-
casting. Our results show that occupancy reasoning is an important intermediate
task, even if the end-goal is simply understanding freespace: Our method, which
predicts occupancy as an intermediate target, outperforms [9], which directly
aims to predict freespace. Fig. 6 visualizes predicted ego-centric freespace for a
single scenario in ONCE using [9] and our approach at t = 0, 3s in the future. In
Fig. 5, we show how adding more training samples to both datasets result in an
upward trend in performance across all metrics. This increasing generalizability
and scaling of training data comes for free with our self-supervised approach.

4.2 Motion Planning

Metrics:We follow prior works and compute three metrics for evaluating motion
planning performance, including (1) L2 error; (2) point collision rate; (3) box
collision rate. The L2 distance measures how close the planned trajectory follows
the expert trajectory at each future timestamp. The point collision rate measures
how often the planned waypoint is within the BEV boxes of other objects. The



Differentiable Raycasting for Self-supervised Occupancy Forecasting 11

[9]

Ours

t = 0s t = 3s

Fig. 6. Future ego-centric freespace from [9] and our model, raycasted from predicted
emergent occupancy. Note how the presence of moving and parked cars on roadsides
is captured well by our approach even 3s in the future.

nuScenes
Box Collision (%) L2 Error (m)

1s 2s 3s 1s 2s 3s

IL [21] 0.08 0.27 1.95 0.44 1.15 2.47
FF [9] 0.06 0.17 1.07 0.55 1.20 2.54
Ours 0.04 0.09 0.88 0.67 1.36 2.78

NMP [31] 0.04 0.12 0.87 0.53 1.25 2.67

P3 [23] 0.00 0.05 1.03 0.59 1.34 2.82

Table 2. We compare end-to-end state-of-
the-art motion planners on nuScenes-val.
NMP and P3 are supervised approaches
that have access to object tracking labels.

Fig. 7. A vanilla spacetime trajectory with
a lower L2 error wrt. expert, may collide
into objects unlike a proposed trajectory
with larger L2 error but no collision.

box collision rate measures how often the BEV box of the ego-vehicle intersects
with BEV boxes of other objects.

Model-driven Data-driven

Trajectory sampling: When evaluating performance
on nuScenes, we follow previous state-of-the-art ap-
proaches [31,9] and sample a combination of straight lines,
circles, and clothoid curves as trajectory samples. Owing
to the scene diversity in ONCE, we notice that such a
sampling strategy does not capture the distribution of ex-
pert trajectories on ONCE as they range widely in their
velocities and directions. Inspired by [3], we sample a data-
driven trajectories to complement the model-driven sam-
ples (right). The supplement provides more details on our data-driven sampler.

Planning on nuScenes

Baselines: We compare our proposed approach to four baseline end-to-end mo-
tion planners. First, we implement a pure imitation learning (IL) baseline, a max-
margin neural motion planner self-supervised by expert trajectories, as described
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Freespace Multi Diff. Box Collision (%) Point Collision (%) L2 Error (m)

Guided Task Raycast 1s 2s 3s 1s 2s 3s 1s 2s 3s

(a) - - - 0.08 0.27 1.95 0.00 0.00 0.35 0.44 1.15 2.47
(b) ✓ - - 0.06 0.17 1.07 0.00 0.01 0.04 0.55 1.20 2.54
(c) - ✓ - 0.08 0.17 1.29 0.00 0.02 0.08 0.42 1.06 2.30
(d) ✓ ✓ - 0.02 0.10 1.10 0.00 0.00 0.08 0.52 1.22 2.64
(e) ✓ ✓ ✓ 0.04 0.09 0.88 0.00 0.01 0.03 0.67 1.36 2.78

Table 3. Ablation studies on nuScenes-val. Note that (a) is IL, (b) is FF, and (e) is
Ours in Tab. 2.

in Eq. (7). Second, we re-implement future-freespace-guided max-margin planner
(FF) proposed by Hu et al. [9], as captured by Eq. (8). Third, we re-implement
a simplified neural motion planner (NMP) without modeling costs related to
map information and traffic light status as such information is unavailable on
nuScenes. Last, we re-implement a simplified version of perceive, predict, and
plan (P3) where we do not distinguish semantic occupancy of different classes.
To ensure a fair comparison, we adopt the same neural net architecture for the
baselines and our approach.

Main results: As Tab. 2 shows, in terms of collision rates, our self-supervised
approach outperforms both self-supervised baselines (IL and FF) by a large
margin. Moreover, our approach achieves the same collision rate at 3s as the
best of supervised baselines. We also observe a commonly observed trade-off
between L2 errors and collision rates [31]. For example, pure imitation learning
achieves the lowest L2 errors with the highest collision rates.

Ablation studies: We perform extensive ablation studies in Tab. 3 to under-
stand where improvements come from. There are three main observations:

– Differentiable raycasting reduces collision rate at further horizon (3s), as
seen in (d) vs. (e), suggesting decoupling motion of the world (space-time
occupancy) from ego-motion is helpful when learning long range cost maps.

– Multi-task learning further reduces collision rates, as seen in (a) vs. (c).
Training max-margin planners with an auxiliary self-supervised forecasting
task significantly reduces the collision rates without hurting L2.

– Freespace-guided cost margin is crucial to lowering collision rates, as seen in
(a) vs. (b), (c) vs. (d). However, there is a trade-off: the L2 errors tend to
increase as being expert-like (at all costs) is no longer the only objective. In
Fig. 7, we show an example result describing why L2 error is a misleading
metric that doesn’t allow for alternate future plans that are otherwise viable.
Additionally, Casas et al. [3] show that collision rate is a more consistent
metric between evaluation in the open- and closed-loop setups.
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Input LiDAR sweep Predicted latent occupancy Residual cost map Final cost map &
predicted trajectory

Fig. 8. Qualitative results of our learned model. From top to bottom, we visualize
various scenarios, including slowing down, speeding up, navigating an intersection and
staying still. All columns after the first one are visualized at future timestamp t=0.5s.
We successfully forecast the motion of surrounding objects, e.g. in third row, which
results in safer planned trajectories.

Planning on ONCE

Baseline: ONCE offers a massive amount of unlabeled, diverse LiDAR sweeps
paired with ego-vehicle trajectories and a small fully labeled subset of about
8K samples. We train a re-implemented neural motion planner as a supervised
baseline on the fully labeled subset. We train our self-supervised approach over
a wide range of training sizes, from 2K to 94K.

Fig. 10. Planning performance vs.
larger ONCE training set size.

Main results: Perhaps unsurprisingly,
our first observation is that the metrics
on ONCE are inflated as compared to
nuScenes, because of the diverse range
of environments ONCE features, ranging
from straight highways to complex city
road structures. To show the scalability of
our approach on such a diverse and large
dataset, we plot the L2 error and (box)
collision rate at 3s as a function of the
amount of training data in Fig. 10. Both
the L2 error and the collision rate of our
approach continue to improve as we in-
crease the size of the training set. In com-
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Emergent occupancy (8K) Emergent occupancy (94K)

Fig. 9. Evolution of estimated emergent future occupancy.

parison, the supervised neural motion planner achieves an L2 error of 4.45m and
a box collision rate of 2.54% at a training size of 8K.

At 94K training samples, our self-supervised approach achieves a dramati-
cally lower L2 error of 2.9m and a lower collision rate of 2.47%. Importantly, such
scalability for motion planning comes for free as our approach is self-supervised.
We show some qualitative results on the ONCE dataset in Fig. 8 where our
approach is able to deal with a number of varying driving scenarios; decelerate
and stop when necessary, predict long trajectories when unoccupied regions are
predicted ahead, avoid collisions with other vehicles while navigating an intersec-
tion, or stay stationary. Please refer to our supplement for further quantitative
evaluation, visualization of future cost maps and more qualitative examples that
feature failure cases (e.g., forecasted occupancy diffuses over time).
Evolution of occupancy estimates: Our model tends to produce better es-
timates of emergent occupancy as we increase the amount of training data. The
percent of semantic object pixels recalled from the ground-truth semantic object
labels in our predicted occupancy map increases from 51% to 59% at t=0s when
we increase the amount of training data from 8K to 94K. Qualitatively, this
can be seen in Fig. 9 where the shape of two cars in the right lane looks more
“space-time complete” for the model trained with increased data.

5 Conclusion

We propose emergent occupancy as a self-supervised and explainable representa-
tion for motion planning. Our novel differentiable raycasting procedure enables
the learning of occupancy forecasting under the self-supervised task of LiDAR
sweep forecasting. The raycasting setup also allows us to decouple ego motion
from scene motion, making forecasting an easier task for the network to learn.
Experimental results suggest that such decoupling is also helpful for downstream
motion planning. Such training at scale allows object shape, tracks, and multiple
futures to “emerge” in the predicted emergent occupancy.
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7. Codevilla, F., Santana, E., López, A.M., Gaidon, A.: Exploring the limitations of
behavior cloning for autonomous driving. In: Proceedings of the IEEE International
Conference on Computer Vision. pp. 9329–9338 (2019) 4

8. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: Carla: An open
urban driving simulator. arXiv preprint arXiv:1711.03938 (2017) 4

9. Hu, P., Huang, A., Dolan, J., Held, D., Ramanan, D.: Safe local motion planning
with self-supervised freespace forecasting. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 12732–12741 (2021) 1,
2, 3, 6, 7, 8, 9, 10, 11, 12

10. Hu, P., Ziglar, J., Held, D., Ramanan, D.: What you see is what you get: Exploiting
visibility for 3d object detection. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 11001–11009 (2020) 3

11. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars:
Fast encoders for object detection from point clouds. In: CVPR (2019) 3

12. Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.:
Neural volumes: Learning dynamic renderable volumes from images. arXiv preprint
arXiv:1906.07751 (2019) 4

13. Mao, J., Niu, M., Jiang, C., Liang, H., Liang, X., Li, Y., Ye, C., Zhang, W., Li,
Z., Yu, J., et al.: One million scenes for autonomous driving: Once dataset. arXiv
preprint arXiv:2106.11037 (2021) 3, 9

14. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: Eu-
ropean conference on computer vision. pp. 405–421. Springer (2020) 4

15. Mittal, H., Okorn, B., Held, D.: Just go with the flow: Self-supervised scene flow
estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (June 2020) 1, 3, 4

16. Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D., Ettinger, S.,
Haehnel, D., Hilden, T., Hoffmann, G., Huhnke, B., et al.: Junior: The stanford
entry in the urban challenge. Journal of field Robotics 25(9), 569–597 (2008) 3

17. Osa, T., Pajarinen, J., Neumann, G., Bagnell, J.A., Abbeel, P., Peters, J.: An algo-
rithmic perspective on imitation learning. arXiv preprint arXiv:1811.06711 (2018)
4

https://doi.org/10.2312/egtp.19871000


16 T. Khurana∗, P. Hu∗, A. Dave, J. Ziglar, D. Held, D. Ramanan

18. Park, K., Sinha, U., Barron, J.T., Bouaziz, S., Goldman, D.B., Seitz, S.M., Martin-
Brualla, R.: Nerfies: Deformable neural radiance fields. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 5865–5874 (2021)
4

19. Pomerleau, D.A.: Alvinn: An autonomous land vehicle in a neural network. In:
Advances in neural information processing systems. pp. 305–313 (1989) 4

20. Qi, C.R., Zhou, Y., Najibi, M., Sun, P., Vo, K., Deng, B., Anguelov, D.: Offboard
3d object detection from point cloud sequences. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 6134–6144 (2021) 4

21. Ratliff, N.D., Bagnell, J.A., Zinkevich, M.A.: Maximum margin planning. In: Pro-
ceedings of the 23rd international conference on Machine learning. pp. 729–736
(2006) 11

22. Rhinehart, N., McAllister, R., Levine, S.: Deep imitative models for flexible infer-
ence, planning, and control. arXiv preprint arXiv:1810.06544 (2018) 4

23. Sadat, A., Casas, S., Ren, M., Wu, X., Dhawan, P., Urtasun, R.: Perceive, predict,
and plan: Safe motion planning through interpretable semantic representations.
European Conference on Computer Vision (2020) 2, 3, 4, 11

24. Sadat, A., Ren, M., Pokrovsky, A., Lin, Y.C., Yumer, E., Urtasun, R.: Jointly learn-
able behavior and trajectory planning for self-driving vehicles. In: 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems. pp. 3949–3956. IEEE
(2019) 3

25. Urmson, C., Anhalt, J., Bagnell, D., Baker, C., et al.: Autonomous driving in urban
environments: Boss and the urban challenge. Journal of Field Robotics 25(8), 425–
466 (2008) 3, 4

26. Weng, X., Kitani, K.: A baseline for 3d multi-object tracking. arXiv preprint
arXiv:1907.03961 1(2), 6 (2019) 3

27. Weng, X., Wang, J., Levine, S., Kitani, K., Rhinehart, N.: 4d forecasting: Sequen-
tial forecasting of 100,000 points (2020) 4

28. Weng, X., Wang, J., Levine, S., Kitani, K., Rhinehart, N.: Inverting the pose
forecasting pipeline with spf2: Sequential pointcloud forecasting for sequential pose
forecasting. arXiv preprint arXiv:2003.08376 (2020) 1, 3, 4

29. Wilson, B., Qi, W., Agarwal, T., Lambert, J., Singh, J., Khandelwal, S., Pan,
B., Kumar, R., Hartnett, A., Pontes, J.K., et al.: Argoverse 2.0: Next generation
datasets for self-driving perception and forecasting. In: Thirty-fifth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track (Round
2) (2021) 1, 3, 4

30. Yen-Chen, L., Florence, P., Barron, J.T., Rodriguez, A., Isola, P., Lin, T.Y.:
inerf: Inverting neural radiance fields for pose estimation. arXiv preprint
arXiv:2012.05877 (2020) 4

31. Zeng, W., Luo, W., Suo, S., Sadat, A., Yang, B., Casas, S., Urtasun, R.: End-to-
end interpretable neural motion planner. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 8660–8669 (2019) 4, 7, 8, 11, 12


	Differentiable Raycasting for Self-supervised Occupancy Forecasting

