Master of All: Simultaneous Generalization of Urban-Scene Segmentation to <u>All</u> Adverse Weather Conditions- Supplementary

Nikhil Reddy¹, Abhinav Singhal², Abhishek Kumar², Mahsa Baktashmotlagh³, and Chetan Arora²

¹ University of Queensland - IIT Delhi Academy of Research (UQIDAR) ² Indian Institute of Technology Delhi ³ The University of Queensland nikhil.jangamreddy@uqidar.iitd.ac.in

1 Gradient Backpropagation

The Weighted log softmax multi-class normalized cut loss \mathcal{L} for an image I, is defined as:

$$\mathcal{L}(\mathbf{S}) = \sum_{p=0}^{c-1} w_p \frac{(\mathbf{S}_p)^\top \mathbf{A} (\mathbf{1} - \mathbf{S}_p)}{\mathbf{d}^\top \mathbf{S}_p}$$
(1)

For a standard image, matrices \mathbf{S}_p , \mathbf{A} are of large dimensions, which causes a large computational burden for computing the loss. To reduce the computational bottleneck, motivated by [12], we consider equivalent Weighted log softmax multi-class normalized cut loss as defined below:

$$\mathcal{L}(\mathbf{S}) = -\sum_{p=0}^{c-1} w_p \frac{(\mathbf{S}_p)^\top \mathbf{A}(\mathbf{S}_p)}{\mathbf{d}^\top \mathbf{S}_p}$$
(2)

Gradient of $\mathcal{L}(\mathbf{S})$ w.r.t \mathbf{S}_p can be written as:

$$\frac{\partial \mathcal{L}(\mathbf{S})}{\partial \mathbf{S}_p} = w_p \frac{(\mathbf{S}_p)^\top \mathbf{A} \mathbf{S}_p \mathbf{d}}{(\mathbf{d}^\top \mathbf{S}_p)^2} - w_p \frac{2\mathbf{A} \mathbf{S}_p}{\mathbf{d}^\top \mathbf{S}_p}$$
(3)

Eq. (3) is used to backpropagate gradients into network layers by using standard gradient chain rule.

2 Comparison with TENT[15]

In comparison with TENT[15], we demonstrated performance on multiple datasets, including ACDC[11], C-driving[6], etc. Due to the benchmark limitations on the number of submissions, it is not feasible to submit 16 submissions per model to the ACDC-test benchmark website. So we consider the best performing model to be DeepLabv3+ resnet101[1] and submit it to the ACDC benchmark website. Results are shown in Tab. 1. We report that MALL-domain improves mIoU

2 N. Reddy et al.

performance on ACDC-fog by 7%. MALL-domain improves average mIoU performance on the ACDC benchmark, consisting of fog, rain, night, and snow adverse weather conditions by 17%. ACDC benchmark results are available here.

Method	ACDC-fog	ACDC-Rain	ACDC-Snow	ACDC-Night	Average
DeepLabv3+ ResNet101[1]	49.0	53.4	40.7	26.2	42.3
with MALL-domain	52.4	56.9	51.4	36.8	<u>49.3</u>

Table 1: Results of MALL-domain on ACDC benchmark website

3 Inference time

For a batch size of 12, with each image resolution of 1024×512 , we compare the inference time of TENT[15] with the MALL framework consisting of MALL-sample and MALL-domain methods. We consider the pre-trained daytime models DeepLabv3+ mobilenet and DeepLabv3+ resnet101. Results are reported in table 2. TENT[15] adapts a pre-trained model to a single image similar to the MALL-sample method. TENT[15] is comparatively

Method	mobilenet	resnet101
TENT[15]	748	937
MALL-sample	1312	1564
MALL-domain	1180	1219

Table 2: comparison of inference time per iteration on pre-trained daytime models: mobilenet: DeepLabv3+ mobilenet, resnet101: DeepLabv3+ resnet101, inference time is reported in milliseconds (ms).

faster than MALL-sample as TENT only updates the affine parameters of the batch normalization layer instead of updating the entire network. However, MALL-sample outperforms TENT in terms of mIOU% performance.

Method	MALL-sample	MALL-domain
IBNNet[7]	1371	1228
SW[8]	1147	990
RobustNet-Resnet50[2]	1013	872
RobustNet-Resnet101[2]	1802	1642

Table 3: comparison of inference time per iteration on pre-trained domain generalization methods using MALL framework: RobustNet-resnet50 (ISW), RobustNet-resnet101 (ISW), inference time is reported in milliseconds (ms).

4 Results of MALL-sample.

To demonstrate the efficiency of the MALL-sample, we report the average mIOU performance across 13 datasets, described in subsection 4.1: Table 3: BiseNetV2: 28.6, ISANet: 41.2, STDC: 39.7, SegFormer: 38.5, GCNet: 41.6, LRASPP: 32.2, Mobilenet V2: 31.8; Table 4: IBNNet: 41.1, SW: 36.4, RobustNet-R50: 40.6, RobustNet-R101: 41.3; Table 5: Zeroshot-DN (ND, DZ): 42.3, 36.1; MGCDA

(ND, DZ): 49.7, 43.1; **Table 6:** MGCDA: 26.7; **Table 7:** DANNet: 41.8; **Table 8:** MALL-sample (ND, DZ): 36.8, 19.8. Similarly, we consider pre-trained state-

Method	road	sidewalk	building	wall	fence	pole	traffic light	traffic sign	vegetation	terrain	sky	person	rider	car	truck	bus	train	motorcycle	bicycle	mIOU
RefineNet[5]	68.8	23.2	46.8	20.8	12.6	29.8	30.4	26.9	43.1	14.3	0.3	36.9	49.7	63.6	6.8	0.2	24.0	33.6	9.3	28.5
AdaptSegNet[13]	86.1	44.2	55.1	22.2	4.8	21.1	5.6	16.7	37.2	8.4	1.2	35.9	26.7	68.2	45.1	0.0	50.1	33.9	15.6	30.4
ADVENT[14]	85.8	37.9	55.5	27.7	14.5	23.1	14.0	21.1	32.1	8.7	2.0	39.9	16.6	64.0	13.8	0.0	58.8	28.5	20.7	29.7
BDL[4]	85.3	41.1	61.9	32.7	17.4	20.6	11.4	21.3	29.4	8.9	1.1	37.4	22.1	63.2	28.2	0.0	47.7	39.4	15.7	30.8
DMAda[3]	75.5	29.1	48.6	21.3	14.3	34.3	36.8	29.9	49.4	13.8	0.4	43.3	50.2	69.4	18.4	0.0	27.6	34.9	11.9	32.1
GCMA[9]	81.7	46.9	58.8	22.0	20.0	41.2	40.5	41.6	64.8	31.0	32.1	53.5	47.5	75.5	39.2	0.0	49.6	30.7	21.0	42.0
MGCDA[10]	80.3	49.3	66.2	7.8	11.0	41.4	38.9	39.0	64.1	18.0	55.8	52.1	53.5	74.7	66.0	0.0	37.5	29.1	22.7	42.5
DANNet(PSPNet)[16]	90.4	60.1	71.0	33.6	22.9	30.6	34.3	33.7	70.5	31.8	80.2	45.7	41.6	67.4	16.8	0.0	73.0	31.6	22.9	45.2
MALL-domain	90.3	59.8	70.8	34.2	22.7	30.9	37.2	34.1	70.6	31.6	80.1	46.8	43.2	68.1	16.4	0.3	72.6	31.9	22.8	45.5

Table 4: Per class mIOU scores of the state-of-the-art night image segmentation methods on the Dark Zurich test dataset, MALL-domain built on DANNet further improves the results.

of-the-art domain generalization methods IBNNet[7], Switchable Whitening[8], RobustNet-resnet50[2], and RobustNet-resnet101[2], we consider the batch size of 12, with each image resolution of 1024×512 . We report the inference time with the MALL-sample and MALL-domain methods. Results are reported in table 3.

5 Ablation study

To demonstrate the impact of the number of iterations on the mIOU performance, we consider the DeepLabv3+ mobilenet pre-trained model using the MALL-domain method. Results are reported in figure 1. mIOU drops after a definite number of iterations to consider this; We use early stopping criteria as defined in MALL-sample and MALL-domain method. Early stopping criteria are based on Softmax multi-class normalized cut loss between two consecutive iterations.

Fig. 1: Impact of number of Iterations on mIOU% score using pre-trained model: Deeplabv3+ mobilenet, dataset: Nighttime Driving test dataset.

4 N. Reddy et al.

6 Qualitative results

Qualitative visual results for pre-trained models for daylight, DeepLabv3+ mobilenet[1] and DeepLabv3+ resnet101[1] are shown in figure 2. We consider the pre-trained models for state-of-the-art domain generalization methods IBNNet[7], Switch-able whitening[8], and RobustNet[2]. Qualitative visual results state-of-the-art domain generalization methods are presented in figure 3 and 4 respectively. Visual results demonstrate the significant improvement in segmentation label predictions by directly using MALL framework during inference.

Fig. 2: Qualitative visual comparison of our proposed MALL framework on pretrained daytime models: Mobilenet V2, Deeplabv3+ resnet101 on two images from night image datasets, ours: pre-trained model+ MALL-domain method.

5

Fig. 3: Qualitative visual comparison of our proposed MALL framework on pretrained Domain generalization models: IBNNet, Switchable Whitening (SW) on two images per model from night image datasets, ours: pre-trained model+ MALL-domain method.

Fig. 4: Qualitative visual comparison of our proposed MALL framework on pre-trained Domain generalization models: RobustNet-a: RobustNet-Resnet50 (ISW), RobustNet-b: RobustNet-Resnet101 (ISW) on two images per model from night image datasets, ours: pre-trained model+ MALL-domain method.

7

Fig. 5: Qualitative visual comparison of our proposed MALL framework on pretrained Domain generalization models: IBNNet, SW, RobustNet-a: RobustNet-Resnet50 (ISW), RobustNet-b: RobustNet-Resnet101 (ISW) on two images per model from night image datasets, ours: pre-trained model+ MALL-domain method.

8 N. Reddy et al.

References

- 1. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV) (September 2018) 1, 2, 4
- Choi, S., Jung, S., Yun, H., Kim, J.T., Kim, S., Choo, J.: Robustnet: Improving domain generalization in urban-scene segmentation via instance selective whitening. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11580–11590 (2021) 2, 3, 4
- Dai, D., Van Gool, L.: Dark model adaptation: Semantic image segmentation from daytime to nighttime. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC). pp. 3819–3824. IEEE (2018) 3
- Li, Y., Yuan, L., Vasconcelos, N.: Bidirectional learning for domain adaptation of semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6936–6945 (2019) 3
- Lin, G., Milan, A., Shen, C., Reid, I.: Refinenet: Multi-path refinement networks for high-resolution semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1925–1934 (2017) 3
- Liu, Z., Miao, Z., Pan, X., Zhan, X., Lin, D., Yu, S.X., Gong, B.: Open compound domain adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) 1
- Pan, X., Luo, P., Shi, J., Tang, X.: Two at once: Enhancing learning and generalization capacities via ibn-net. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 464–479 (2018) 2, 3, 4
- Pan, X., Zhan, X., Shi, J., Tang, X., Luo, P.: Switchable whitening for deep representation learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 1863–1871 (2019) 2, 3, 4
- Sakaridis, C., Dai, D., Gool, L.V.: Guided curriculum model adaptation and uncertainty-aware evaluation for semantic nighttime image segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 7374–7383 (2019) 3
- Sakaridis, C., Dai, D., Van Gool, L.: Map-guided curriculum domain adaptation and uncertainty-aware evaluation for semantic nighttime image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence (2020) 3
- 11. Sakaridis, C., Dai, D., Van Gool, L.: Acdc: The adverse conditions dataset with correspondences for semantic driving scene understanding. arXiv preprint arXiv:2104.13395 (2021) 1
- Tang, M., Djelouah, A., Perazzi, F., Boykov, Y., Schroers, C.: Normalized cut loss for weakly-supervised cnn segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1818–1827 (2018) 1
- Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 7472–7481 (2018) 3
- Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2517–2526 (2019) 3
- 15. Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: Tent: Fully test-time adaptation by entropy minimization. arXiv preprint arXiv:2006.10726 (2020) 1, 2

Improving Domain Generalization in Urban-Scene Segmentation

 Wu, X., Wu, Z., Guo, H., Ju, L., Wang, S.: Dannet: A one-stage domain adaptation network for unsupervised nighttime semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 15769– 15778 (2021) 3