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In this supplementary material, we first present the implementation and
training details of our proposed method and baseline methods (Sec. S.1). We
then show the visual examples of our pre-segmentation results (Sec. S.2), the
full results on the nuScenes dataset (Sec. S.3), and the multi-scan distillation re-
sults on the SemanticKITTI dataset (Sec. S.4). Finally, we analyze the generated
label distribution (Sec. S.5) and the robustness to label noise (Sec. S.6).

S.1 Implementation & training details

Pre-segmentation & labeling While some prior works require perfect pre-
segmentation results, our proposed labeling and training pipeline (using weak
and propagated labels) allows imperfect component proposals (e.g., a component
with multiple categories or an object instance divided into multiple components),
which greatly mitigates the impact of pre-segmentation quality on final per-
formance. Our pre-segmentation heuristic only includes two key steps: ground
removal and connected component construction. Compared to other complex
heuristics, it has fewer hyperparameters. Also, thanks to the good property of
outdoor point clouds (i.e., objects are well-separated), we find that, in our ex-
periments, the hyper-parameters are intuitive and easy to select without much
effort.

For example, during the ground removal, we find that the cell size and the
RANSAC threshold are robust across datasets, and we set them to be 5m× 5m
and 0.2m for both datasets. When building connected components, the parame-
ter d should accommodate the LiDAR sensor (the sparser the points, the larger
the d). We set d to 0.01 and 0.02 for SemanticKITTI [1] and nuScenes [2] datasets,
respectively. In our experiments, choosing hyper-parameters with visual inspec-
tion is convenient and sufficient to achieve satisfactory results.

For the SemanticKITTI [1] dataset, we fuse every 5 adjacent scans for the
0.1% setting and every 100 adjacent scans for the 0.01% setting. Fusing more ad-
jacent scans will improve labeling efficiency, but may sacrifice pre-segmentation
quality as points may become blurry, especially for dynamic objects. After con-
structing connected components, oversized components are subdivided along the
xy axes to ensure each component is within a fixed size (i.e., 2m× 2m for non-
ground components). We also ignore small components with no more than 100
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points. For each component of size s, we randomly label 1 point for each category
whose number of points is more than 0.05s. The motivation here is to prevent
those noisy and ambiguous points within each component from decreasing the
component purity. In real applications, human labelers may also miss or ignore
those noisy categories to accelerate the annotation.

For the nuScenes [2] dataset, we share the
same hyperparameters as SemanticKITTI, ex-
cept for the following. We fuse every 40 adja-
cent scans, and ignore small components with
no more than 10 points. For each component
proposal of size s, we randomly label 1 (or
4) point(s) for each category whose number of
points is more than 0.01s, corresponding to the
0.2% (0.9%) settings. These subtle differences
are mainly due to the points in the nuScenes [2]
dataset are much sparser (e.g., the right inset
shows the fused points for 0.5 seconds), and we
fuse more points and annotate more labels to
compensate for the point sparsity.

Network training As for contrastive prototype learning, the momentum pa-
rameter m is empirically set to 0.99, temperature parameter τ is set to 0.1. In
multi-scan distillation, we fuse the scans at time {t + 0.5i; i ∈ [−2, 2]} for Se-
manticKITTI, and {t + 0.5i; i ∈ [−3, 3]} for nuScenes. We tried multiple sets
of parameters (different numbers of scans and intervals). They do lead to some
differences (∼3% mIOU), and we choose the best empirically. We keep all points
for scan i = 0, and use voxel downsampling to sub-sample 120k points from
other scans. The temperature T is set to 4.

We sum up all loss terms with equal weights and train the models on 4
NVIDIA A100 GPUs. For SemanticKITTI, the batch size is 12 and 8 for the
single-scan and the multi-scan model, respectively. For nuScenes, the batch size
is 16 and 12 for the single-scan and the multi-scan model, respectively. We utilize
the Adam optimizer, and the learning rate is initially set to 1e-3 and then decayed
to 1e-4 after convergence. During distillation, the learning rate is set to 1e-4.
Other training parameters are the same as Cylinder3D [12].

Baseline Methods We adopt the author released code to train OneThin-
gOneClick [7] and ContrastiveSceneContext [4] on SemanticKITTI and nuScenes.
For other methods, the results are either obtained from the literature or corre-
spondences with the authors.

For ContrastiveSceneContext [4], we first compute the overlapping ratio
between every pair of scans within each sequence, where the voxel size is set
to 0.3m. We then use pairs of scans whose overlapping ratio is no less than
30% for contrastive pre-training. During pre-training, we train the model with



LESS: Label-Efficient Semantic Segmentation for LiDAR Point Clouds 3

Fig. S1: Examples of the pre-segmentation results. First row: detected
ground points of each cell. Non-ground points are colored in gray. Each other
color indicates a proposed ground component. Second row: connected compo-
nents of the non-ground points. Each color indicates a connected component.
The example is from the nuScenes dataset, where 40 scans are fused.

a voxel size of 0.15m for 100k iterations. The batch size is 12 and 20 for Se-
manticKITTI and nuScenes, respectively. We then follow the provided pipeline
to infer the point features and select points for labeling. After that, we train the
segmentation network with the pre-trained weights for 30k iterations. The voxel
size is set to 0.1m, and the batch size is set to 18 and 36 SemanticKITTI and
nuScenes, respectively. We disable the elastic distortion and the color-related
data augmentation.

For OneThingOneClick [7], we first apply the geometrical partition de-
scribed in [5] to generate the super-voxels, where only the point coordinates are
used as input. We then randomly label a subset of super-voxels for a given an-
notation budget. We follow the authors’ guidance to train the modules for three
iterations. In each iteration, we train the 3D-U-Net for 32 epochs (51k itera-
tions) and the RelationNet for 64 epochs (102k iterations). During training, the
voxel size is set to 0.1m, and the batch size is set to 12. We disable the elastic
distortion for the data augmentation.

S.2 Visual results of pre-segmentation

Fig. S1 shows the examples of our pre-segmentation results.
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(AF)2-S3Net [3]

100%

62.2 60.3 12.6 82.3 80.0 20.1 62.0 59.0 49.0 42.2 67.4 94.2 68.0 64.1 68.6 82.9 82.4
RangeNet++ [8] 65.5 66.0 21.3 77.2 80.9 30.2 66.8 69.6 52.1 54.2 72.3 94.1 66.6 63.5 70.1 83.1 79.8

PolarNet [11] 71.0 74.7 28.2 85.3 90.9 35.1 77.5 71.3 58.8 57.4 76.1 96.5 71.1 74.7 74.0 87.3 85.7
SPVNAS [9] 74.8 74.9 39.9 91.1 86.4 45.8 83.7 72.1 64.3 62.5 83.3 96.2 72.7 73.6 74.1 88.3 87.4

Cylinder3D [12] 75.4 75.3 41.7 91.6 86.1 52.9 79.3 79.2 66.1 61.5 81.7 96.4 72.3 73.8 73.5 88.1 86.5
AMVNt [6] 77.0 77.7 43.8 91.7 93.0 51.1 80.3 78.8 65.7 69.6 83.5 96.9 71.4 75.1 75.3 90.1 88.3

RPVNet [10] 77.6 78.2 43.4 92.7 93.2 49.0 85.7 80.5 66.0 66.9 84.0 96.9 73.5 75.9 76.0 90.6 88.9

ContrastiveSC [4] 0.2% 63.5 65.6 0.0 82.7 87.3 42.8 46.3 57.1 32.2 59.0 76.4 94.2 62.5 65.9 68.8 87.8 86.8
LESS (Ours) 0.2% 73.5 73.7 38.3 92.0 89.7 46.9 75.6 70.9 58.4 64.8 83.0 95.6 67.6 70.9 71.8 89.2 87.3

ContrastiveSC [4] 0.9% 64.5 64.0 12.7 80.7 87.6 41.1 55.8 61.6 37.5 59.1 75.2 94.2 65.6 67.0 70.1 88.0 87.2
LESS (Ours) 0.9% 74.8 75.0 42.3 91.9 89.9 51.0 80.0 72.6 60.1 64.9 83.6 95.7 67.5 71.7 73.1 89.5 87.6

Table S1: Comparison of different methods on the nuScenes validation
set. Cylinder3D [12] is our fully supervised counterpart.
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sparse (×0.1%) 0.8 2.7 0.9 0.6 0.8 1.8 1.8 2.7 0.4 0.7 0.6 1.4 0.8 1.0 1.0 2.0 1.0 3.1 4.1
propagated (%) 79 12 75 77 75 52 64 48 16 6 9 17 77 25 55 29 32 28 9

Table S2: The coverage of sparse labels and propagated labels for the
SemanticKITTI dataset. The numbers are the ratios between the number
of sparse labels (and propagated labels) and the number of points within each
category.

S.3 Full results on nuScenes

Tab. S1 shows the full results on the nuScenes validation set.

S.4 Full table of multi-scan distillation

Tab. S4 shows the full results of the multi-scan distillation. The multi-scan
teacher model leverages the richer semantics via temporal fusion and achieves
significantly better performances in the underrepresented categories, such as bi-
cycle, person, and bicyclist. Through knowledge distillation from the teacher
model, the student model also improves a lot in those categories.

S.5 Label distribution

Tab. S2 and Tab. S3 summarize the distributions of the generated sparse labels
and the propagated labels. By leveraging our proposed pre-segmentation and
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sparse (×0.1%) 2.4 20.9 4.0 4.6 4.8 8.0 19.9 12.2 3.4 3.4 0.6 1.7 1.9 3.1 4.8 7.9
propagated (%) 16 16 53 52 54 46 29 20 49 59 32 2 2 11 62 55

Table S3: The coverage of sparse labels and propagated labels for the
nuScenes dataset. The numbers are the ratios between the number of sparse
labels (and propagated labels) and the number of points within each category.
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single-scan (before) 64.9 97 46 72 91 69 73 88 0 92 39 77 4 90 58 88 66 73 61 52
multi-scan teacher 66.8 97 52 82 94 72 78 92 0 93 40 79 1 89 54 87 70 72 64 53
single-scan (after) 66.0 97 50 73 94 67 76 92 0 93 40 79 3 91 60 87 68 71 62 51

Table S4: Results of the multi-scan distillation on the SemanticKITTI
validation set. 0.1% annotations are used.

labeling policy, we put more emphasis on the underrepresented categories. For
example, the ratios of sparse labels for bicycle and road are 2.68 vs. 0.36 in the
SemanticKITTI dataset, and 20.85 vs. 0.63 in the nuScenes dataset. As for the
propagated labels, we find the distributions are unbalanced. For categories, such
as car and building, they are easier to be separated and form pure components,
thus having high coverages of propagated labels. However, some categories, such
as bicycle, road, sidewalk, and parking, are prone to be connected with other
categories, thus having low coverages of propagated labels. The discrepancy be-
tween the distributions of the two types of labels confirms that we need to treat
them separately instead of simply merging them with a single loss function.

S.6 Robustness to label noise

In the paper, we use point labels from the original datasets to mimic the anno-
tation policy, and no extra noise is added.

To evaluate the robustness of our method to label noise, we randomly change
3% (or 10%) of the sparse point labels to a random category, which alters weak
labels and propagated labels accordingly. The resulting mIoU drops 2.1% (or
3.7%), which is within a reasonable range and verifies that our method will not
be significantly affected by the label noise.
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