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Fig. 1: In the openable part detection (OPD) task the input is a single view image,
and the outputs are detected openable parts as well as their motion parameters.
We design OpdRcnn: a neural architecture for this task that operates at the
part level, allowing generalization across diverse object categories.

Abstract. We address the task of predicting what parts of an object
can open and how they move when they do so. The input is a single
image of an object, and as output we detect what parts of the object
can open, and the motion parameters describing the articulation of
each openable part. To tackle this task, we create two datasets of 3D
objects: OPDSynth based on synthetic objects, and OPDReal based
on RGBD reconstructions of real objects. We then design OpdRcnn,
a neural architecture that detects openable parts and predicts their
motion parameters. Our experiments show that this is a challenging task
especially when considering generalization across object categories, and
the limited amount of information in a single image. Our architecture
outperforms baselines and prior work especially for RGB image inputs.
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1 Introduction

There is increasing interest in training embodied AI agents that interact with
the world based on visual perception. Recently, Batra et al. [2] introduced
rearrangement as a challenge bringing together researchers in machine learning,
vision, and robotics. Common household tasks such as “put dishes in the cupboard”
or “get cup from the cabinet” can be viewed as object rearrangement. A key
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challenge in such tasks is identifying which parts can be opened, and how they
move to open and close.

To address this problem, we introduce the openable part detection (OPD)
task, where the goal is to identify openable parts, and their motion type and
parameters (see Figure 1). We focus on predicting the openable parts (“door”,
“drawer”, and “lid”) of an object, and their motion parameters from a single RGB
image input. More specifically, we focus on container objects (e.g. cabinets, ovens,
etc). Containers need to be opened to look for hidden objects to reach, or to
place away objects. Methods that can identify what can be opened and how offer
a useful abstraction that can be used in more complex tasks [18, 21–23, 31].

Prior work [7, 11, 36] has looked at predicting motion types and parameters
from 3D point clouds. Point-cloud based methods rely on depth information, often
sampled from a reconstructed mesh that aggregates information from multiple
views. In addition, Li et al. [11] assumes that the kinematic chain and the part
structure of the objects are given. To handle different kinematic structures, they
train a separate model for each structure. This approach is not scalable to the
wide variety of structures found in the real world, even for objects in the same
category. For example, cabinets may have two, three or four drawers.

We study the task of identifying openable parts and motion parameters from
a single-view image, and investigate whether a structure-agnostic image-based
approach can be effective at this task. Our approach OpdRcnn extends instance
segmentation networks (specifically MaskRCNN) to identify openable parts and
predict their motion parameters. This structure-agnostic approach allows us to
more easily achieve cross-category generality. That is, a single model can tackle
instances from a variety of object categories (e.g. cabinets, washing machines).
In addition, we investigate whether depth information is helpful for this task.

In summary, we make the following contributions: i) we propose the OPD task
for predicting openable parts and their motion parameters from single-view images;
ii) we contribute two datasets of objects annotated with their openable parts
and motion parameters: OPDSynth and OPDReal; and iii) we design OpdRcnn:
a simple image-based, structure-agnostic neural architecture for openable part
detection and motion estimation across diverse object categories. We evaluate our
approach with different input modalities and compare against baselines to show
which aspects of the task are challenging. We show that depth is not necessary
for accurate part detection and that we can predict motion parameters from
RGB images. Our approach significantly outperforms baselines especially when
requiring both accurate part detection and part motion parameter estimation.

2 Related Work

Part segmentation and analysis. Part segmentation has been widely studied
in the vision and graphics communities for both 2D images and 3D representations.
Much of the prior work relies on part annotations in 2D images [4, 40], or 3D
CAD models with semantically labelled part segmentations [19, 29, 30, 36, 38].
Annotated 3D part datasets have been used to study part segmentation by
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Table 1: Summary of prior work on motion parameter estimation (motion type,
axis, and rotation origin). We indicate the input modality, whether the method
has cross-category generalization (CC), whether part segmentations are predicted
(Seg) as opposed to using ground-truth parts, whether object pose (OP) and
part state (PS) are predicted. Most prior work takes point cloud (PC) inputs. In
contrast, our input is single-view images (RGB, D, or RGB-D).
Method Input CC Seg OP PS #cat #obj #part

Snapshot [6] 3D mesh 368 368
Shape2Motion [30] PC ✓ ✓ 45 2440 6762
RPMNet [36] PC ✓ ✓ 969 1420
DeepPartInduction [37] Pair of PCs ✓ 16 16881
MultiBodySync [8] Multiple PCs ✓ 16
ScrewNet [9] Depth video ✓ 9 4496 4496
Liu et al. [14] RGB video ✓ ✓ 3
ANCSH [11] Single-view PC ✓ ✓ ✓ 5 237 343
Abbatematteo et al. [1] RGB-D ✓ 5 6 8
VIAOP [39] RGB-D ✓ 6 149 618

OpdRcnn (ours) Single-view RGB(-D) ✓ ✓ ✓ ✓ 11 683 1343

rendering images [24] or directly in 3D (e.g. meshes or point clouds) [19, 38].
These datasets have fostered the development of different methods to address
part segmentation on images [27, 28, 33]. Many of these focus on human/animal
part segmentation, and use hierarchical methods to parse both objects and the
parts. Beyond part segmentation, [15] further enhanced the PASCAL VOC Part
dataset [4] with state information. In contrast, we directly detect and segment
the parts of interest using standard object instance segmentation methods [3, 5].

Unlike prior work, we focus on a small set of openable part categories. Part
datasets differ in what parts they focus on (e.g., human body parts, or fine-
grained vs coarse-grained object parts). Determining the set of parts of interest
can be tricky, as the set of possible parts can be large and ill-defined, with what
constitutes a part varying across object categories. Therefore, we focus on a small
set of openable parts in common household objects. We believe this set of parts
is a small, practical set that is important for object interaction.

Articulated object motion prediction. Part mobility analysis is a long-
standing problem in 3D computer graphics. Early work [17] has focused on
learning the part mobility in mechanical assemblies. Xu et al. [35] used a mobility
tree formalism to further explore object and part mobility in indoor 3D scenes.
More recent work[20] proposed a joint-aware deformation framework based on
shape analysis and optimization to predict motion joint parameters. Part mobility
analysis has also been performed on sequences of RGBD scans [10]. More recently,
there has been increasing interest in data-driven methods for studying articulated
objects and estimating motion parameters[11, 30]. To support these data-driven
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Fig. 2: Example articulated objects from the OPDSynth dataset and the OPDReal
dataset. The first row is from OPDSynth. Left: different openable part categories
(lid, in orange, drawer in green, door in red). Right: Cabinet objects with different
kinematic structures and varying numbers of openable parts. The second row is
from our OPDReal dataset. Left: reconstructed cabinet and its semantic part
segmentation. Right: example reconstructed objects from different categories.

approaches, there has been concurrent development of datasets of annotated part
articulations for synthetic [30, 34, 36] and reconstructed [13, 16] 3D objects.

Table 1 summarizes the part mobility prediction tasks defined by this and
other recent work. Hu et al. [6] predict joint parameters given pre-segmented 3D
objects. Other work predicts segmentation together with motion parameters, for
2.5D inputs [36, 37], 3D point clouds [30] or for sequences of RGBD scans [10].
Abbatematteo et al. [1], Li et al. [11] have the most similar task setting with our
work, predicting the part segmentation, part pose, and joint parameters from
a single view image. However, both require depth as input and knowledge of
the kinematic chain of each object. They require training a separate model for
each object category, where the object category is defined as having the same
structure (i.e. same kinematic chain). This means that different models need to
be trained for cabinets with 3 drawers and cabinets with 4 drawers. In contrast,
we identify all openable parts of an object in an input RGB image, without
assuming a specific structure with given number of parts. This allows us to train
a single model that generalizes across categories. Note that Abbatematteo et al.
[1] also use MaskRCNN for segmentation, but they do not analyze or report the
part segmentation and detection performance of their model.

More recent work has started to explore training of single models for motion
prediction across categories and structures [8, 9, 9, 14]. Zeng et al. [39] proposed
an optical flow-based approach on RGB-D images given segmentation masks of the
moving part and fixed part. They evaluate only on ground truth segmentation and
do not investigate how part segmentation and detection influences the accuracy
of motion prediction. Others have proposed to predict articulated part pose from
depth sequences [9], image video sequences [14], or synchronizing multiple point
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Table 2: OPD dataset statistics. We create two datasets of objects with openable
parts: OPDSynth and OPDReal. The datasets contain various object categories
with potentially multiple openable parts. We annotate the semantic part seg-
mentation and articulation parameters on 3D polygonal meshes, allowing us to
generate many views of each object with ground truth.

Category

Storage Table Bin Fridge Microwave Washer Dishwasher Oven Safe Box Suitcase

OPDSynth
Objects 366 76 69 42 13 17 41 24 30 28 7
Parts 809 187 75 68 13 17 42 36 30 59 7
Images 89300 20600 9225 7850 1625 2125 5225 4200 3750 6600 875

OPDReal
Objects 231 16 7 12 7 3 3 5 - - -
Parts 787 35 7 27 7 3 3 6 - - -
Images 27394 1175 474 1321 570 159 186 253 - - -

clouds [8]. In contrast, we focus on single-view image input and show that even
without depth information, we can accurately predict motion parameters.

3 Problem Statement

Our input is a single RGB image I of a single articulated object and the output is
the set of openable parts P = {p1 . . . pk} (i.e. drawers, doors and lids) with their
motion parameters Φ = {ϕ1 . . . ϕk}. Figure 1 illustrates the input and output
for our task. For each part pi = {bi,mi, li}, we predict the 2D bounding box
bi, the segmentation mask mi, and the semantic label li ∈ {drawer, door, lid}.
The motion parameters ϕi of each openable part specify the motion type ci ∈
{prismatic, revolute}, motion axis direction ai ∈ R3 and motion origin oi ∈ R3.
Specifically, we have ϕi = [ci, ai, oi] for revolute joints (e.g., door rotating around
a hinge), and ϕi = [ci, ai] for prismatic joints (e.g., drawer sliding out). For
simplicity, we assume that each part has only one motion.

4 OPD Dataset

To study our task, we collate two datasets of objects with openable parts, a
dataset of synthetic 3D models (OPDSynth) and a dataset of real objects scanned
with RGB-D sensors (OPDReal). For OPDSynth, we select objects with openable
parts from an existing dataset of articulated 3D models PartNet-Mobility [34].
For OPDReal, we reconstruct 3D polygonal meshes for articulated objects in
real indoor environments and annotate their parts and articulation information.
Table 2 shows summary statistics of the number of objects and openable parts
for each object category (see supplement for more detailed statistics).
OPDSynth. The PartNet-Mobility dataset contains 14K movable parts across
2,346 3D objects from 46 common indoor object categories [34]. We canonicalize
the part names to ‘drawer’, ‘door’, or ‘lid’. We select object categories with
openable parts that can serve as containers. For each category, we identify the
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openable parts and label them as drawer, door, or lid (see supplement). Overall,
we collated 683 objects with 1343 parts over 11 categories (see Table 2). We
then render several views of each object to produce RGB, depth, and semantic
part mask frames. Specifically, for each articulated object we render different
motions for each part. In one motion state all parts are set to the minimum
value in their motion range. Then for each part, we pick 3 random motion states
and the maximum of the motion range, while the other parts remain at the
minimum value. We render five images for each motion state from different
camera viewpoints, and each image is composited on four different randomly
selected background images (see supplement for rendering details).
OPDReal. To construct a dataset of real objects, we take 863 RGB-D video
scans of indoor environments with articulated objects (residences, campus lounges,
furniture showrooms) using iPad Pro 2021 devices. We obtain polygonal mesh
reconstructions from these scans using the Open3D [41] implementation of RGB-
D integration and Waechter et al. [25]’s implementation of texturing. We follow
an annotate-validate strategy to filter and annotate this scanned data. Specifi-
cally, we: 1) Annotate the model quality and filter the scans with bad quality
(insufficient geometry to annotate articulations); 2) Annotate the semantic part
segmentation; 3) Validate the semantic segmentation; 4) Annotate the articulation
parameters for articulated parts; 5) Validate the articulations through animating
the moving parts; 6) Annotate a ‘semantic OBB’ (center at origin, semantic ‘up’
and ‘front’ axis direction) for each object; 7) Calculate consistent object pose (i.e.
transformation between camera coordinates and object coordinates) based on
semantic OBB. After filtering and annotation, we have a total of 763 polygonal
meshes for 284 different objects across 8 object categories. Table 2 shows the
distribution over different object categories.

We then project the 3D annotations back to the original RGB and depth
frames from the scan videos. We select around 100 frames from each video and
project the segmentation mask in 3D back to 2D. The articulation parameters
in world coordinate are also projected to the camera coordinates of each frame.
When selecting frames, we sample one frame every second ensuring that at least
1% of pixels belong to an openable part and at least 20% of parts are visible.

5 Approach

To address openable part detection, we leverage a instance segmentation network
to identify openable parts by treating each part as an ‘object instance’. Specifically,
we augment Mask-RCNN [5] with heads for predicting the motion parameters.
Mask-RCNN uses a backbone network for feature extraction and a region proposal
network (RPN) to propose regions of interest (ROI) which are fed into branches
that refine the bounding box and predict the mask and category label. By training
Mask-RCNN on our OPD dataset, we can detect and segment openable parts.
We attach additional branches to the output of the RoiAlign module to predict
motion parameters. We consider two variants: i) OpdRcnn-C directly predicts the
motion parameters in camera coordinates; and ii) OpdRcnn-O predicts camera
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Fig. 3: Illustration of the network structure for our OpdRcnn-C and OpdRcnn-
O architectures. We leverage a MaskRCNN backbone to detect openable parts.
Additional heads are trained to predict motion parameters for each part.

extrinsics (object pose in our single-object setting) and motion parameters in
world coordinates (canonical object coordinates). Figure 3 shows the overall
architecture. All models use a cross-entropy loss for categorical prediction and a
smooth L1 loss with β = 1 when regressing real values (see supplement).

OpdRcnn-C. For OpdRcnn-C, we add separate fully-connected layers to
the RoiAlign module to directly predict the motion parameters. The original
MaskRCNN branches predict the part label li and part bounding box delta δi for
each part pi in the box head. The box delta δi is combined with the box proposal
from the RPN module to calculate the final output bounding box bi. We add
additional branches to predict the motion parameters ϕi = [ci, ai, oi] (motion
category, motion axis, motion origin) in the camera coordinate frame. We use
the smooth L1 loss for the motion origin and motion axis, and the cross-entropy
loss for the part joint type. Note that we only apply the motion origin loss for
revolute joints, since the motion origin is not meaningful for prismatic joints.

OpdRcnn-O. For OpdRcnn-O, additional layers predict the 6 DoF object
pose parameters to establish an object coordinate frame within which to predict
motion axes and origins for openable parts. Following prior work [26], the object
coordinate frame has consistent up and front orientations. The motivation is that
motion origins and axes in object coordinates are more consistent than in camera
coordinates. We are only dealing with a single object per image and consistent
poses are available for each annotated object, so predicting the object pose is
equivalent to predicting the extrinsic parameters of the camera pose. We regress
the object pose parameters from image features using convolution and fully-
connected layers (see Figure 3). OpdRcnn-O is trained with the same motion
parameter loss as OpdRcnn-C, but with motion axes and origins expressed in
object coordinates. We treat the extrinsics matrix as a vector of length 12 (9 for
rotation, 3 for translation) and use the smooth L1 loss.

Implementation details. We implement our architecture with Detectron2 [32].
We initialize weights from a ResNet50 pretrained on ImageNet, and optimize
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with SGD. Unless otherwise specified, we use a learning rate of 0.001 with linear
warmup for 500 steps and decay by 0.1 at 0.6 and 0.8 of the total steps.

We first train only on the detection and segmentation task with a learning
rate of 0.0005 for 30000 steps. Then we pick the best weights for RGB, depth,
and RGBD independently. Because our OpdRcnn-C and OpdRcnn-O have
the same structure for detection and segmentation, we load the weights from
the best detection and segmentation models and fully train with all losses. In
both OpdRcnn-C and OpdRcnn-O we use the ratios [1, 8, 8] to weigh the
motion category loss, motion axis loss and motion origin loss respectively. In
OpdRcnn-O we use 15 as the weight for the object pose loss.

During training we employ image space data augmentation to avoid overfitting
(random flip, random brightness, and random contrast). During inference, we use
a greedy non-maximum suppression (NMS) with IoU threshold 0.5 and choose
the predicted bounding box with highest score. We use a confidence threshold of
0.05, and allow for 100 maximum part detections per image.

6 Experiments

6.1 Metrics

Part detection. To evaluate part detection and segmentation we use standard
object detection and segmentation metrics over the part category, as implemented
for MSCOCO [12]. In the main paper, we report mAP@IoU=0.5 for the predicted
part label and 2D bounding box (PDet).
Part motion. To evaluate motion parameter estimation and measure the in-
fluence of the motion type we compute detection metrics over the motion type
(motion-averaged mAP). This is in contrast with part-averaged mAP which is over
the part category. A ‘match’ for motion-averaged mAP considers the predicted
motion type and the 2D bounding box (MDet), and error thresholds for the
motion axis and motion origin. We set the thresholds to 10◦ for axis error and
0.25 of the object’s diagonal length for the origin distance (predicted origin to
GT axis line). Motion parameters are evaluated in the camera coordinate frame.
Motion origins for translation joints are all considered to match. We report several
variants of part-averaged mAP: PDet, PDet with motion type matched (+M),
PDet with motion type and motion axis matched (+MA), and PDet with
motion type, motion axis and motion origin matched (+MAO). Motion-averaged
mAP has the same variants with MDet instead of PDet. When evaluating
motion parameters, prior work [11, 30] has focused on the average error only for
correctly detected parts. In contrast, our metrics incorporate whether the part
was successfully detected or not (in addition to error thresholds).

6.2 Baselines

As noted by Li et al. [11], knowing the canonical object coordinates can assist
with predicting the motion axes and origin. This is because the motion axes are
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often one of the {x, y, z} axes in object coordinates. Similarly, the motion origin
for revolute joints is often at the edge of the object. So we design baselines that
select (randomly or using the most frequent heuristic) from the three axes and
the edges and corners of the normalized object bounding box. These baselines
rely on known canonical object coordinates, so we take the part and object pose
predictions from OpdRcnn-O. For origin prediction we use ground truth object
sizes to convert from normalized to canonical coordinates, so these are strong
baselines with access to additional information not available to OpdRcnn.
RandMot. A lower bound on performance that randomly predicts the part
type, motion type, motion axis and motion origin. The motion origin is picked
randomly from 19 points in the corner, edge center, face center and center of the
object bounding box. The motion axis is picked randomly from three axis-aligned
directions in the canonical object coordinates.
MostFreq. Selects the most frequent motion type, axis, and origin in object
coordinates conditioned on the predicted part category (statistics from train set).
ANCSH. Li et al. [11]’s ANCSH predicts motion parameters (motion axis,
motion origin) and part segmentation for single-view point clouds. This work
assumes a fixed kinematic chain for all objects in a category. In other words,
the number of parts, part labels, and part motion types are given as input. We
re-implement ANCSH in PyTorch matching the results reported by the authors.
Since ANCSH requires a fixed kinematic chain, we choose the most frequent
kinematic chain: objects with one rotating door part (243 out of 683 total objects
in OPDSynth). We train ANCSH on this ‘one-door dataset’. The main evaluation
is on the complete validation and test set (same as other baselines and approaches).
The supplement provides additional comparisons on only one-door objects.
OpdPN. Baseline using a PointNet++ backbone to predict instance segmenta-
tion and motion parameters directly from an input point cloud. This baseline
predicts the part category, part instance id, and motion parameters for each point.
This architecture operates on a fixed number of parts so we train on objects with
less than 5 parts. See the supplement for details on the architecture.

6.3 Results

Model comparisons. Table 3 shows the performance of the baselines and the
two variants of OpdRcnn. We can make a number of observations. The Rand-
Mot baseline performs quite poorly for both part detection and part motion
estimation metrics on all input scenarios, indicating the challenge of detecting
openable parts and estimating their motion parameters. The MostFreq baseline
is quite competitive if we only look at part detection and motion type detection
(PDet and MDet metrics). This is not surprising as the MostFreq baseline
leverages detections from OpdRcnn-O and the most frequent motion heuristic is
relatively strong. However, when we look at precision of motion axis and motion
origin predictions (+MAO and related metrics) we see that OpdRcnn-O signif-
icantly outperforms simpler baselines, especially for the motion-averaged metrics
(higher than 60% mAP). It also outperforms the camera-centric OpdRcnn-C,
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Table 3: Evaluation of openable part detection and part motion parameter
estimation on the OPDSynth test set. The RandMot and MostFreq baselines
use detections and extrinsic parameters from OpdRcnn-O. Both variants of
OpdRcnn outperform baselines and prior work especially for RGB-only inputs
and on metrics accounting for part motion parameter estimation.

Part-averaged mAP % ↑ Motion-averaged mAP % ↑

Input Model PDet +M +MA +MAO MDet +MA +MAO

RGBD

RandMot 5.0 1.3 0.2 0.1 6.2 0.7 0.3
MostFreq 69.4 66.1 49.2 27.8 73.6 61.6 38.8

OpdRcnn-C 69.2±0.26 67.3±0.25 42.6±0.25 40.9±0.31 75.3±0.09 55.3±0.23 53.9±0.20
OpdRcnn-O 68.5±0.31 66.6±0.38 52.6±0.26 49.0±0.21 74.9±0.13 65.3±0.27 62.9±0.24

D (PC) ANCSH [11] 2.7 2.7 2.3 2.1 3.9 3.1 2.8
OpdPN 20.4 19.3 14.0 13.6 22.0 18.1 17.6

D
OpdRcnn-C 68.2±0.39 66.5±0.42 41.0±0.21 39.2±0.20 73.0±0.09 53.0±0.18 51.5±0.19
OpdRcnn-O 67.3±0.43 65.6±0.28 51.2±0.44 47.7±0.24 72.2±0.14 62.3±0.25 60.0±0.23

RGB
OpdRcnn-C 67.4±0.26 66.2±0.18 40.9±0.21 38.0±0.19 75.0±0.14 53.4±0.20 51.4±0.18
OpdRcnn-O 66.6±0.28 65.5±0.27 50.7±0.23 46.9±0.26 74.5±0.26 63.8±0.32 61.5±0.26

showing the benefit of object-centric representation relative to camera-centric
representation when accurate estimation of motion axes and origins is important.
Effect of input modalities. Comparing different input modalities in Table 3
we see that overall, methods do best with RGBD, while D (depth, or point
cloud) input, and RGB-only input are more challenging. For the depth input
modality we compare against ANCSH [11] and the OpdPN baseline. Note
that ANCSH requires separate models for different kinematic chains so it is
severely disadvantaged when evaluating on the OPDSynth dataset that includes
objects with varying number of parts and differing motion types. We observe that
ANCSH is outperformed by OpdPN and both variations of OpdRcnn. One
of the limitations of ANCSH is that it requires a prespecified kinematic chain
(with fixed number of parts, part categories and motion types). Therefore, we
also evaluated ANCSH in a setting constrained to ‘single door’ objects, where it
performs more competitively (see supplement). These observations demonstrate
the increased generality of our approach over baselines in terms of handling
arbitrary object categories with changing numbers of moving parts and motion
types. Moreover, both OpdRcnn variants perform well in the RGB-only setting.
Error metrics. We also compute error metrics as in Li et al. [11]. Prior work
computes these metrics only for detected parts that match a ground truth part,
thus including different number of instances for different methods. ANCSH and
OpdPN have average motion axis error of 10.36◦ (for 6975 instances) and 6.25◦

(for 9862 instances) respectively. Both have average motion origin error of 0.09.
Our proposed methods have comparable errors but over more detected parts.
OpdRcnn-C and OpdRcnn-O have axis error of 9.06◦ and 6.67◦ for ∼ 22000
instances, and origin error of 0.11. These error metrics are restricted only to
matched predictions and fail to capture detection performance differences.
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Table 4: Results on the OPDReal test set. Overall, the task is more challenging on
real objects. OpdRcnn-O has the highest performance across most metrics, and
in particular for motion-averaged metrics including motion estimation (+MAO).

Part-averaged mAP % ↑ Motion-averaged mAP % ↑

Input Model PDet +M +MA +MAO MDet +MA +MAO

RGBD

RandMot 5.3 1.4 0.1 0.1 7.1 0.5 0.3
MostFreq 56.6 54.6 34.0 21.6 71.6 50.4 32.2

OpdRcnn-C 54.7 53.3 21.8 21.3 73.4 32.3 31.5
OpdRcnn-O 56.6 54.3 33.8 32.4 73.3 50.0 48.1

D
OpdPN 15.4 15.3 12.1 11.5 22.8 17.9 17.0
OpdRcnn-C 49.4 46.6 12.2 11.6 61.1 17.7 17.0
OpdRcnn-O 49.2 47.3 18.1 16.1 60.3 26.7 23.9

RGB
OpdRcnn-C 58.0 57.0 22.2 21.3 73.6 32.6 31.4
OpdRcnn-O 57.8 56.4 33.0 30.8 74.0 48.7 45.7

Real-world images. We demonstrate that we can apply our method on real-
world images to detect openable parts and their motion parameters. We finetune
the RGB and RGBD models trained on OPDSynth on the OPDReal training set.
All hyperparameters are the same except we set the learning rates to 0.001 for
RGB and RGBD, and 0.0001 for depth-only (D) models. Table 4 summarizes
performance on our OPDReal dataset. Overall, the task is much more challenging
with real data as seen by lower performance across all metrics for all methods.
We see that OpdRcnn-O has the best performance overall across most metrics,
and in particular for metrics that measure motion parameter estimation.
Qualitative visualizations. Figure 4 shows qualitative results from both the
OPDSynth and OPDReal datasets. We see the overall trend that OpdRcnn-O
outperforms OpdRcnn-C in terms of motion parameter estimation. We also see
that both datasets have hard cases, with OPDReal being particularly challenging
due to real-world appearance variability and the limited field of view of single-view
images resulting in many partially observed parts.

6.4 Analysis

Are some parts more challenging than others? Table 6 shows the perfor-
mance of OpdRcnn-O broken down by openable part category. The drawer
parts exhibit translational motion, lid parts have rotational motions, and door
parts exhibit both. We see that lid is more challenging than drawer and door,
with considerably lower part detection mAP and significantly lower part motion
estimation performance (+MA and +MAO metrics). This may be caused by
fewer lid in the training data (89 lid vs 508 door and 363 drawer parts).
How does ground truth part and pose affect motion prediction? To
understand how part detection influences motion prediction, we use ground truth
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Fig. 4: Qualitative results from the OPDSynth and OPDReal val sets. The first row
in each triplet shows the ground truth (GT) with each openable part mask, and
the translational or rotational axis indicated in green. Other rows are predictions
using OpdRcnn-C and OpdRcnn-O on RGBD inputs. The predicted axis is
green if within 5◦ of the ground truth (also shown, in blue), in orange if within
10◦, and in red if more than 10◦. The first few OPDSynth examples show that
translational drawer openable parts are relatively easy. Rotating door parts are
more challenging (see high error predictions by OpdRcnn-C in the second row
from the top). The OPDReal data is more challenging with many high axis error
cases and entirely undetected parts (Miss). Particularly hard examples include
unusual rotating doors that look like translating drawers (last column in top set),
and openable parts only partly visible in the image frame (fourth column).
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Table 5: Analysis of performance given ground truth part category, 2D bounding
box, and object pose. Results for OpdRcnn-O are on the OPDSynth val set.

Part-averaged mAP % ↑ Motion-averaged mAP % ↑

PDet +M +MA +MAO MDet +MA +MAO

RGBD OpdRcnn-O 72.5±0.34 70.6±0.29 51.7±0.62 47.1±0.59 75.4±0.07 61.6±0.32 59.0±0.32
GT Box2DPart 99.0±0.00 90.9±0.16 50.6±0.36 45.4±0.27 89.7±0.15 58.1±0.32 54.7±0.28
GT Pose 73.1±0.10 71.0±0.05 60.5±0.06 59.4±0.05 75.2±0.08 67.0±0.14 66.2±0.09
GT Box2DPartPose 99.0±0.00 90.6±0.37 65.5±0.24 63.8±0.17 89.5±0.19 73.3±0.26 72.0±0.30

Table 6: Per-category evaluation ofOpdRcnn-O model on the OPDSynth val
set. All metrics use part-averaged mAP. The drawer openable parts are easiest
overall and do not benefit much from depth information. In contrast door and in
particular lid parts are more challenging and do benefit from depth in the input.

drawer door lid

Input PDet +M +MA +MAO PDet +M +MA +MAO PDet +M +MA +MAO

RGB 81.4 80.9 71.5 71.5 86.0 81.1 61.6 57.0 58.7 58.4 27.7 17.8
D 70.3 70.1 63.4 63.4 83.3 78.6 61.7 57.4 57.8 57.5 30.0 18.3
RGBD 71.9 71.4 65.9 65.9 85.9 79.9 63.7 59.8 62.2 61.8 31.4 19.7

(GT) for the part label, part 2D bounding box, and object pose with OpdRcnn-O
on the OPDSynth validation set (see Table 5. As expected, when the GT part
label and box are provided PDet is close to 100%. Surprisingly, having just
the GT part label and box does not improve motion prediction. The ground
truth object pose is more important for predicting the motion axis and origin
correctly. Even with GT pose and 2D part information, the motion prediction is
still imperfect. See the supplement for additional analysis.
Does depth information help? Table 3 shows that depth only (D) models
are outperformed by RGB and RGBD models. Depth information is helpful
in conjuction with RGB information as seen by the small performance boost
between RGB and RGBD across all metrics. Depth-only models perform worse
than RGB-only models across all motion-averaged metrics. We suspect that this
is because most openable parts have minimal difference in depth values along
their edges, and thus color is more helpful than depth for predicting openable part
segmentation masks. Table 6 provides some insight. We see that for the drawer
and lid category where detection is overall more challenging, depth information
does not help and the motion prediction results are also bad. For the door
category where detection results are higher depth offers additional information
that improves motion parameter estimation (higher +MA and +MAO metrics
for depth-only (D) and RGBD models). See the supplement for an additional
analysis based on breaking down performance across detection mAP ranges.
Can we infer part motion states? A discrete notion of ‘motion state’ is often
useful (e.g., “the fridge door is open” vs “the fridge door is closed”). We manually
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annotate a binary open vs closed motion state and continuous distance or angle
offset from the closed state for all objects. We then add an MLP to the box
head to predict binary motion state under a smooth L1 loss. We finetune the
OpdRcnn-O model to predict the binary motion state along with part detection
and motion parameter estimation. Finetuning is done for 5000 mini-batches. To
evaluate motion state prediction we compute mAP values for ‘match’ or ‘no
match’ of the binary motion state. Here, we define the mAP over motion type to
evaluate the motion state prediction. Part-averaged mAP of the OpdRcnn-O
model on the OPDSynth validation set is 62.8% for RGBD, 62.1% for RGB and
60.7% for D inputs. Motion-averaged mAP values are 62.0%, 64.2% and 59.9%
respectively. These values should be contrasted with PDet and MDet in Table 3.
We see that overall we can predict binary part motion states fairly well, though
this too is a non-trivial task. We hypothesize that learning a ‘threshold’ for a
binary notion of open vs closed is challenging (e.g., “fridge door cracked open”).

6.5 Limitations

We focused on single objects with openable parts. The objects are fairly simple
household objects without complex kinematic chains or complex motions (e.g.,
we cannot handle bifold doors). We also did not consider image inputs with
multiple objects, each potentially possessing openable parts. A simple strategy
to address this limitation would be to first detect distinct objects and then apply
our approach on each object. Lastly, we focused on estimating the translation or
rotation axis and rotation origin parameters but we do not estimate the range of
motion for each part. This would be required to estimate a full part pose and to
track the motion of an openable part from RGB video data.

7 Conclusion

We proposed the task of openable part detection and motion parameter estimation
for single-view RGB images. We created a dataset of images from synthetic
3D articulated objects (OPDSynth) and of real objects reconstructed using
RGBD sensors (OPDReal). We used these datasets to systematically study the
performance of approaches for the openable part detection and motion estimation
task, and investigate what aspects of the task are challenging. We found that the
openable part detection task from RGB images is challenging especially when
generalization across object and part categories is important. Our work is a first
step, and there is much potential for future work in better understanding of
articulated objects from real-world RGB images and RGB videos.
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Chair, a Canada Research Chair and NSERC Discovery Grant, and enabled in
part by support from WestGrid and Compute Canada. We thank Sanjay Haresh
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