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Abstract. Estimating human motion from video is an active research
area due to its many potential applications. Most state-of-the-art meth-
ods predict human shape and posture estimates for individual images
and do not leverage the temporal information available in video. Many
“in the wild” sequences of human motion are captured by a moving cam-
era, which adds the complication of conflated camera and human motion
to the estimation. We therefore present BodySLAM, a monocular SLAM
system that jointly estimates the position, shape, and posture of human
bodies, as well as the camera trajectory. We also introduce a novel hu-
man motion model to constrain sequential body postures and observe the
scale of the scene. Through a series of experiments on video sequences of
human motion captured by a moving monocular camera, we demonstrate
that BodySLAM improves estimates of all human body parameters and
camera poses when compared to estimating these separately.

Keywords: human pose estimation, human motion model, camera track-
ing, dynamic SLAM

1 Introduction

Estimating the orientation and translation, shape, and posture of human bodies
from a sequence of images is an active research area in computer vision due to its
many potential applications in domains such as safe human-robot interaction,
biomechanical analysis, action recognition, and augmented and virtual reality
(AR/VR). To fully realise these types of applications at scale, it is desirable that
this estimation can be done “in the wild” from images captured by a moving
monocular camera without relying on any special markers or motion-capture
systems. This would even enable human motion analysis on image sequences that
were not captured with these applications in mind, such as from videos found
on YouTube or other online repositories. State-of-the-art estimation methods
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Fig. 1: BodySLAM Problem Defini-
tion and Example Scene. The human
body postures of the previous n frames
are used to predict its motion; and a
Human Mesh Regressor [28] is used
for human centre pose, posture, and
shape prediction. Then, a factor graph
of camera trajectory, human states
and natural landmarks are jointly op-
timised.

for human shape and posture involve training powerful deep neural networks
(DNNs), but these methods require large amounts of annotated training data.
As 3D manual annotations are extremely difficult to obtain, in-the-wild datasets
are only labelled in 2D, with 3D annotations only being available in indoor
settings where a motion capture system was used to produce ground truth labels.
These restrictions have led to most methods only providing shape and posture
estimates for individual frames and not leveraging the temporal information
that is available from image sequences. Another critical limitation is that most
of these training datasets only feature stationary cameras, and a true in-the-wild
system will need to operate in environments where the camera is moving along
an unknown trajectory. This further complicates the estimation procedure, as
with a moving camera, the camera motion and human motion become conflated.

The standard method to incrementally estimate the position of a moving
monocular camera in real time is with a visual simultaneous localisation and
mapping (SLAM) system. While many visual SLAM methods have been shown
to be both accurate and robust, image sequences containing people in motion
pose a particular challenge, since most state-of-the-art visual SLAM methods
assume a static environment. It is possible to use a separate network to segment
and mask-out humans from the visual SLAM system, but in many sequences
humans take up a large proportion of the frame leaving too few points for the
SLAM system to track robustly. Importantly, even in static scenes with many
observable points, classic monocular SLAM systems are not able to observe the
scale of a scene, introducing ambiguity to the absolute poses of the cameras and
any human motion observed by them.

With these limitations in mind, we propose a method, called BodySLAM, for
jointly estimating the orientation and translation, shape, and posture of human
bodies, as well as the trajectory of the moving monocular camera that observes
them, in a single factor graph optimisation. We represent 3D human bodies
using the shape and posture parameters of the SMPL mesh model [32], and
the orientation and translation of the root of the corresponding kinematic tree
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underlying the SMPL model. In each frame, we obtain a measurement of these
human body parameters using an off-the-shelf neural network. The body shape
measurements are fused together in the factor graph optimisation as these should
remain constant for a single individual over the image sequence. This constraint
also helps to resolve the scale ambiguity from the monocular SLAM formulation.

Posture parameters are constrained between frames through the use of a novel
motion model. The motion model uses body shape parameters and estimates of
the human centre poses and postures from previous frames to form a prior on
future body parameters. Unlike other models, we choose not to use a recurrent
neural network architecture to allow for a simpler factor graph formulation and
to enable the marginalisation of previous motions in future work.

Finally, as is standard in visual SLAM, we track and map a sparse set of
feature-based landmarks in the background of the image sequences to help esti-
mate the relative 6D camera transformations. The BodySLAM problem defini-
tion for an example scene is provided in Fig. 1.

We demonstrate through a series of quantitative experiments on image se-
quences featuring human motion and a moving camera that our approach of
joint optimisation results in improvements to the estimates of all human body
parameters and camera poses when compared to estimating these separately.3

In summary, the key contributions of this paper are:

– a monocular SLAM system, called BodySLAM, that jointly optimises human
shape parameters, posture parameters, body centre poses, camera poses, and
a set of 3D landmarks,

– a novel motion model that robustly predicts future human body parameters
from previous ones, and

– an experimental evaluation of our joint estimation approach on our own
dataset consisting of more than 8k frames with ground truth human body
parameters and camera poses obtained by a Vicon motion tracking system,
demonstrating that we can accurately recover human body parameters and
camera trajectories at metric scale.

2 Related Work

2.1 3D Human Body Representations

3D representations for the human body generally fall into three broad categories:
sparse sets of independent body joints, articulated body skeletons with rigidity
constraints between joints, and (parametric) human mesh models.

Both of the first two categories involve the estimation of a set of 3D joint
landmarks from 2D images. By using datasets such as Human3.6m [10] with
ground truth 3D labels generated by motion capture systems, it is possible to
directly regress from the input images to 3D joint positions using DNNs [40,39].

3
We encourage the reader to view our supplementary video available at:
https://youtu.be/0-SL3VeWEvU

https://youtu.be/0-SL3VeWEvU
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Another option is to use the abundance of 2D ground truth labels to learn to
detect 2D joint keypoints [13,9], and then “lift” these to 3D using methods such
as dictionary of skeletons [2,43,48] or DNNs [14,51,34]. While the direct approach
tends to overfit to indoor lab environments, the lifting strategy discards a lot of
potentially useful information from the captured images.

More recently, parametric 3D human body models [32,3,36] have been suc-
cessfully used as output targets for human body shape and posture estimation.
Human body models encapsulate statistics of body shape and other priors to
reduce the ambiguity of the 3D estimation problem, and can provide high-level
details such as facial expressions and hand or foot articulation [38]. It is for these
advantages that we choose to use the SMPL parametric human mesh model [32]
as the 3D representation for human bodies in BodySLAM.

These parametric mesh models can be fitted end-to-end using either an
optimisation-based top-down approach, a regression-based bottom-up approach,
or a combination of both [8,23,28]. SMPLify [8] proposes an optimisation-based
fitting routine where the 3D mesh model is fitted to predicted 2D keypoints.
While top-down approaches such as SMPLify require a 2-step process of key-
point prediction and mesh optimisation, regression-based bottom-up approaches
start directly from pixel-level information. [23] develops a direct parametric mesh
regressor trained on 2D and 3D data, predicting mesh and camera parameters
from an image input. [28] uses an optimisation routine in the training loop of a
deep convolutional neural network to improve the supervisory signal and quality
of the predictions. In our work, we use the method of [28] to initialise the human
shape and posture parameters, but then refine these estimates through our joint
factor graph optimisation procedure.

2.2 Human Motion Models

While there are many approaches to estimate human motion from videos looking
only at joint locations [11,18,41], our focus is on methods that use parametric
human body models like SMPL.

A common approach is to enforce a smoothness prior on the posture param-
eters rather than define an explicit motion model. For example, [4] does this
to include temporal information in their extension of the previously introduced
SMPLify routine. By adding smoothness constraints on posture parameters and
enforcing consistent body shape, the task of human shape and posture esti-
mation from video is essentially formulated as a bundle adjustment problem.
[19] uses multiple views of the same scene and silhouette constraints to improve
single-frame fitting. While smoothness constraints help improve estimates of the
human body parameters, they are agnostic to the direction of motion and do
not help to estimate scale. As scale recovery is an important part of our work,
we use a model to predict future body position and posture parameters from
previous estimates, in which smoothness is implicitly included.

There are other examples that use DNNs to learn a human motion model
[24,26,31,44]. In [24], a network learns human kinematics by prediction of past
and future image frames. Recently, [26] introduced both a temporal encoder
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with a gated recurrent unit (GRU) to estimate temporally consistent motion
and shapes, and a training procedure with a motion discriminator that forces
the network to generate feasible human motion. While such a recurrent network
is capable of generating very accurate human motion predictions, including it in
a factor graph optimisation would be difficult as each hidden state would need
to become a state variable. Instead, we opt to use a multi-layer perceptron that
takes the body shape parameters and the past n body posture estimates as input
to predict the current posture parameters. This formulation allows us to greatly
simplify the factor graph and will allow for much easier marginalisation of past
states as part of future work.

2.3 Visual SLAM with Dynamic Objects

Most visual SLAM systems assume that the scene they are mapping and tracking
against is static (e.g. ORB-SLAM [35]). Many of these systems are still capable
of handling some small dynamic regions of the scene as any keypoints in these
areas will be treated as outliers when using robust methods; however, they will
fail if the dynamic objects occupy large segments of the frame as is often the
case in image sequences capturing human motion. Some systems are designed to
handle dynamic environments through the use of elimination strategies, where
moving objects are detected and removed from the tracking and mapping pro-
cesses (e.g. [47,7,20,5,12,21]). While this strategy offers an improvement over the
static scene assumption in standard SLAM systems, it still requires that enough
static background is visible for robust tracking and throws away any information
contained in the dynamic parts of the environment. Alternative methods explic-
itly model motion with techniques such as rigid object-level maps [50,45,46,6].

More recently, there have been some approaches that estimate the camera
motion and dynamic scenes simultaneously, without any a priori knowledge of
the environment (e.g. [15,22,16]). While these systems are limited to estimat-
ing rigid-body motion, AirDOS [42], the work most closely related to our own,
extends this line of work to include articulated objects such as humans. Air-
DOS uses a combination of rigidity and motion constraints to create articulated
models for humans and vehicles within a factor graph framework. By jointly
optimising for the object motion, object 3D structure and the camera trajec-
tory, improved camera tracking over an elimination strategy baseline is shown.
While AirDOS presents impressive results, we are able to make a number of key
improvements over their approach. Firstly, whereas AirDOS depends on stereo
input, BodySLAM works with only a monocular camera, making it suitable to
more “in the wild” applications. Unlike stereo SLAM systems, standard monoc-
ular SLAM systems are unable to observe the scale of the scene; however, we
demonstrate that by simultaneously optimising for the human posture, shape
and centre poses, BodySLAM is able to recover the metric scale. Secondly, since
the focus of AirDOS is on improved camera tracking and not human motion es-
timation, it uses a simple skeleton-based model of human rigidity. It furthermore
does not use a a learned temporal model, but uses motion constraints for the
rigid body segments. BodySLAM, on the other hand, uses the SMPL parametric
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mesh model, allowing for full human body reconstructions, and uses a temporal
human motion model to predict translation, orientation, and posture change.
Finally, while AirDOS provides quantitative camera tracking results, only a few
qualitative results for the object tracking and structure estimation are provided.
In our experiments on real-world datasets, we quantitatively demonstrate that
BodySLAM improves not only camera tracking, but the estimation of the human
body centre poses, shape and posture parameters.

3 Methodology

3.1 Preliminaries and Notation

We use the following notation throughout this work: a reference frame is denoted
as F−→A, and vectors expressed in it are written as Ar or translations ArOP with
O and P as start and endpoints, respectively. The homogeneous transformation
from reference frame F−→B to F−→A is denoted as TAB . Its rotation matrix is
denoted as CAB , whose minimal representation we parameterise as an axis-
angle rotation vector in the respective frame, AαAB . Commonly used reference
frames are the static world frame F−→W , the camera centric frame F−→C , and the
human body centric frame F−→H . Camera frames are indexed by time steps k, and
body joints by j. Measurements of quantity z are denoted with a tilde, z̃.

3.2 System Overview

Fig. 2: The BodySLAM framework.

An overview of the BodySLAM framework is provided in Fig. 2. BodyS-
LAM can be split into two main components: a front-end that performs the
pre-processing of the input image stream, and the back-end that performs the
graph optimisation (bundle adjustment).

In the front-end, BRISK keypoints are extracted from each image for use
in camera tracking [29]. The monocular bundle adjustment problem is then ini-
tialised with static landmarks and camera poses obtained by applying RANSAC
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on the keypoints. Each image is also processed by an instance segmentation
network [49] to detect human bounding boxes, and by OpenPose [9] to extract
human keypoints. From these, human mesh parameters are estimated using a
Human Mesh Regressor (HMR) network [28]. Finally, human motion and posture
estimates are obtained from our deep motion model (see Section 3.5).

Many state-of-the-art methods perform bundle adjustment only on keyframes,
a selected subset of the total frames; however, to avoid complications to the
training and inference of the motion model by having a variable frame rate, we
assume a constant frame rate of 30 FPS and estimate the camera pose, human
centre pose, and human shape and posture parameters at every frame.

3.3 3D Representation of the Human Body

The SMPL model [32] is a parametric human mesh model that supplies a func-
tion, M(β,θ), of the shape parameters, β, and posture parameters, θ, and

returns a mesh, HM ∈ RN×3, as a set of N = 6890 vertices in the human-
centric frame F−→H . The body shape is parameterised as a 10-dimensional vector,
β ∈ R10, where the components are determined by a principal component anal-
ysis to capture as much of the variability in human body shape as possible.
The body posture parameters, θ, represent each of the 23 joint orientations
in the respective parent frame in axis-angle representation with dimensionality
dim(θ) = 23 × 3 = 69. With this kinematic tree representation, it is easy to
encode the same posture for different human shapes, as the joint positions can
be defined as a linear combination of a set of mesh vertices. For J joints, a
linear regressor W ∈ RJ×N is pre-trained to regress the J 3D body joints as

HX = W HM with HX ∈ RJ×3.
The 6D human centre pose is defined as xhuman = [W rWH ,WαWH ] ∈ R6,

where W rWH is the body centre position with respect to the static world frame,
and WαWH is the body centre orientation represented as a rotation vector.

3.4 Measurements of Human Body Parameters

SMPL Parameter Prediction The state-of-the-art method from Kolotouros
et al. [28] is used to generate measurements of the SMPL parameters {β̃, θ̃} in
each frame. This method uses an HMR network to regress the SMPL parameters
from a normalised and cropped image of a human. The cropped human image
is obtained by detecting human bounding boxes using Detectron2 [49].

Human Centre Pose Prediction We also use the network in [28] to generate
measurements of the 6D transformation between the camera and human centre
frames. In addition to the SMPL parameters, the HMR network also predicts a
weak perspective camera model. As detailed in [17], after rectifying and removing
focal distortion from the images of a calibrated camera, we can use the weak
perspective camera parameters and the rotation between the camera centre and
the centre of the detected bounding box to derive the transformation T̃CH .
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3.5 Human Motion Model

Formulation For the motion model, we use a deep neural network. Its design
follows the architecture from Martinez et al. [34], but instead of a recurrent unit
used for the temporal encoding, we use a sequential backbone only consisting
of a multi-layer perceptron. The motion model uses the past n body posture
estimates Θ = [θk-n, . . . ,θk-1] and the (constant) body shape β as inputs, to

predict the current body posture, θpred
k , and relative human centre translation,

Hk-1
rpredHkHk-1

. This prediction is used as a motion measurement in the optimisation
problem discussed in Section 3.6. The model is trained using the loss:

L = cp + λcθ, (1)

where cp = ∥Hk-1
rtrueHk-1Hk

− Hk-1
rpredHk-1Hk

∥2 is the error on the predicted relative

position, and cθ = ∥θtrue
k −θpred

k ∥2 is the error on the human body posture. The
global orientation change of the human centre frame is predicted as part of the
24 body joint angles. The relative weighting between the two error terms λ is set
to 1/24, weighting the position error as much as each rotation in the kinematic
tree. Since the input and output values of the network were normalised with the
respective means and standard deviations of the dataset, the loss values quickly
converge. No robust cost function was used for the optimisation loss.

Architecture For the human posture and shape encoder, we use a 3-layer linear
encoder, with an input layer of size (n× 3× 24) + 10 for the n previous human
body posture and shape estimates, and two fully connected layers of size 1024.
We use 2 separate decoders for the human position change and human body
posture, each with two fully connected layers, and a final layer of size 3 and 72,
respectively. The human posture decoder has an additional residual connection
to the most recent posture θk = θk-1 + θpred.

Training Procedure The human motion model is trained on a subset of the
AMASS dataset [33], only considering sequences with walking, running, or jog-
ging motions. Since we predict the pose change between two consecutive camera
frames, we processed the data of the AMASS dataset to match the most common
camera frame rate of 30 FPS. The network uses a fixed number of input frames
for its prediction. To avoid overlapping sequences, we processed the dataset into
chunks containing the required number of input frames and a target frame. We
experimented with different sequence lengths of n = {2, 4, 8, 16}, but did not
notice a drastic change in performance with longer sequences, and so trained the
model with n = 2. This left us with more than 340,000 sequences, from which
we reserved 20% for validation. We trained the network until convergence (100
epochs), with a batch size of 4096 on a single Nvidia GeForce GTX1080Ti GPU.
We used the Adam optimiser [25] with a learning rate of 1× 10−3.
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3.6 Factor Graph Formulation

Overview During bundle adjustment, we jointly optimise camera poses, xcam =
[W r′WCk

,WαWCk
], human centre poses, xhuman = [W rWHk

,WαWHk
], body

shape, β, postures, θk, and L static landmarks, W ll with l ∈ 1, . . . , L. For faster
convergence, we over-parameterise the camera position as W rWCk

= s W r′WCk
,

where the scale s is estimated along with the (scaled) position vector r′WCk
. Thus

we estimate x = [s,β, xcam
1 , xhuman

1 ,θ1, . . . , xcamK , xhuman
K ,θK ,W l1, . . . ,W lL].

Fig. 3 shows the respective factor graphs for three different SLAM formula-
tions. The variables to be estimated are drawn as circles and the measurements
are drawn as boxes. The measurements include 3D landmarks, OpenPose key-
point measurements and relative motion factors. The leftmost factor graph de-
scribes the traditional monocular SLAM problem without temporal constraints
between the camera poses. The middle factor graph shows the näıve formulation,
where human reprojection error terms are included in blue, but there are still no
temporal constraints. The rightmost factor graph includes measurements from
our learned motion model, creating temporal constraints between the estimated
camera and human centre poses, rendering scale observable. Through our exper-
imental results, we will demonstrate that using the rightmost factor graph leads
to the most accurate estimates of both human body parameters and camera
poses. Therefore, the total cost function optimised by BodySLAM is given by:

c(x) = λlm
K∑

k=1

L∑
l=1

elmk,l
T

elmk,l +
K∑

k=1

J∑
j=1

λjoints
k,j ejointsk,j

T
ejointsk,j + λmm

K∑
k=2

emm
k

Temm
k

+ λposture
K∑

k=1

eposturek

T
eposturek + λshape

K∑
k=1

eshapek

T
eshapek ,

where elmk,l, ejointsk,j , emm
k , eposturek , and eshape are the error terms for the struc-

tural landmarks, human joint landmarks, human motion, body posture, and
body shape, respectively. Each of these error terms is discussed in detail be-
low. The structural landmarks are weighted by λlm = 64/b2, where b is the size
of the BRISK keypoint (b = 2.25px in our implementation). The human joint

landmarks are weighted by λjoints
k,j = σ−2

k,j , where σk,j is confidence predicted by

OpenPose. Finally, in our implementation, we use λmm = 100, λposture = 1, and
λshape = 1, the values of which were determined experimentally.

Reprojection Error for Structural Landmarks For the structural land-
marks, W ll, we use the standard reprojection error term (as described in [30]):

elmk,l = z̃k,l − u(T−1
WCk W ll), (2)

where u(·) denotes the camera projection model and z̃k,l is the 2D keypoint mea-
surement of the static landmark W ll in frame k. The measurements are BRISK
keypoints filtered for outliers by 3D-2D RANSAC. To handle any remaining
outliers, we use the robust Cauchy loss function on the error term.
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Fig. 3: Baseline and proposed Factor Graphs of the visual SLAM problem. Without
human bodies, the monocular SLAM Factor Graph has no relation between successive
camera poses (left). A naive formulation of SLAM problem with human 2D keypoint
measurements as dynamic keypoints fails to create a relation between successive frames
(middle). Our proposed BodySLAM formulation adds a motion model that predicts
human centre pose and posture, and creates a temporal constraint for camera and
human center poses (right). Additionally, we overparameterise the camera pose with
an additional scale factor s, to achieve faster convergence of our Bundle Adjustment.

Reprojection Error for Human Joint Landmarks As done in [8,28], we use
OpenPose keypoints and their corresponding confidence values as measurements
in the joint reprojection error term, employing the same standard reprojection
error term as for the structural keypoints:

ejointsk,j = z̃k,j − u(T−1
WCk

TWHk Hlj,k(θk,β)), (3)

where z̃k,j denotes the OpenPose keypoint measurement, and Blj,k(θk,β) de-
notes the SMPL joint j in frame k expressed as homogeneous points in the
human centered frame F−→H as a function of the posture θk and shape β. To
increase robustness in particular with (self-)occluded joints and noisy keypoint
detections, we use the Geman-McLure robust cost function in line with [8].

Note that the SMPL parameters {θ,β} can be directly initialised from the
predictions as explained in Section 3.4. In turn, the human poses can be ini-
tialised as TWHk

= TWCk
T̃CkHk

.

Human Motion Error Our motion model is used to predict the expected
human translation in the next camera frame Hk-1

r̃Hk-1Hk
:= Hk-1

rpredHk-1Hk
. This

prediction is used in the human motion error term:

emm
k = Hk-1

r̃Hk-1Hk
− CT

WHk-1

(
W rWHk

− W rWHk-1

)
, (4)

where CWHk-1
denotes orientation of the human pose. One can notice the simi-

larity of the human motion error term to the position error term in Eq. (1) used
during the training of the human motion model.

Human Body Posture Error Our motion model predicts the expected human
body posture in the current frame, θ̃k. The posture error is formulated as:

eposturek = θ̃k − θk. (5)
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Human Shape Error In each frame, we use an HMR network to predict the
SMPL parameters {β̃k, θ̃k}. As β should be constant over the image sequence,
we constrain this to be a constant using the body shape error term:

eshapek = β̃k − β. (6)

Optimisation Procedure and Implementation Details To initialise the
full BodySLAM optimisation, we perform a straightforward implementation of
bundle adjustment using the BRISK keypoints, RANSAC-based pose initialisa-
tion and optimisation using the Google Ceres optimiser [1] to obtain estimates
for the camera poses and landmark locations up to an arbitrary scale. After this
initialisation, we use a first-order nonlinear least squares optimisation in Py-
Torch [37] for bundle adjustment. However, to increase convergence speed and
performance, one could easily implement a second-order optimisation.

Since the first-order optimisation is prone to converge at local minima, we
use a two-step optimisation schedule often used in human mesh optimisation
[4,8,28]. First, we optimise only the relative transformations between the cameras
and the human body centres, the transformations between the cameras and the
world frame, and the static landmarks, while keeping all other variables constant.
The purpose of this optimisation step is to roughly estimate the scale of the
given scene, and the camera and human centre trajectories. We optimise until
convergence, finding approximately 200 iterations to be sufficient. In a second
step, we optimise all variables for another 100 iterations after which we always
reached convergence in our experiments.

4 Experimental Results

To evaluate BodySLAM, we collected a dataset of 10 video sequences of human
motion captured by a moving monocular camera. A motion capture system was
used to collect ground truth camera trajectories and human body parameters.
This dataset is described in more detail in Section 4.1.

For evaluation, we consider the standard metric of average trajectory error for
the camera trajectory (C-ATE), the human centre trajectory (H-ATE), and the
human joint trajectories (J-ATE). Furthermore, we align the estimated camera
trajectories in Sim(3), and interpret the aligned scale sSim(3) as scale error. With
a perfect scale estimation, this estimated scale would be 1.0.

As one of the main contributions of BodySLAM is its ability to estimate
metric scale from a monocular image sequence, we first evaluate how well it can
recover the scale of a scene when it is given the scale-perturbed ground truth
camera trajectory. The results of this preliminary study are provided in Section
4.2. In Section 4.3, we evaluate the ability of the full BodySLAM system to
estimate the camera poses, human body centre poses, and human joint positions
for all sequences in our dataset. Finally, in Section 4.4, we perform an ablation
study on our motion model, showing that our model is able to provide meaningful
estimates of human motion and improves estimates of the trajectories.
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4.1 Custom Human Pose Estimation Dataset

Current real-world evaluation datasets are lacking at least one of the follow-
ing properties: a moving camera, known camera intrinsics, ground truth camera
motion, a moving human subject, or ground truth human body parameters. An
extensive but incomplete list of these can be found in Table 1 in the Appendix.
Due to these limitations, we perform the evaluation on our own custom dataset
that captures the ground truth camera poses of a moving camera with known
intrinsics, along with human centre poses and posture parameters for moving
humans. Ground truth values were obtained using a Vicon motion capture sys-
tem. The dataset consists of 10 separate sequences, each between 600 to 1000
frames, totalling 8174 images. The dataset is split into easy, medium, and hard
sequences, categorised by the speed and complexity of the camera motion.

4.2 Study of Scale Recovery Through Motion Factors

To evaluate the ability of BodySLAM to recover metric scale, we perform an ab-
lation study where structural landmark measurements are ignored and where we
initialise the camera trajectory with the Vicon ground truth poses after scaling
the camera positions with an arbitrary perturbation factor between 0.1 and 5.0.
We then freeze the Sim(3) transformations of the camera poses in the graph,
only allowing the scale of the camera trajectory, s, to be optimised along with
the human body parameters. As shown in Fig. 4, after initial perturbation by
1/s′, we are able to reduce the H-ATE to approximately the value it had been
before perturbation. Furthermore, we show that the scale is correctly estimated
with a maximum error of 26.5% for the most extreme perturbation factor of 5.0
(as found in Table 3 in the Appendix). For smaller initial perturbations, the
estimated scale deviates by only roughly 5% from the true scale.

4.3 BodySLAM: Optimisation of Camera Poses and Human States

In Table 1, we present the main results for our full BodySLAM system. As a base-
line for comparison, we apply classic monocular bundle adjustment with näıve
human motion tracking (i.e. only considering the unary OpenPose measurements
and no motion model). This baseline, represented by the the middle factor graph
in Fig. 3, also does not use the scale overparameterisation of BodySLAM.

Our results show that both the C-ATE and the H-ATE, after SE(3) align-
ment, are significantly lower than the baseline method. The average improvement
through the introduction of the motion model is 48.3% for the root trajectory,
and 35.6% for all joints combined.

Furthermore, we show that the motion model factor is able to accurately re-
cover the scale, with scale estimation errors in the range of 0.93 to 1.03, compared
to errors between 0.35 to 0.74 for the baseline, as shown in Table 1. However,
one must note that the values of the scale error are completely arbitrary, since
they depend only on the random initialisation of the camera poses. The C-ATE
with SE(3) alignment for BodySLAM shows a huge improvement compared to
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Table 1: Comparison of absolute trajectory errors: camera (C-ATE), human (H-ATE),
and joints (J-ATE) plus camera trajectory scale on test sequences for the baseline
without motion model factor (“no MM”) and the full BodySLAM (ours). Position errors
are computed after SE(3) alignment to account for the difference in the Vicon global
frame and visual world frame F−→W . We also aligned the scale-unaware baseline using
Sim(3), which reveals that our method still outperforms it regarding human centre
position and joint locations, and performs on-par regarding camera pose accuracy. Note,
however, that in the wild Sim(3) alignment is not possible, since it requires access
to the ground truth camera trajectory – illustrating the usefulness of our method.

C-ATE [mm] H-ATE [mm] J-ATE [mm]
Scale Error

SE(3) Sim(3) SE(3) Sim(3) SE(3) Sim(3)

Seq. no MM (ours) no MM (ours) no MM (ours) no MM (ours) no MM (ours) no MM (ours) no MM (ours)

E 1 108.1 44.3 42.4 43.5 114.0 56.3 106.5 56.0 154.8 118.8 149.8 115.9 0.671 0.940
E 2 193.0 50.8 50.7 49.1 178.6 55.0 182.8 53.0 210.9 124.2 214.6 120.5 0.581 1.030
E 3 122.3 40.9 40.8 38.9 220.8 160.9 217.1 160.4 247.7 196.1 244.3 192.8 0.738 0.981
M 1 314.7 92.6 93.3 91.0 326.9 201.4 314.6 200.0 368.8 236.2 355.3 236.2 0.502 0.978
M 2 241.6 64.0 57.9 61.1 368.1 295.4 353.5 297.1 408.6 323.3 392.0 325.4 0.507 0.936
M 3 392.1 128.3 128 128.1 311.2 121.7 305.9 122.2 335.5 170.2 326.4 171.9 0.354 0.985
M 4 203.1 92.4 91.3 90.9 153.7 70.4 142.8 71.7 184.2 123.0 175.0 125.3 0.635 0.951
D 1 310.4 108.1 107 103.5 303.7 136.7 293.9 135.9 330.6 180.6 321.1 181.1 0.445 0.951
D 2 316.0 100.0 98.9 95.2 297.6 91.2 283.5 90.6 320.6 142.6 306.8 143.8 0.430 0.933
D 3 246.9 115.3 113 114.0 235.4 149.9 228.8 149.5 264.5 183.9 258.0 185.0 0.494 0.942

the baseline results. This improvement is attributed to the correctly estimated
scale, as the results after Sim(3) alignment clearly show. After Sim(3) align-
ment, the C-ATEs differ only by a few millimeters, which can be caused by
small convergence differences during the first order optimisation.

We performed an additional experiment, ablating the necessity of the struc-
tural landmarks in the joint optimisation. For this, we performed an optimisation
of the camera poses and human states, with and without structural landmarks to
constrain the camera poses. The initial camera poses were randomly perturbed
(±100 mm, ±0.01 rad) and optimised until convergence. The optimisation re-
duced the mean camera position error from 228.96 mm after perturbation to
155.5 mm with landmarks, and 158.6 mm without landmarks (1.94% error in-
crease), highlighting BodySLAM’s versatility. The complete results are found in
Table 2 in the Appendix.

4.4 Motion Model Prediction Performance

To evaluate the contribution of our motion model, we analyse the performance
of the model on the test split of our preprocessed AMASS dataset.

The mean translation prediction error is 3.4mm for a mean per-frame position
change of 18.4mm. The distribution of the error vector components is shown in
Figure 5. Please note that in the SMPL body model, the human body coordinate
frame F−→H is aligned to the sagittal axis (forward) in the z-direction, and the
longitudinal axis (upward) in y-direction. Despite a relatively large standard
deviation, our prediction errors are centered around zero, and, as previous results
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have shown, can significantly improve the estimation of the scale and the human
centre and joint trajectories when included in the graph optimisation.

Fig. 4: Average Human Trajectory Er-
ror, SE(3) aligned. Without Motion
Model, the scale is not recovered.

Fig. 5: Human motion prediction error
histogram in x, y, and z direction.

5 Conclusions and Future Work

We have presented BodySLAM, a novel monocular SLAM system that jointly
optimises a set of 6D camera poses, 3D landmarks, human body centre poses,
and human body shape and posture parameters in a factor graph formulation.
To the best of our knowledge, this is the first system to jointly estimate for
the configuration of a dense human body mesh model and the trajectory of a
moving monocular camera. We have also introduced a human motion model to
constrain sequential body postures and to help observe scale. To validate our
contribution, we have collected a series of video sequences of human motion
captured by a moving monocular camera, with ground truth camera trajectories
and human body parameters from a motion capture system. Through a number
of experiments, we have demonstrated that our joint formulation consistently
results in improvements to both camera tracking and human body estimation.

In future work, we plan to extend the BodySLAM method into an incremen-
tal and real-time SLAM system. We would also like to explore more complex
architectures for the human motion model and evaluate whether or not any
gains in accuracy offset the increased complexity of the factor graph formulation
that these architectures would require. Finally, one limitation of our method is
that it assumes the intrinsic parameters of the camera are given, which may not
always be the case. Some very recent work [27] has demonstrated the ability to
estimate the parameters of a perspective camera from a single image. Adding
the camera parameters to our factor graph formulation and initialising with this
method may allow us to apply BodySLAM to true “in the wild” datasets.
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