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A Implementation details

For FusionMNIST and FusionT-LESS, we model the decoder’s output by pixel-
wise independent Bernoulli distributions. For FusionCelebA, we use pixel-wise
independent discretized logistic mixture distributions as proposed by Salimans et
al. [73].

The residual cells of the encoder are composed of batch normalization layers
[69], Swish activation functions [72], convolutional layers, and Squeeze-and-
Excitation (SE) blocks [68] as proposed in [74]. In the decoder, we also follow [74]
and build the residual cells out of batch normalization layers, 1x1 convolutions,
Swish activations, depthwise separable convolutions [67], and SE blocks. However,
we omitted normalizing flow because in our experiments it showed to increase
the training time without improving the prediction accuracy significantly.

For each dataset, we chose the size of the architecture individually to achieve
acceptable accuracy while keeping the training time reasonable. Tab. 6 provides
details about the used hyperparameters.

Hyperparameter FusionMNIST FusionCelebA FusionT-LESS

# latent groups per scale 5, 2 10, 5, 2 10, 5, 2
spatial dimensions of zl per scale 42, 82 82, 162, 322 82, 162, 322

# channels in zl 10 20 20
# GPUs 2 4 2
# training epochs 400 90 500
batch size 800 32 32
Training time 4h 48h 28h

Table 6: Main hyperparameters of our experiments.

In general, the number of latent groups L should be chosen depending on
the complexity of the task at hand. We made our decision based on the L of

https://orcid.org/0000-0002-8910-3852
https://orcid.org/0000-0001-9646-267X
https://orcid.org/0000-0003-2042-3660
https://orcid.org/0000-0002-5483-4225


2 F. Duffhauss et al.

the NVAE [74] but reduced it for computational reasons. For FusionCelebA and
FusionT-LESS, we use 17 latent groups, for FusionMNIST only seven. Using
more latent groups improves the results but increases the computational effort
significantly.

For all experiments, we used GPUs of type NVIDIA Tesla V100 with 32GB
of memory and trained with an AdaMax optimizer [70]. We applied a cosine
annealing schedule for the learning rate [71] starting at 0.01 and ending at 0.0001.

B Derivation of Bayesian Aggregation

We use two related encoders to learn a latent observation µi = encµ(xi,y) with
its corresponding variance values σi = encσ(xi,y).

Assuming a factorized Gaussian prior distribution in the latent space p(z) =
N (z|µz,0,diag(σz,0)), we can derive the factorized posterior distribution qϕ(z|y) =
N (z|µz,diag(σz)) in closed form using standard Gaussian conditioning [66] fol-
lowing [75]

σ2
z =

[
(σ2

z,0)
⊖ + (σ2

i )
⊖]⊖ , (9)

µz = µz,0 + σ2
z,0 ⊙ (µi − µz,0)⊘ σ2

i (10)

where ⊖ denotes element-wise inversion, ⊙ denotes element-wise multiplication,
and ⊘ denotes element-wise division.

C Derivation of FusionVAE’s ELBO

We start with the following KL divergence between the approximate posterior
and the real posterior,

KL(qθ(z|y)||pθ(z|x,y)) ≥ 0. (11)

Next, we apply the Bayes’s theorem to obtain

−
∫

qθ(z|y) log
p(y|x, z)p(z|x)
p(y|x)qθ(z|y)

dz ≥ 0. (12)

This leads to

−Eqθ(z|y)[log p(y|x, z)]−KL(qθ(z|y)||p(z|x))

+

∫
qθ(z|y) log p(y|x)dz ≥ 0.

(13)

The term log p(y|x) can be moved out from the third integral component, and
leaves the integral becoming 1. Finally, we obtain the ELBO of the conditional
log-likelihood

log p(y|x) ≥ Eqθ(z|y)[log p(y|x, z)] + KL(qθ(z|y)||p(z|x)). (14)



FusionVAE: A Deep Hierarchical Variational Autoencoder 3

D Ablation Studies

This is a supplement for the aggregation ablation study in Sec. 6.3. In Tab. 5, we
saw that the average NLL of all experiments using mean and max aggregation
methods are similar. Fig. 6 shows the corresponding qualitative results. However,
even though the NLL is very similar, the results of the aggregation of all features
(MaxAggAll and MeanAggAll) are much more blurry than the results of the
aggregation with addition (MaxAggAdd and MeanAggAdd). This is in conformity
with the MSEmin results. It indicates that the NLL alone is not always the best
metric to assess the visual closeness to real faces. When carefully examining
the images of the addition aggregations, you could argue that the predictions
with zero input images look slightly more realistic for max aggregation while for
three input images, mean aggregation seems to be marginally better. This again
confirms the validity of the MSEmin results even though the NLL results are also
in accordance for this comparison.

Input Target MaxAggAdd MeanAggAdd MaxAggAll MeanAggAll

Fig. 6: Prediction results of the different aggregation methods on FusionCelebA
for zero to three input images.
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E Statistic Significance of the Results

All experiments for this publications were carefully designed and optimized so that
the training procedures are stable and lead to reproducible results. However, the
data processing pipelines introduce randomness which lead to non-deterministic
training outcomes due to multi-GPU training. We therefore ran every experiment
three times and reported the results of the best training in Sec. 6. In Tabs. 7
to 12 we provide the means and variances of the three training runs.

0 1 2 3 avg

CVAE 17.67± 0.10 15.11± 0.07 14.19± 0.08 13.71± 0.07 15.27± 0.02
CVAE+S 18.45± 0.02 14.64± 0.06 13.22± 0.03 12.32± 0.02 14.81± 0.03
FusionVAE 15.91± 0.03 14.13± 0.07 13.64± 0.09 13.41± 0.10 14.34± 0.07

Table 7: Mean and standard deviation of the FusionMNIST NLL results in 10−2

BPD. The best results are printed in bold.

0 1 2 3 avg

FCN 10.84± 0.37 5.96± 0.11 6.02± 0.18 6.13± 0.25 7.38± 0.11
FCN+S 6.21± 0.65 3.79± 0.04 2.64± 0.07 1.88± 0.08 3.73± 0.22
CVAE 3.87± 0.03 1.76± 0.03 1.09± 0.03 0.83± 0.02 1.97± 0.03
CVAE+S 3.53± 0.06 1.77± 0.01 1.23± 0.04 1.02± 0.04 1.96± 0.01
FusionVAE 3.14± 0.01 1.04± 0.06 0.77± 0.04 0.67± 0.03 1.47± 0.03

Table 8: Mean and standard deviation of the FusionMNIST MSEmin results in
10−2. The best results are printed in bold.

0 1 2 3 avg

CVAE 456.9± 9.42 289.1± 6.53 278.9± 4.51 270.3± 3.66 324.0± 5.17
CVAE+S 487.4± 27.45 355.4± 60.39 280.7± 35.12 230.9± 22.59 338.8± 22.99
FusionVAE 251.0± 2.06 222.3± 3.71 226.8± 3.16 224.0± 3.36 231.0± 2.05

Table 9: Mean and standard deviation of the FusionCelebA NLL results in 10−2

BPD. The best results are printed in bold.
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0 1 2 3 avg

FCN 13.07± 0.87 20.00± 3.77 17.87± 3.42 15.56± 3.08 16.62± 2.48
FCN+S 11.94± 0.52 18.58± 7.02 14.90± 6.59 11.19± 5.39 14.15± 4.65
CVAE 8.70± 0.42 6.25± 2.16 4.33± 1.77 3.02± 1.37 5.58± 1.21
CVAE+S 9.87± 1.10 9.60± 3.34 7.30± 3.07 5.57± 2.64 8.09± 2.19
FusionVAE 5.82± 0.52 1.10± 0.16 0.93± 0.06 0.84± 0.03 2.18± 0.17

Table 10: Mean and standard deviation of the FusionCelebA MSEmin results in
10−2. The best results are printed in bold.

0 1 2 3 avg

CVAE 25.27± 0.04 24.00± 0.25 22.98± 0.24 23.34± 0.19 23.90± 0.17
CVAE+S 26.12± 0.23 25.29± 0.27 24.27± 0.25 24.15± 0.20 24.97± 0.16
FusionVAE 24.32± 0.10 23.09± 0.02 22.25± 0.02 22.90± 0.02 23.15± 0.04

Table 11: Mean and standard deviation of the FusionT-LESS NLL results in 10−2

BPD. The best results are printed in bold.

0 1 2 3 avg

FCN 5.88± 0.04 3.32± 0.10 2.50± 0.09 1.96± 0.10 3.43± 0.06
FCN+S 8.83± 1.05 1.95± 0.14 1.28± 0.15 0.86± 0.14 3.26± 0.37
CVAE 5.49± 0.11 1.73± 0.22 0.95± 0.18 0.44± 0.07 2.18± 0.13
CVAE+S 4.87± 0.06 2.98± 0.29 2.06± 0.19 1.27± 0.09 2.81± 0.12
FusionVAE 4.15± 0.03 0.62± 0.03 0.33± 0.03 0.20± 0.02 1.34± 0.02

Table 12: Mean and standard deviation of the FusionT-LESS MSEmin results in
10−2. The best results are printed in bold.
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F Reconstruction

Figs. 7 to 9 visualize the reconstruction outputs for all our datasets and archi-
tectures. For these results, the target image is always given as input. The first
three rows of each figure show the reconstruction, when additionally three noisy
or occluded input images are fed into the network.

The images show that our FusionVAE reconstructs the target images almost
perfectly for all three datasets. On FusionMNIST, only the FCN does not manage
to reconstruct the target images but shows blurry versions of them. We also see
the same behavior for FusionCelebA and FusionT-LESS which underlines the
importance of skip connections for this type of network. On FusionCelebA, we see
that CVAE+S suffers from numeric instabilities causing colorful artifacts in some
images. Omitting the skip connections here avoids that issue. On FusionT-LESS,
all baseline methods create more or less blurry versions of the target image when
just the target image is given. When inputting the occluded images in addition
to the target image, the reconstruction is much better which shows that these
networks have over-fitted to the task of removing occluded objects so that they
cannot deal well with non-occluded images. In contrast, FusionVAE has the
ability to reconstruct non-occluded input images very well.

Input Target FusionVAE CVAE+S CVAE FCN+S FCN

Fig. 7: Reconstruction results of the different architectures on FusionMNIST.
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Input Target FusionVAE CVAE+S CVAE FCN+S FCN

Fig. 8: Reconstruction results on FusionCelebA.

Input Target FusionVAE CVAE+S CVAE FCN+S FCN

Fig. 9: Reconstruction results on FusionT-LESS.
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