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Abstract. We present a joint Structure-Stereo optimization model that
is robust for disparity estimation under low-light conditions. Eschewing
the traditional denoising approach – which we show to be ineffective
for stereo due to its artefacts and the questionable use of the PSNR
metric, we propose to instead rely on structures comprising of piecewise
constant regions and principal edges in the given image, as these are
the important regions for extracting disparity information. We also ju-
diciously retain the coarser textures for stereo matching, discarding the
finer textures as they are apt to be inextricably mixed with noise. This
selection process in the structure-texture decomposition step is aided by
the stereo matching constraint in our joint Structure-Stereo formulation.
The resulting optimization problem is complex but we are able to de-
compose it into sub-problems that admit relatively standard solutions.
Our experiments confirm that our joint model significantly outperforms
the baseline methods on both synthetic and real noise datasets.

Keywords: Stereo matching, Depth estimation, Low-light vision, Struc-
ture extraction, Joint optimization

1 Introduction

Disparity estimation from stereo plays an imperative role in 3D reconstruction,
which is useful for many real-world applications such as autonomous driving. In
the past decade, with the development of fast and accurate methods[1][2] and
especially with the advent of deep learning[3][4][5], there has been a significant
improvement in the field. Despite this development, binocular depth estimation
under low-light conditions still remains a relatively unexplored area. Presence
of severe image noise, multiple moving light sources, varying glow and glare,
unavailability of reliable low-light stereo datasets, are some of the numerous grim
challenges that possibly explain the slow progress in this field. However, given its
significance in autonomous driving, it becomes important to develop algorithms
that can perform robust stereo matching under these conditions. Given that the
challenges are manifold, we focus in this paper on the primary issue that plagues
stereo matching under low-light: that images inevitably suffer from low contrast,
loss of saturation, and substantial level of noise which is dense and often non-
Gaussian[6]. The low signal to noise ratio (SNR) under low-light is in a sense
unpreventable since the camera essentially acts like a gain-control amplifier.
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While the aforementioned problem may be alleviated somewhat by using
longer exposure time, this additionally causes other imperfections such as mo-
tion blur[7]. Multi-spectral imaging involving specialized hardware such as color-
infrared or color-monochrome camera pair[7] can be used, but their usability is
often restricted owing to high manufacturing and installation costs. Rather than
relying on modifying the image acquisition process, our research interest is more
that of coming to grips with the basic problems: how to recover adequate dispar-
ity information from a given pair of low-light stereo images under typical urban
conditions, and to discover the crucial recipes for success.

One obvious way to handle noise could be to use denoising to clean up
the images before stereo matching. However, denoising in itself either suffers
from ineffectiveness in the higher noise regimes (e.g., NLM[8], ROF[9]), or cre-
ates undesirable artefacts (e.g., BM3D[10]), both of which are detrimental for
stereo matching. Even some of the recent state-of-the-art deep learning solutions,
such as MLP[11], SSDA[12] and DnCNN[13], only show equal or marginally bet-
ter performances over BM3D[10] in terms of image Peak Signal to Noise Ratio
(PSNR). On the most basic level, these denoising algorithms are designed for a
single image and thus may not remove noise in a manner that is consistent across
the stereo pair, which is again detrimental for stereo matching. Another funda-
mental issue is raised by a recent paper “Dirty Pixels”[6] which demonstrated
empirically that PSNR might not be a suitable criteria for evaluation of image
quality if the aim is to perform high-level vision tasks such as classification, and
even low PSNR images (but optimized for the vision task ahead) can outperform
their high PSNR unoptimized counterparts. This debunks the general belief of a
linear relationship between improving the PSNR and improving the competency
of the associated vision task. We argue that the same phenomenon holds for the
task of stereo matching, for which case we offer the following reasoning: unlike
PSNR, in stereo matching, not all pixels are equal in terms of their impact aris-
ing from a denoising artefact. In image regions with near-uniform intensity, the
energy landscape of the objective function for stereo matching is very shallow;
any small artefacts caused by denoising algorithms in these regions can have a
disproportionally large influence on the stereo solution. On the other hand, in
textured regions, we can afford to discard some of the finer textures (thus losing
out in PSNR) but yet suffer no loss in disparity accuracy, provided there are
sufficient coarser textures in the same region to provide the necessary informa-
tion for filling in. This latter condition is often met in outdoor images due to the
well-known scale invariance properties of natural image statistics[14].

Our algorithm is founded upon the foregoing observations. Our first key idea
originates from how we humans perceive depth in low-light, which is mainly
through the principal scene structures such as object boundaries and coarser
textures. The main underlying physiological explanation for the preceding is the
increased spatiotemporal pooling of photoreceptor responses for increased sen-
sitivity, under which low-light vision becomes necessarily coarser and slower. It
means that for highly noisy images perturbed by randomly oriented elements,
only the principal contours (i.e. lower spatial frequency contours) become salient
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Fig. 1. (a) Sample low-light image from the Oxford dataset[15]. From the two patches
(boosted with [16]), we can observe that in low-light, fine textures are barely dis-
tinguishable from dense noise, and only coarser textures and object boundaries are
recoverable; (b) Denoising result from DnCNN[13] showing its ineffectiveness under
low-contrast dense noise; (c) Structures from our model showing recovery of sharp
object boundaries and coarse textures; (d) Image (a) with projected disparity ground
truth (for visualization); (e) Disparity result from ‘DnCNN[13] + MS[17]’, (f) Dispar-
ity result from our model. Our result is more accurate, robust and has lesser artefacts,
showing our model’s robustness for stereo matching under low-light conditions.

because their elements are coaligned with a smooth global trajectory, as de-
scribed by the Gestalt law of good continuation. In an analogous manner, we
postulate that since fine details in low-light are barely irrevocable from noise
(e.g., the fine textures on the building and road in the inset boxes of Fig.1a),
we should instead rely on structures consisting of piecewise constant regions
and principal edges (from both object boundaries and coarse textures) to obtain
scene depth (see the coarse textures extracted in the inset boxes of Fig.1c)1. For
this purpose, we adopt the nonlinear TV − L2 decomposition algorithm[9] to
perform both denoising and extraction of the principal structures2. This vari-
ational style of denoising ensures that (1) the near-uniform intensity regions
will remain flat, critical for disparity accuracy, and (2) those error-prone high-
frequency fine details will be suppressed, whereas the coarser textures, which

1 Most night-time outdoor and traffic lighting scenarios in a city are amidst such a
wash of artificial lights that our eyes never fully transition to scotopic vision. Instead,
they stay in the mesopic range, where both the cones and rods are active (mesopic
light levels range from ∼0.001-3 cd/m2). This range of luminance where some coarse
textures in the interiors of objects are still visible to the human eyes will occupy our
main interest, whereas extremely impoverished conditions such as a moonless scene
(where even coarse textures are not discernible) will be tangential to our enquiry.

2 Note that we purposely avoid calling the TV −L2 decomposition as structure-texture
decomposition, since for our application, the term “structure” is always understood
to contain the coarser textures (such as those in the inset boxes of Fig.1c).
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Fig. 2. Going column-wise: (i) Noisy ‘Teddy’[18] image with corresponding left-
right(red-green) patches (boosted with [16]); Denoised with (ii) BM3D[10] (inconsistent
artefacts across the patches); (iii) DnCNN[13] (inconsistent denoising), (iv) SS-PCA[19]
(inconsistent and ineffective denoising); (v) Structures from our model (consistent and
no artefacts); (vi) Disparity ground truth; Result from (vii) ‘BM3D[10]+MS[17]’, (viii)
‘DnCNN[13]+MS[17]’, (ix) SS-PCA[19], and (x) Our model. All the baseline methods
show high error in the patch area, while our method produces more accurate result in
there while keeping sharp edges in other parts. Also note that our structures have the
lowest PSNR, but still the highest disparity performance among all the methods.

are more consistently recoverable across the images, will be retained. These at-
tributes contribute significantly to the success of our disparity estimation (see
results obtained by ‘DnCNN[13]+MS[17]’, Fig.1e and our algorithm, Fig.1f).

Our second key idea is to jointly optimize the TV − L2 decomposition and
the disparity estimation task. The motivation is twofold. Firstly, a careful use of
TV −L2 decomposition as a denoising step[9] is required since any denoising al-
gorithm may not only remove the noise but also the useful texture information,
leading to a delicate tradeoff. Indeed, without additional information, patch-
based image denoising theory suggests that existing methods have practically
converged to the theoretical bound of the achievable PSNR performance[20].
An additional boost in performance can be expected if we are given an alter-
native view and the disparity between these two images, since this allows us to
take advantage of the self-similarity and redundancy of the adjacent frame. This
depends on us knowing the disparity between the two images, and such depen-
dency calls for a joint approach. In our joint formulation, the self-similarity con-
straint is captured by the well-known Brightness Constancy Constraint (BCC)
and Gradient Constancy Constraint (GCC) terms appearing as coupling terms
in the TV − L2 decomposition sub-problem. The second motivation is equally
important: by solving the TV −L2 decomposition problem concurrently with the
disparity estimation problem, we make sure that the denoising is done in a way
that is consistent across the stereo pair (see Fig.2), that is, it is optimized for
stereo disparity estimation rather than for some generic metric such as PSNR.

The joint formulation has significant computational ramifications. Our stereo
matching cost for a pixel is aggregated over a window for increased robustness.
This results in significant coupling of variables when we are solving the TV −L2
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decomposition sub-problem which means that the standard solutions for TV −L2

are no longer applicable. We provide an alternative formulation such that the
sub-problems still admit fairly standard solutions. We conduct experiments on
our joint model to test our theories. We show that our model with its stereo-
optimized structures, while yielding low PSNR, is still able to considerably sur-
pass the baseline methods on both synthetic and real noise datasets. We then
discuss some of the limitations of our algorithm, followed by a conclusion.

2 Related Work

As our paper is to specifically solve the problem of stereo matching under noisy
conditions, we skip providing a comprehensive review of general stereo match-
ing. Interested readers may refer to [21] and [22] for general stereo overview and
stereo with radiometric variations respectively. Similarly, our work is not specif-
ically concerned with denoising per se; readers may refer to [23] for a review
in image denoising, and to [24] for some modern development in video denois-
ing. Some works that target video denoising using stereo/flow correspondences
include [25][26][27], but they are either limited by their requirement of large
number of frames ([27]), or their dependency on pre-computed stereo/flow maps
([26]), which can be highly inaccurate for low SNR cases. [28] reviewed various
structure-texture image decomposition models3, and related them to denoising.

The problem of stereo matching under low-light is non-trivial and challenging.
Despite its significance, only a few works can be found in the literature to have
attempted this problem. To the best of our knowledge, there are only three
related works[29][30][19] we could find till date. All the three works propose a
joint framework of denoising and disparity, with some similarities and differences.
They all propose to improve NLM[8] based denoising by finding more number of
similar patches in the other image using disparity, and then improving disparity
from the new denoised results. [29], [30] use an Euclidean based similarity metric
which has been shown in [19] to be very ineffective in highly noisy conditions.
Hence, the two methods perform poorly after a certain level of noise. [19] handles
this problem by projecting the patches into a lower dimensional space using PCA,
and also uses the same projected patches for computing the stereo matching cost.

Our work is more closely related to [19] in terms of iterative joint optimiza-
tion, but with a few key differences. Firstly, we do not optimize PSNR to improve
the stereo quality, which, as we have argued, might not have a simple relationship
with PSNR. Secondly, we rely on the coarse scale textures and object boundaries
for guiding the stereo, and not on NLM based denoising which might be ineffec-
tive in high noise. Thirdly, underpinning our joint Stereo-Structure optimization
is a single global objective function that is mathematically consistent and physi-
cally well motivated, unlike the iterative denoising-disparity model proposed by
[19] which has multiple components processed in sequence.

3 Among these models, we choose TV − L2 based on the recommendations given in
[28](Pg.18), which advocates it when no a-priori knowledge of the texture/noise
pattern is given at hand, which is likely to be the case for real low-light scenes.
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3 Joint Structure-Stereo Model

Let In1, In2 ∈ R
h×w×c be respectively the two given rectified right-left noisy

stereo images each of resolution h×w with c channels. Let Is1, Is2 ∈ R
h×w×c be

the underlying structures to obtain, and D2 ∈ Z
h×w
≥0 be the disparity of the left

view (note that we use D2 = 0 to mark invalid/unknown disparity).
Our joint model integrates the two problems of structure extraction and

stereo estimation into a single unified framework and takes the energy form:

EALL(Is1, Is2, D2) = EStructureData(Is1, Is2) + λS · EStructureSmooth(Is1, Is2)

+ λSD · EStereoData(Is1, Is2, D2) + λSS · EStereoSmooth(D2) (1)

where λ× are parameters controlling strengths of the individual terms. We then
decompose the overall energy form Eq.(1) into two sub-problems and solve them
alternatingly until convergence:

EStructure(Is1, Is2, D
∗
2) = EStructureData(Is1, Is2) + λS · EStructureSmooth(Is1, Is2)

+ λSD · EStereoData(Is1, Is2, D
∗
2) (2)

EStereo(I
∗
s1, I

∗
s2, D2) = λSD · EStereoData(I

∗
s1, I

∗
s2, D2)

+ λSS · EStereoSmooth(D2) (3)

The superscript (*) represents that the variable is treated as a constant in the
given sub-problem. Let us next describe the two sub-problems in Eqs.(2)(3) in
detail, and then discuss their solutions and the joint optimization procedure.

3.1 Structure Sub-problem

The first two terms of EStructure in Eq.(2) represent the associated data and
smoothness costs for TV regularization, and are defined as

EStructureData(Is1, Is2) =
∑

p

(
(Is1(p)− In1(p))

2 + (Is2(p)− In2(p))
2
)

(4)

EStructureSmooth(Is1, Is2) =
∑

p

(
RTV(Is1(p)) +RTV(Is2(p))

)
(5)

where RTV(·) or Relative Total Variation introduced in [31] is a more robust
formulation of the TV penalty function

∣∣∇(·)
∣∣, and is defined as RTV(·) =

∑

q∈Np

gσ(p,q)·|∇(·)|

|
∑

q∈Np

gσ(p,q)·∇(·)|+ǫs
where Np is a small fixed-size window around p, gσ(p, q) is a

Gaussian weighing function parametrized by σ, and ǫs is a small value constant
to avoid numerical overflow. For noisy regions or fine textures, the denominator
term in RTV(·) summing up noisy random gradients generates small values
while the numerator summing up their absolute versions generates large values,
incurring a high smoothness penalty. For smooth regions or edges of both object
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boundaries and coarse textures, both the terms generate similar values incurring
smaller penalties. This leads to the robustness of the RTV(·) function.

The last term of EStructure stems from the stereo matching constraint that
provides additional information to the structure sub-problem and is defined as

EStereoData(Is1, Is2, D
∗
2) =

∑

p

(
α ·

∑

q∈Wp

(
Is2(q)− Is1

(
q −D∗

2(q)
))2

+
∑

q∈Wp

min
(∣∣∇Is2(q)−∇Is1(q −D∗

2(q))
∣∣ , θ
))

(6)

where the first term represents the BCC cost with a quadratic penalty function,
scaled by α and summed over a fixed-size window Wp, while the second term
represents the GCC cost with a truncated L1 penalty function (with an upper
threshold parameter θ), also aggregated over Wp.

3.2 Stereo Sub-problem

The first term of EStereo in Eq.(3) represents the stereo matching cost and is
essentially Eq.(6) just with a change of dependent (D2) and constant variables
(I∗s1, I

∗
s2). The second term represents the smoothness cost for disparity and is

defined as

EStereoSmooth(D2) =
∑

p

∑

q∈N4p

{
λSS1, if

[∣∣D2(p)−D2(q)
∣∣ = 1

]

λSS2, if
[∣∣D2(p)−D2(q)

∣∣ > 1
] (7)

where N4p represents the 4-neighbourhood of p, [·] is the Iverson bracket and
λSS2 ≥ λSS1 ≥ 0 represent the regularization parameters.

Our EStereo formulation is very similar to the classic definition of the Semi-
Global Matching (SGM) objective function[1] and also closely matches with the
definition proposed in SGM-Stereo[32]. However, we do not use the Hamming-
Census based BCC cost used in [32] mainly to avoid additional complexities in
optimizing the structure sub-problem.

4 Optimization

The overall energy EALL is a challenging optimization problem. We propose to
solve the problem by first decomposing it into two sub-problems EStructure and
EStereo as shown above, and then iteratively solve them using an alternating
minimization approach. The overall method is summarized in Algorithm1.4

We now derive the solution for Estructure. We again decompose Eq.(2) into
two sub-equations, one for each image. We have for Is2

EIs2(I
∗
s1, Is2) ≃ EStructureData(Is2) + λS · EStructureSmooth(Is2)

+ λSD · EStereoData(I
∗
s1, Is2, D

∗
2) (8)

4 Dinit is obtained using our own algorithm but with λSD = 0 (no stereo constraint).
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Algorithm 1 Optimize EALL

Initialize: Is1 = In1; Is2 = In2; D2 = Dinit

repeat
Solve the structure sub-problem:
Fix D∗

2 = D2, optimize Estructure w.r.t (Is1, Is2) using Algorithm2
Solve the stereo sub-problem:
Fix (I∗s1, I

∗

s2) = (Is1, Is2), optimize Estereo w.r.t D2 using SGM[1]
until converged
Post-Processing D2: Left-Right consistency[1] + Weighted Median Filtering[1]

and similarly, EIs1(Is1, I
∗
s2) for Is1. We can observe that the stereo constraint

now acts as a coupling term between the two sub-equations, thus bringing to bear
the redundancy from the adjacent frame and help extract more stereo-consistent
structures. Now, for solving Eq.(8), we first substitute for the individual terms,
write it as a combination of two parts f(·) and g(·) containing the convex and non-
convex parts respectively, and then solve it via the alternating direction method
of multipliers(ADMM). Specifically, EIs2(I

∗
s1, Is2) = f(Is2) + g(Is2), where

f(Is2) =
∑

p

(
(Is2(p)− In2(p))

2 + λS ·RTV(Is2(p))+

λSD · α ·
∑

q∈Wp

(
Is2(q)− I∗s1(q −D∗

2(q))
)2)

g(Is2) =
∑

p

(
λSD ·

∑

q∈Wp

min
(∣∣∇Is2(q)−∇I∗s1(q −D∗

2(q))
∣∣ , θ
))

(9)

where we use the approximated convex quadratic formulation of the RTV(·)

function from [31] to include it in f(·). Now, representing Ĩ∗s1 = WD∗

2
(I∗s1) where

WD∗

2
(·) represents our warping function parametrized by D∗

2 , and with some
algebraic manipulations of f(·), it can be defined in vector form ( #»· ) as

f(
#  »

Is2) = (
#  »

Is2 −
#   »

In2)
T (

#  »

Is2 −
#   »

In2) + λS ·
#  »

Is2
T
LIs2

#  »

Is2

+ λSD · α ·

(
(

#  »

Is2 −
#  »

Ĩ∗s1)
TΛ(

#  »

Is2 −
#  »

Ĩ∗s1)

)
(10)

where LIs2 and Λ are some matrix operators defined later. From Eq.(10), we can
see that f(·) is a simple quadratic function and is easy to optimize. Now, for g(·),
the complication is more severe because of the windowed operation combined
with a complicated penalty function, thereby coupling different columns of Is2
together, which means that the proximal solution for g(·) is no longer given by
iterative shrinkage and thresholding (or more exactly, its generalized version for
truncated L1 [33]). To resolve this, we swap the order of summations, obtaining

g(Is2) =

[+|Wp|/2,+|Wp|/2]∑

i=[−|Wp|/2,−|Wp|/2]

λSD

∑

p

min

(∣∣∣∇Si(Is2(p))−∇Si(Ĩ∗s1)
∣∣∣ , θ
)

(11)
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where Si(·) represents our shift function such that S[dx,dy](·) shifts the variable
by dx and dy in the x-axis and y-axis respectively. Next, if we represent ∇Si(·)

by a function say Ai(·), and −∇Si(Ĩ∗s1) by a variable say Bi, we can show that

min
Is2

EIs2(I
∗
s1, Is2) = min

Is2
f(Is2) +

∑

i

gs

(
Ai(Is2) +Bi

)

= min
Is2

f(Is2) +
∑

i

gs(Zi) s.t Zi = Ai(Is2) +Bi (12)

where gs(·) represents λSD ·
∑

p min(| · |, θ) penalty function, for which we have
a closed form solution[33]. Next, since ∇(·), Si(·) WD∗

2
(·) are all linear functions

representable by matrix operations, we can define Eq.(12) in vector form ( #»· ) as

min
#  »

Is2

f(
#  »

Is2) +
∑

i

gs(
# »

Zi) s.t
# »

Zi = Ai
#  »

Is2 +
# »

Bi (13)

where Ai and
# »

Bi are operators/variables independent of
#  »

Is2, also defined later.
We see that Eq.(8) reduces to a constrained minimization problem Eq.(13). The
new equation is similar to the ADMM variant discussed in (Sec 4.4.2, [34]) (of the

form f(
#  »

Is2) + gs(A
#  »

Is2)) except that our second term comprises of a summation

of multiple gs(
# »

Zi) over i rather than a single gs(
#»

Z), with dependency among

the various
# »

Zi caused by
# »

Zi = Ai
#  »

Is2 +
# »

Bi. Each of these “local variables”
# »

Zi

should be equal to the common global variable
#  »

Is2; this is an instance of Global
Variable Consensus Optimization (Sec 7.1.1, [35]). Hence, following [34][35], we
write Eq.(13) first in its Augmented Lagrangian form defined as

min
#  »

Is2,
# »

Zi,
# »

Ui

L(
#  »

Is2,
# »

Zi,
# »

Ui) = min
#  »

Is2,
# »

Zi,
#»

Yi

f(
#  »

Is2) +
∑

i

gs(
# »

Zi)

+ ρ ·
∑

i

# »

Ui
T (Ai

#  »

Is2 +
# »

Bi −
# »

Zi) +
ρ

2
·
∑

i

∥∥∥Ai
#  »

Is2 +
# »

Bi −
# »

Zi

∥∥∥
2

2
(14)

where
# »

Ui represent the scaled dual variables and ρ > 0 is the penalty parameter.
Now substituting for the individual terms and minimizing Eq.(14) over the three
variables, we can get the following update rules

#  »

Is2
k+1 :=

((
21+ 2λSLIs2 + λSDα(1−W2)

T (Λ+ ΛT )(1−W2)
)
+ ρ

∑

i

AT
i Ai

)−1

((
2

#   »

In2 + λSDα(1−W2)
T (Λ+ ΛT )W1

#  »

I∗s1
)
− ρ

∑

i

AT
i (

# »

Bi −
# »

Zi
k +

# »

Ui
k)

︸ ︷︷ ︸
consensus

)

# »

Zi
k+1 := prox 1

ρ
gs
(Ai

#  »

Is2
k+1 +

# »

Bi +
# »

Ui
k) (15)

# »

Ui
k+1 :=

# »

Ui
k +Ai

#  »

Is2
k+1 +

# »

Bi −
# »

Zi
k+1

The update rules have an intuitive meaning. The local variables
# »

Zi,
# »

Ui are up-
dated using the global variable

#  »

Is2, which then seeks consensus among all the
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Algorithm 2 Optimize EStructure

Obtain warping operators W1,W2 from D∗

2 using Eq.(17); let Gxy = Gx +Gy

repeat
Solve EIs2(I

∗

s1, Is2): Obtain LIs2 from Eq.(16)
1. For each i: compute Si, Ai = GxySi(1−W2), and

# »

Bi = −GxySiW1

#  »

Is1
∗

2. Solve for Is2 using the update rules in Eq.(15), and assign it to I∗s2
Solve EIs1(Is1, I

∗

s2): Obtain LIs1 from Eq.(16)
1. For each i: compute Si, Ai = −GxySiW1, and

# »

Bi = GxySi(1−W2)
#  »

Is2
∗

2. Solve for Is1 using the update rules in Eq.(18), and assign it to I∗s1
until converged

local variables until they have stopped changing. Now, let’s define the individual
terms. In Eq.(15), 1 is an identity matrix; LIs× = GT

xUxVxGx +GT
y UyVyGy is a

weight matrix[31] such that Gx, Gy are Toeplitz matrices containing the discrete
gradient operators, and U(·), V(·) are diagonal matrices given by

U(·)(q, q) =
∑

q∈Np

gσ(p, q)

|
∑

q∈Np

gσ(p, q) · ∂(·)I
k
s×(q)|+ ǫs

, V(·)(q, q) =
1

|∂(·)I
k
s×(q)|

(16)

W1,W2 are warping operators such that
#  »

Ĩ∗s1 = W1
#  »

I∗s1 +W2
#  »

Is2, and are given by

W1(p, q) =

{
1, if q = p− (h ·

#  »

D∗
2(p))

0, if
#  »

D∗
2(p) = 0

, W2(p, p) =

{
1, if

#  »

D∗
2(p) = 0

0, otherwise
(17)

Thus, W1 warps
#  »

I∗s1 towards
#  »

Is2 for all the points except where
#  »

D∗
2(p) = 0

(invalid/unknown disparity), where we simply use the diagonal W2 to fill-up

data from
#  »

Is2 and avoid using our stereo constraint. Then we have Λ =
∑
i

ST
i Si,

where Si represents our shift operator (analogous to the definition of Si(·) above)
defined as S[dx,dy](p, q) = 1, if q =

(
p− dy − (h · dx)

)
∀p /∈ V (dx, dy), and 0

otherwise; V (dx, dy) is a set containing border pixels present in the first or
last |dx|th column (1 ≤ |dx| ≤ w) and |dy|th row (1 ≤ |dy| ≤ h) depending
upon whether dx, dy > 0 or dx, dy < 0, Ai = (Gx + Gy)Si(1 − W2) and lastly
# »

Bi = −(Gx +Gy)SiW1
#  »

Is1
∗.

Now following a similar procedure for the other image Is1, we can derive the
following update rules

#  »

Is1
k+1 :=

((
21+ 2λSLIs1 + λSDα(−W1)

T (Λ+ ΛT )(−W1)
)
+ ρ

∑

i

AT
i Ai

)−1

((
2

#   »

In1 + λSDαWT
1 (Λ+ ΛT )(1−W2)

#  »

I∗s2
)
− ρ

∑

i

AT
i (

# »

Bi −
# »

Zi
k +

# »

Ui
k)
)

# »

Zi
k+1 := prox 1

ρ
gs
(Ai

#  »

Is1
k+1 +

# »

Bi +
# »

Ui
k) (18)

# »

Ui
k+1 :=

# »

Ui
k +Ai

#  »

Is1
k+1 +

# »

Bi −
# »

Zi
k+1
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with Ai = −(Gx + Gy)SiW1 and
# »

Bi = (Gx + Gy)Si(1 − W2)
#  »

Is2
∗. Finally, we

have the definition of prox 1

ρ
gs
(·) given by prox 1

ρ
gs
(v) =

{
x1, if h(x1) ≤ h(x2)

x2, otherwise

where x1 = sign(v)max
(
|(v|, θ)

)
, x2 = sign(v)min(max(|(v)| − (λSD/ρ), 0), θ),

and h(x) = 0.5(x − v)2 + (λSD/ρ)min(|x|, θ). This completes our solution for
EStructure, also summarized in Algorithm2. The detailed derivations for Eq.(10),
Eq.(11) and Eq.(15) are provided in the supplementary paper for reference.

5 Experiments

In this section, we evaluate our algorithm through a series of experiments. Since
there are not many competing algorithms, we begin with creating our own base-
line methods first. We select the two best performing denoising algorithms,
BM3D[10] and DnCNN[13] till date, to perform denoising as a pre-processing
step, and then use MeshStereo[17], a recent high performance stereo algorithm,
to generate the disparity maps. The codes are downloaded from the authors’ web-
sites. We refer to these two baseline methods as ‘BM3D+MS’ and ‘DnCNN+MS’
respectively. Our third baseline method is a recently proposed joint denoising-
disparity algorithm[19], which we refer to as ‘SS-PCA’. Due to unavailability of
the code, this method is based on our own implementation.

For our first experiment, we test our algorithm against the baseline methods
on the Middlebury(Ver3) dataset[18] corrupted with Gaussian noise at levels:
25, 50, 55 and 60, i.e. we consider one low and three high noise cases, the latter
resulting in low SNR similar to those encountered in night scenes. To ensure
a fair comparison, we select three images ‘Playroom’, ‘Recycle’ and ‘Teddy’,
from the dataset and tune the parameters of BM3D and SS-PCA to generate
the best possible PSNR results for every noise level, while for DnCNN, we pick
its blind model trained on a large range of noise levels. Furthermore, we keep
the same disparity post-processing steps for all the algorithms including ours to
ensure fairness. Our stereo evaluation metric is based on the percentage of bad
pixels, i.e. percentage (%) of pixels with disparity error above a fixed threshold δ.
For our algorithm, we set the parameters {λS , ǫs, λSD, α, θ, ρ, λSS , λSS1, λSS2}
= {650.25, 5, 1, 0.003, 15, 0.04, 1, 100, 1600}, |Wp| = 25(= 5×5), and use σ = 1.0,
2.0, 2.5 and 3.0 for the four noise levels respectively. The number of outermost
iteration is fixed to 5 while all the inner iterations follow (∆Ek+1

× /Ek
×) < 10−4

for convergence. Our evaluation results are summarized in Tables 1 & 2.
For our second experiment, we perform our evaluation on the real outdoor

Oxford RobotCar[15] dataset, specifically those clips in the ‘night’ category.
These clips contain a large amount of autonomous driving data collected under
typical urban and suburban lighting in the night, with a wide range of illumi-
nation variations. It comes with rectified stereo images and their corresponding
raw sparse depth ground truth. We create two sets of data, ‘Set1’ containing
10 poorly-lit images (such as in Fig.1a), and ‘Set2’ containing 20 well-lit images
(selection criteria is to maximize variance in the two sets in terms of scene con-
tent therefore no consecutive/repetitive frames; scenes with moving objects are
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Table 1. Image-wise evaluation on the Middlebury dataset with added Gaussian noise
at levels: [25, 50, 55, 60]. Error threshold δ =1px. Bold font indicates lowest error.

Image
BM3D+MS DnCNN+MS SS-PCA Ours

25 50 55 60 25 50 55 60 25 50 55 60 25 50 55 60
‘Adirondack’ 37.57 52.95 56.98 62.02 35.80 47.99 51.37 56.13 60.01 66.40 80.57 84.67 38.76 44.85 49.00 50.74

‘Jadeplant’ 66.17 79.52 76.84 80.42 68.49 77.43 76.45 78.90 64.42 75.78 78.30 81.75 72.29 78.92 77.76 80.40

‘Motorcycle’ 40.75 50.86 51.66 52.80 37.63 50.46 50.61 49.62 41.74 47.81 50.63 54.16 40.44 45.17 43.21 44.17

‘Pipes’ 41.35 58.08 60.47 63.07 37.07 47.62 53.28 53.20 39.52 50.73 56.97 61.31 45.82 54.48 55.90 60.56

‘Playroom’ 46.82 55.35 57.23 55.72 41.46 49.21 54.77 57.64 57.82 62.96 71.65 75.56 43.87 48.87 50.36 52.74

‘Recycle’ 48.65 61.28 62.91 63.43 44.20 57.72 60.52 60.22 51.64 64.45 66.04 69.20 50.42 57.72 57.38 54.83

‘Shelves’ 60.18 69.24 71.44 70.56 55.82 66.05 64.68 66.64 63.28 68.03 74.96 73.99 58.89 62.58 63.07 63.93

‘Teddy’ 30.15 49.20 52.78 58.79 27.01 44.05 50.39 49.46 32.65 44.14 52.89 52.75 31.39 40.86 45.07 45.71

Table 2. Overall evaluation on the Middlebury dataset with added Gaussian noise at
levels: [25, 50, 55, 60] for error threshold δ. Bold font indicates lowest error.

δ
BM3D+MS DnCNN+MS SS-PCA Ours

25 50 55 60 25 50 55 60 25 50 55 60 25 50 55 60
1px 46.45 59.55 61.29 63.35 43.43 55.06 57.76 58.97 51.39 60.04 66.48 69.17 47.74 54.19 55.22 56.59

3px 22.68 30.57 33.72 34.63 22.04 29.62 32.67 32.68 30.41 35.32 42.02 43.67 25.12 29.00 29.45 30.48

5px 16.22 22.01 24.17 25.07 16.82 21.53 24.36 23.94 23.14 26.07 31.48 32.93 18.21 20.94 20.60 21.81

also discarded due to unreliability of ground truth); together they span a range
of conditions such as varying exposure, sodium vs LED lightings, amount of tex-
tures, image saturation, and error sources such as specularities (specific details in
supplementary). We set the parameters {λS , λSD, λSS} = {50.25, 0.1, 0.1} while
keeping other parameters exactly the same as before for both the sets, and com-
pare our algorithm only against ‘DnCNN+MS’ since there are no corresponding
noise-free images available to tune the other baseline algorithms for maximiz-
ing their PSNR performance. Our evaluation results are summarized in Table 3
(‘Set2 (f.t)’ denotes evaluation with parameters further fine tuned on ‘Set2’).

From the experimental results, we can see that for all the highly noisy (or
low SNR) cases, our algorithm consistently outperforms the baseline methods
quite significantly with improvements as high as 5-10% in terms of bad pixels
percentage. Our joint formulation generates stereo-consistent structures (unlike
denoising, see Fig.2) which results in more accurate and robust stereo matching
under highly noisy conditions. The overall superiority of our method is also quite
conspicuous qualitatively (see Fig.3). We achieve a somewhat poorer recovery
for ‘Jadeplant’ and ‘Pipes’, the root problem being the sheer amount of spurious
corners in the scenes which is further aggravated by the loss of interior texture
in our method. For low noise levels, there is sufficient signal (with finer textures)
recovery by the baseline denoising algorithms, thus yielding better disparity so-
lutions than our structures which inevitably give away the fine details. Thus, our
algorithm really comes to the forth for the high noise (or low SNR) regimes. For
the real data, our algorithm again emerges as the clear winner (see Table 3 and
middle block of Fig.3). First and foremost, we should note that the parameters
used for ‘Set1’ and ‘Set2’ are based on those tuned on two sequences in ‘Set1’.
The fact these values are transferable to a different dataset (‘Set2’) with rather
different lighting conditions showed that the parameter setting works quite well
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Table 3. Comparison with the baseline methods on the Oxford RobotCar dataset.
Error threshold is specified by δ. Bold font indicates lowest error.

DnCNN+MS Ours

δ = 1px δ = 2px δ = 3px δ = 4px δ = 5px δ = 1px δ = 2px δ = 3px δ = 4px δ = 5px
Set1 63.86 41.66 30.96 24.40 19.66 58.76 33.75 23.03 16.99 12.31

Set2 58.96 28.82 16.71 10.73 7.35 57.76 28.80 16.10 10.29 6.82

Set2 (f.t) 58.96 28.82 16.71 10.73 7.35 56.45 26.43 14.54 9.20 6.08

under a wide range of lighting conditions (depicted in the middle block of Fig.3).
Qualitatively, the proficiency of our algorithm in picking up 3D structures in the
very dark areas, some even not perceivable to human eyes, is very pleasing (see
red boxes in the middle block of Fig.3, row 1: wall on the left, rows 2 and 3: tree
and fence). It is also generally able to delineate relatively crisp structures and
discern depth differences (e.g. the depth discontinuities between the two adjoin-
ing walls in row 4), in contrast to the patchwork quality of the disparity returned
by ‘DnCNN+MS’. Finally, our algorithm also seems to be rather robust against
various error sources such as glow from light sources, under-to-over exposures.
Clearly, there will be cases of extreme darkness and such paucity of information,
against which we cannot prevail (bottom block of Fig.3, top-right: a scene with
sole distant street lamp). Other cases of failures are also depicted in the bottom
block of this figure, namely, lens flare and high glare in the scene.

6 Discussion and Conclusion

We have showed that under mesopic viewing condition, despite the presence of
numerous challenges, disparity information can still be recovered with adequate
accuracy. We have also argued that for denoising, PSNR is not meaningful;
instead there should be a close coupling with the disparity estimation task to
yield stereo-consistent denoising. For this purpose, we have proposed a unified
energy objective that jointly removes noise and estimates disparity. With careful
design, we transform the complex objective function into a form that admits
fairly standard solutions. We have showed that our algorithm has substantially
better performance over both synthetic and real data, and is also stable under
a wide range of low-light conditions.

The above results were obtained based on the assumptions that effects of
glare/glow could be ignored. Whilst there has been some stereo works that deal
with radiometric variations (varying exposure and lighting conditions), the com-
pounding effect of glare/glow on low-light stereo matching has not been ade-
quately investigated. This shall form the basis of our future work.
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Fig. 3. Qualitative analysis of our algorithm against the baseline methods. For Mid-
dlebury (first two rows), we observe more accurate results with sharper boundaries (see
‘Recycle’ image, second row). For the Oxford dataset (middle four rows), our algorithm
generates superior results and is quite robust under varying illumination and exposure
conditions, and can even pick up barely visible objects like fence or trees (see areas
corresponding to red boxes in middle second and third row). Our algorithm also has
certain limitations in extremely dim light information-less conditions (see red boxes,
third last row) or in the presence of lens flare or high glow/glare in the scene (bottom
two rows), generating high errors in disparity estimation.
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