
CAR-Net: Clairvoyant Attentive Recurrent Network

Amir Sadeghian1, Ferdinand Legros1⋆, Maxime Voisin1⋆, Ricky Vesel2,

Alexandre Alahi3, Silvio Savarese1

1Stanford University, 2 Race Optimal,
3Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland

{amirabs,flegros,maxime.voisin,ssilvio}@stanford.edu;
vesel.rw@gmail.com; alexandre.alahi@epfl.ch

Abstract. We present an interpretable framework for path prediction that lever-

ages dependencies between agents’ behaviors and their spatial navigation envi-

ronment. We exploit two sources of information: the past motion trajectory of

the agent of interest and a wide top-view image of the navigation scene. We pro-

pose a Clairvoyant Attentive Recurrent Network (CAR-Net) that learns where to

look in a large image of the scene when solving the path prediction task. Our

method can attend to any area, or combination of areas, within the raw image

(e.g., road intersections) when predicting the trajectory of the agent. This allows

us to visualize fine-grained semantic elements of navigation scenes that influence

the prediction of trajectories. To study the impact of space on agents’ trajectories,

we build a new dataset made of top-view images of hundreds of scenes (Formula

One racing tracks) where agents’ behaviors are heavily influenced by known ar-

eas in the images (e.g., upcoming turns). CAR-Net successfully attends to these

salient regions. Additionally, CAR-Net reaches state-of-the-art accuracy on the

standard trajectory forecasting benchmark, Stanford Drone Dataset (SDD). Fi-

nally, we show CAR-Net’s ability to generalize to unseen scenes.

1 Introduction

Path prediction consists in predicting the future positions of agents (e.g., humans or ve-

hicles) within an environment. It applies to a wide range of domains from autonomous

driving vehicles [1] and social robot navigation [2–4], to abnormal behavior detection

in surveillance [5–10]. Observable cues relevant to path prediction can be grouped into

dynamic and static information. The former captures the previous motion of all agents

within the scene (past trajectories). The latter consists of the static scene surrounding

agents [11–13]. In this work, we want to leverage the static scene context to perform

path prediction. The task is formulated as follows: given the past trajectory of an agent

(x-y coordinates of past few seconds) and a large visual image of the environment (top-

view of the scene), we want to forecast the trajectory of the agent over the next few

seconds. Our model should learn where to look within a large visual input to enhance

its prediction performance (see Fig. 1).

Predicting agents’ trajectories while taking into account the static scene context is

a challenging problem. It requires understanding complex interactions between agents

and space, and encoding these interactions into the path prediction model. Moreover,

⋆ indicates equal contribution
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Fig. 1. CAR-Net is a deep attention-based model that combines two attention mechanisms for

path prediction.

scene-specific cues are often sparse and small within the visual input, e.g., a traffic sign

within the scene. Finally, these cues might be far from the agent of interest.

Recent research in computer vision has successfully addressed some of the chal-

lenges in path prediction. Kitani et al. [14] have demonstrated that the semantic seg-

mentation of the environment (e.g., location of sidewalks and grass areas) helps to pre-

dict pedestrian trajectories. Ballan et al. [15] modeled human-space interactions using

navigation maps that encode previously observed scene-specific motion patterns. These

methods rely on scene semantic information collected in advance. Instead, our method

relies on raw images, which are easier to obtain, and our method has the potential to in-

fer finer-grained scene semantics and functional properties of the environment. To this

end, Lee et al. [16] have used raw images to predict agents’ trajectories. However, their

method does not provide a way to understand what visual information within the scene

is “used” by the model to predict future trajectories.

We address the limitations of previous path prediction methods by proposing a vi-

sual attention model that leverages agent-space interactions and enhances prediction

accuracy. Inspired by the recent use of attention models and neural networks in image

captioning [17], machine translation [18], knowledge bases [19, 20], and object recog-

nition [21, 22], we introduce the first visual attention model that can predict the future

trajectory of an agent while attending to the salient regions of the scene. Our method

is able to attend to any region, or collection of regions, in the image. Attention based

models can be broadly categorized into single and multi-source attention models. Single

source attention models (e.g., DRAW [23, 21]) attend to features extracted from a single

area of the image, while multi-source attention models (e.g., soft attention from [17])

use a combination of features from all areas of the image. In this paper, we propose

CAR-Net, a deep neural network architecture which predicts future trajectories - hence

being Clairvoyant - by processing raw top-view images with a visual Attentive Recur-

rent component. Our attention model combines both single-source and multi-source

attention mechanisms. By leveraging both attention mechanisms, our prediction frame-

work makes use of a wider spectrum of agent-space dependencies. Moreover, CAR-Net

is simple to implement and train. Hence, it facilitates the use of trajectory prediction in

a wide range of other vision tasks such as object tracking [5], activity forecasting [24]

and action localization [25].

To study if our proposed architecture is able to learn observable agent-space corre-

lations, we build a new dataset where agents’ behaviors are largely influenced by known
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regions within a scene (e.g., a curve in the road). As opposed to other popular datasets

for trajectory prediction, the proposed dataset allows to understand the effect of the

environment on agents’ future trajectories. Because the dataset is composed of static

scenes, future trajectories are not affected by confounding factors such as the behavior

of other agents. This disentangles the contributions of scene semantic information and

of other agents’ interactions, in the task of path prediction. To build this new dataset,

we have collected more than two hundred real-world Formula One racing tracks and

computed the vehicles’ optimal paths given the tracks’ curvatures using equations in

[26]. In this context, the geometry of the road causes the vehicle to speed up or down,

and steer. Our attention mechanism succeeds at leveraging elements of the tracks, and

effectively predicts the optimal paths of vehicles on these tracks. As part of our contri-

butions, this new dataset for path prediction and learning agent-space correlations will

be released publicly. We further show that the accuracy of our method outperforms pre-

vious approaches on the Stanford Drone Dataset (SDD), a publicly available trajectory

forecasting benchmark where multiple classes of agents (e.g., humans, bicyclists, or

buses) navigate outdoor scenes. CAR-Net is an intuitive and simple model that achieves

state-of-the-art results for path prediction, while enabling the visualization of semantic

elements that influenced prediction thanks to attention mechanisms.

2 Related Work

Trajectory forecasting. Path prediction given the dynamic content of a scene has been

extensively studied with approaches such as Kalman filters [27], linear regressions [28],

or non-linear Gaussian Processes [29–31, 2]. Pioneering work from Helbing and Mol-

nar [32–34] presented a pedestrian motion model with attractive and repulsive forces

referred to as the Social Force model. All these prior works have difficulty in model-

ing complex interactions. Following the recent success of Recurrent Neural Networks

(RNN) for sequence prediction tasks, Alahi et al. [35, 36] proposed a model which

learns human movement from data to predict future trajectories. Recently, Robicquet et

al. [37, 38] proposed the concept of social sensitivity with a social force based model to

improve path forecasting. Such models suffice for scenarios with few agent-agent inter-

actions, but they do not consider agent-space interactions. In contrast, our method can

handle more complex environments where agents’ behaviors are severely influenced by

scene context (e.g., drivable road vs trees and grass).

Recent works have studied how to effectively leverage static scenes in the path pre-

diction task. Kitani et al. [14] used semantic knowledge of the scene to forecast plau-

sible paths for a pedestrian using inverse optimal control (IOC). Walker et al. [1] pre-

dicted the behavior of generic agents (e.g., vehicles) in a scene given a large collection

of videos, but in a limited number of scenarios. Ballan et al. [15] learned scene-specific

motion patterns and applied them to novel scenes with an image-based similarity func-

tion. Unfortunately, none of these methods can provide predictions using raw images of

scenes. Recently, Lee et al. [16] proposed a method for path prediction given the scene

context using raw images. However, all these methods have limited interpretability. Our

method is instead designed for this specific purpose: providing an intuition as to why

certain paths are predicted given the context of the scene.
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Fig. 2. Overview of CAR-Net architecture. Note that ”//” block is concatenation operation.

Visual Attention. Related work from Xu and Gregor [17, 23] introduces attention

based models that learn to attend the salient objects related to the task of interest. Xu et

al. [17], present soft and hard attention mechanisms that attend to the entire image. Soft

attention applies a mask of weights to the image’s feature maps. Since the associated

training operation is differentiable, it has been applied to a wide range of tasks. The

hard attention mechanism is not differentiable and it must be trained by Reinforcement

Learning. The non-differentiability of this method has led to scarce applications.

Other attention models apply dimensionality reduction to the image. Their goal is to

accumulate information over a sequence of partial glimpses of the image. The recurrent

attention model introduced in [21] attends to a sequence of crops of the image. It has

been used in many tasks such as digit classification and person identification [39, 23,

40]. Visual attention models have also been widely applied to many other applications

such as image classification [41], image captioning [17, 42], and video classification

[43]. Inspired by these works, we hereby use visual attention mechanisms in our model

to perform trajectory prediction.

3 CAR-Net

Scene context is necessary to predict the future behavior of agents. For instance, a cy-

clist approaching a roundabout changes his path to avoid collision. Such deviations in

trajectories cannot be predicted by only observing the agent’s past positions. This mo-

tivates us to build a model that can leverage observable scene context while predicting

an agent’s future path. We introduce CAR-Net, a deep attention-based model for path

prediction. It performs trajectory prediction using raw top-view images of scenes and

past trajectories of agents. CAR-Net is able to attend to the most relevant parts of the

input image. In this section we first describe the overall architecture of our model. Then,

we explain our visual attention module.

3.1 Overall Architecture

The objective of our model is to predict the future path of an agent given its past tra-

jectory and a top-view image of the scene. Our model uses a feature extractor to derive

feature vectors from the raw image (Fig. 2). Then, a visual attention module computes a

context vector ct representing the salient areas of the image to attend at time t. Finally,



CAR-Net: Clairvoyant Attentive Recurrent Network 5

in the recurrent module, a long short-term memory (LSTM) network [44] generates the

future position of the agent (xt+1, yt+1) at every time step, conditioned on the context

vector ct, on the previous hidden state ht, and on the previously generated position of

the agent (xt, yt). Our model is able to capture agent-space interactions by combining

both the scene context vector and the past trajectory of the agent.

3.2 Feature extractor module

We extract feature maps from static top-view images using a Convolutional Neural

Network (CNN). We use VGGnet-19 [45] pre-trained on ImageNet [46] and fine-tuned

on the task of scene segmentation as described in [47]. Fine-tuning VGG on scene

segmentation enables the CNN to extract image features that can identify obstacles,

roads, sidewalks, and other scene semantics that are essential for trajectory prediction.

We use the output of the 5th convolutional layer as image features. The CNN outputs

L = N × N feature vectors, A = {a1, ..., aL}, of dimension D, where N and D

are the size and the number of feature maps outputted by the 5th convolutional layer,

respectively. Each feature vector corresponds to a certain region of the image. Fig. 2

depicts the feature extractor module.

3.3 Visual attention module

Given a high-dimensional input image of a scene, we want our model to focus on

smaller, discriminative regions of this input image. Using a visual attention method,

the most relevant areas of the image are extracted while irrelevant parts are ignored.

The general attention process works as follows. A layer φ within the attention mecha-

nism takes as input the previous hidden state ht of the LSTM and outputs a vector φ(ht)
that is used by the attention mechanism to predict the important areas of the image. The

vector φ(ht) is then applied to feature vectors A (through a function fatt), resulting in

a context vector ct+1 that contains the salient image features at time step t+ 1:

ct+1 = fatt(A, φ(ht)). (1)

Our visual attention module can be substituted with any differentiable attention

mechanism. Moreover, it can use a combination of several attention methods. Provided

that fatt and φ are differentiable, the whole architecture is trainable by standard back-

propagation. We propose three variants for the differentiable attention module that are

easily trainable. The first method extracts visual information from multiple areas of the

image with a soft attention mechanism. The second method extracts local visual infor-

mation from a single cropped area of the image with an attention mechanism inspired

by [23]. We refer to the first and second methods as multi-source and single-source at-

tention mechanisms, respectively. Finally, the attention module of CAR-Net combines

both attention mechanisms, allowing our prediction framework to learn a wider spec-

trum of scene dependencies.
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Fig. 3. Our multi and single-source attention mechanism

CAR-Net attention. Learning agent-space interactions, and encoding them into the

path prediction model is a challenging task. The scene-specific cues are sometimes

sparse and spread throughout the entire image far away from the agent, or small within

a specific area of the image. Single and multi-source attention mechanisms attend re-

spectively to localized and scattered visual cues in the scene. When the relevant visual

cues are scattered all over the input image, a multi-source attention method can suc-

cessfully extract a combination of features from multiple key areas of the image. In

contrast, when the relevant visual information is localized in one particular area of the

image, single-source attention methods are a good fit to attend to that specific region.

Note that multi-source attention does not necessarily reduce to single-source attention

and they complement each other.

To leverage both local and scattered visual cues in path prediction, the core at-

tention module in CAR-Net combines the two context vectors obtained from single

and multi-source attention mechanisms. The combination is done by concatenating the

context vectors from single-source csst and multi-source cms
t attention mechanisms,

ct = [csst , cms
t ]. The attention module in Fig. 2 depicts the process. More technical

details about multi and single-source attention mechanisms can be found in Sec. 3.3.

CAR-Net outperforms both single and multi-source attention mechanisms, proving its

ability to leverage the strengths of the two attention mechanisms.

Multi-source attention. The multi-source attention mechanism applies weights to all

spatial areas of the scene based on their importance, and outputs a context vector con-

taining relevant scene context from multiple regions of the image. First, the weights

matrix αt+1 is calculated by passing the hidden state ht through a fully connected

layer φ with weight Wms and bias bms. Later, the context vector cms
t+1 is calculated by

element-wise product of the weight matrix αt+1 and the feature maps A. Fig. 3(a) and

Eq. 2 show the entire process:

cms
t+1 = fatt(A, φ(ht))

= a · φ(ht) = A · αt+1 (2)

αt+1 = softmax(Wmsht + bms).

The soft (multi-source) attention mechanism described in [17] calculates the weight

matrix αt+1 conditioned on both the previous hidden vector and the features of the
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image. However, our αt+1 relies only on the previous hidden vector. The distinction

is important because for path prediction tasks, we do not have the future images of a

scene. Moreover, it reduces the computation cost without impacting the performance of

the model.

Single-source attention. The single-source attention mechanism illustrated in Fig. 3(b)

attends to a single local area in the image. To do so, we adapt the DRAW attention

mechanism - which was initially designed for the unsupervised setting of digit gen-

eration [23] - to the supervised learning setting of path prediction. The single-source

attention mechanism attends to the region of the image defined by a local grid of N
Gaussians. The center (gX , gY ) of the grid, the stride δ of the grid, and the variance

σ of all N Gaussians, are predicted by the model at each time step t + 1 by mapping

linearly the hidden state ht to attention parameters (gX , gY , δ, σ). The stride of the grid

controls the “zoom” of the local area attended by the model. As the stride gets larger, the

grid of Gaussians covers a larger area of the original image. The exact position (νix, ν
i
y)

of each Gaussian i on the grid is found using the center and the stride of the grid as in

Eq. 3.

νiX = gX + (i−N/2− 0.5)δ

νiY = gY + (i−N/2− 0.5)δ
(3)

The resulting grid of Gaussians defines two filter-bank matrices FX and FY , using

Eq. 4. Using these filter-bank matrices, the single-source attention mechanism is able

to attend the region of the image defined by the local grid of Gaussian: FX and FY are

convoluted with the feature maps A of the image, as in Eq. 5. The resulting context vec-

tor csst+1 contains scene context from to the single local area of the image corresponding

to the grid of Gaussians.

FX [i, a] =
1

ZX

exp
(

−
(a− νiX)2

2σ2

)

FY [j, b] =
1

ZY

exp
(

−
(b− νjY )

2

2σ2

)

.

(4)

csst+1 = fatt(A, φ(ht)) = FX(ht)
TAFY (ht). (5)

Note that indexes (i, j) refer to Gaussians in the grid and that indexes (a, b) refer to loca-

tions in the feature maps. The normalization constants Zx, Zy ensure
∑

a FX [i, a] = 1
and

∑

b FY [j, b] = 1.

3.4 Implementation details

We trained the LSTM and the attention module from scratch with the Adam optimizer

[48], a mini-batch size of 128, and a learning rate of 0.001 sequentially decreased every

10 epochs by a factor of 10. All models are trained for 100 epochs, on the L2 distance

between ground-truth and predicted trajectories. As in many sequence prediction tasks,

the training and testing process is slightly different. At training time, the ground-truth
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positions are fed as inputs to the LSTM. In contrast, at test time, the predictions of

positions (xt, yt) are re-injected as inputs to the LSTM at the next time step.

4 Experiments

We presented CAR-Net, a framework that provides accurate path predictions by lever-

aging spatial scene contexts. We perform a thorough comparison of our method to state-

of-the-art techniques along with comprehensive ablation experiments. We then present

insights on the interpretability of our method. We finally show the generality and ro-

bustness of CAR-Net by experimenting with different datasets.

4.1 Data

We tested our models on the following three datasets that all include trajectory data and

top-view images of navigation scenes.

Stanford Drone Dataset (SDD) [37]. To show that CAR-Net achieves state-of-the-

art performance on path prediction, we tested the model on SDD, a standard benchmark

for path prediction [16, 35, 37]. This large-scale dataset consists of top-view videos of

various targets (e.g., pedestrians, bicyclists, cars) navigating in many real-world out-

door environments in a university campus (20 different scenes). Trajectories were split

into segments of 20 time steps each (8s total), yielding approximately 230K trajectory

segments. Each segment is composed of 8 past positions (3.2s), which are fed to the net-

work as sequential inputs, and 12 future positions (4.8s) used to evaluate predictions.

This is the standard temporal setup for path prediction on SDD. We use raw images

to extract visual features, without any prior semantic labeling. We adopt the standard

benchmark dataset split for SDD.

Formula One Dataset. Studying the influence of space on agents’ trajectories is

complex since agents’ behaviors are influenced not only by the semantics of the naviga-

tion scene, but also by other factors such as interactions with other agents. For instance,

a pedestrian could stop as they meet an acquaintance. We release a Formula One (F1)

dataset, composed of real-world car racing tracks and their associated trajectories. This

dataset provides a controlled environment to evaluate how well models can extract use-

ful spatial information for trajectory prediction. In the F1 dataset, the agents’ behaviors

can be largely explained by the geometry of the tracks (e.g. the curve of an upcom-

ing turn). As opposed to other popular datasets for trajectory prediction (e.g. SDD),

F1 dataset allows for evaluations in static settings where future trajectories are not af-

fected by confounding factors such as the behavior of other agents. This disentangles

the contributions of the spatial information and of other agents interactions in the task

of trajectory prediction.

The top-view racing track images were obtained from Google Maps. On top of

them, we simulated trajectories corresponding to an optimal driving pattern, referred

to as “optimal trajectories” and computed with the equations presented in [26]. We

used hand-segmented roads as inputs for the computations of optimal trajectories. Note

that those optimal trajectories illustrate complex navigational patterns that depend on

far away scene dependencies. The F1 dataset includes 250 tracks and more than 100K
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Fig. 4. Examples of scenes captured in the proposed F1 dataset. We annotated each track with the

associated optimal racing trajectory.

trajectories from different cities of Brazil, Canada, Columbia, Mexico, France, USA and

other countries and will be available to the public for research purposes. Sample tracks

are shown in Fig. 4. Car trajectories are split into 24 time step segments: 8 input past

positions and 16 future positions used for evaluation. We opted for 16 future positions

for evaluation, rather than 12 like in SDD, since the prediction task is simpler due to

stronger agent-space dependencies. We split racing tracks in the F1 dataset into an 80%

train set, 10% validation set, and 10% test set. The test racing tracks are totally unseen

locations, they do not overlap with the training nor validation set racing tracks.

Car-Racing Dataset [49]. In order to derive further insights on how agent-space

dependencies influence our model’s predictions, we experimented with the Car-Racing

dataset, a simpler racing track dataset that we synthesized. The Car-Racing dataset is

composed of 3,000 tracks of various curvatures and road widths that we generated

with the Car-Racing-v0 simulator from the OpenAI gym. We simulated (1) the opti-

mal trajectories for each circuits, and (2) trajectories following the middle of the road at

constant speed. Racing trajectories were split into 24 time-step segments, 8 input past

positions and 16 future positions used for evaluation, yielding approximately 500K seg-

ments. We split racing tracks in this dataset into an 80% train set, 10% validation set,

and 10% test set, which do not overlap.

Optimal racing trajectories. The ideal racing trajectory used in Car-Racing and

F1 dataset is defined as the trajectory around a track that allows a given vehicle to

traverse the track in minimum time. To calculate these optimal race trajectories, we

segmented the roads by hand and computed the associated optimal racing paths using

physics simulation. These simulations are based on 2D physical models from [26, 50].

4.2 Evaluation Metrics and Baselines

We measure the performance of our models on the path prediction task using the fol-

lowing metrics: (i) average displacement error - the mean L2 distance (ML2) over all

predicted points of the predicted trajectory and the ground-truth points, (ii) final L2

distance error (FL2) - the L2 distance between the final predicted position and the final

ground-truth position.

To perform an ablation study in Section 4.3 and show that our model achieves state-

of-the-art performance in Section 4.4, we compare CAR-Net to the following baselines

and previous methods from literature:
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Car-Racing Car-Racing Formula 1

Middle Optimal Optimal

Model ML2 FL2 ML2 FL2 ML2 FL2

T-LSTM 10.4 15.5 5.84 10.2 21.2 41.3

I-LSTM 9.71 14.1 5.62 9.5 20.8 40.1

MS-LSTM 7.35 12.7 5.30 8.71 18.9 37.8

SS-LSTM 6.36 9.91 4.64 7.63 14.7 28.9

CAR-Net 5.0 8.87 3.58 6.79 13.3 25.8

Table 1: Quantitative results of our methods on the Car-Racing dataset with middle and optimal

trajectories and the F1 dataset. We report the Mean L2 error (ML2) and the Final L2 error (FL2).

CAR-Net outperforms all models by combining single-source and multi-source attention outputs.

– Linear model (Lin.) We use an off-the-shelf linear predictor to extrapolate trajec-

tories under the assumption of linear velocity.

– Social Forces (SF) and Social-LSTM (S-LSTM). We use the implementation of the

Social Forces model from [51] where several factors such as group affinity have

been modeled. Since the code for Social-LSTM is not available we compare our

models with a self-implemented version of Social-LSTM from [35].

– Trajectory only LSTM (T-LSTM) and Whole Image LSTM (I-LSTM). These mod-

els are simplified versions of our model where we remove the image information

and attention module, respectively.

– Multi-Source only LSTM (MS-LSTM) and Single-Source only LSTM (SS-LSTM).

Our models using only multi-source attention and single-source attention mecha-

nisms, respectively.

– DESIRE. A deep IOC framework model from [16]. We report the performance of

the model DESIRE-SI-IT0 Best with top 1 sample.

4.3 Ablation Study

We performed an ablation study to show that prediction accuracy improves when com-

bining single-source and multi-source attention mechanisms, which suggests that they

extract complementary semantic cues from raw images. We analyzed the performances

of baseline models and of CAR-Net on the racing track datasets (Car-Racing and For-

mula One datasets). We present our results in Table 1.

We observe similar results on both racing track datasets. First, I-LSTM only slightly

outperforms T-LSTM. This seems to be because the large feature maps extracted from

each racing track are too complex to significantly complement the dynamic cues ex-

tracted from agents’ past trajectories. Second, attention models (MS-LSTM, SS-LSTM,

CAR-Net) greatly outperform I-LSTM. This suggests that visual attention mechanisms

enhance performance by attending to specific areas of the navigation scenes. We show

in Section 4.5 that these attended areas are relevant semantic elements of navigation

scenes - e.g. an upcoming turn. Note that SS-LSTM achieves lower errors than MS-

LSTM. This is due to racing track images being large, and relevant semantic cues being

mostly located close to the car. Finally, CAR-Net outperforms both MS-LSTM and SS-

LSTM on all datasets. We think it is due to robustly combining the outputs of single-

source and multi-source attention mechanisms.
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Model ML2 FL2

Lin. 37.11 63.51

SF [51] 36.48 58.14

DESIRE-SI-IT0 Best [16] 35.73 63.35

S-LSTM [35] 31.19 56.97

T-LSTM 31.96 55.27

I-LSTM 30.81 54.21

MS-LSTM 27.38 52.69

SS-LSTM 29.20 63.27

CAR-Net 25.72 51.80

Table 2: Performance of different baselines on predicting 12 future positions from 8 past posi-

tions on SDD. We report the Mean L2 error (ML2) and the Final L2 error (FL2) in pixel space of

the original image. Our method, CAR-Net, achieves by far the lowest error.

General remarks. For the Car-Racing dataset, models perform better on the pre-

diction of optimal trajectories than middle trajectories. This is due to the average pixel

distance between consecutive positions being larger for middle trajectories than for the

optimal trajectories. Also, we trained the models on 1K tracks for middle trajectories,

instead of 3K for optimal trajectories.

4.4 Trajectory Forecasting Benchmark

CAR-Net outperforms state-of-the-art methods on the task of predicting 12 future po-

sitions (4.8s of motion) from 8 past positions (3.2s) on SDD benchmark, as reported in

Table 2 (both lower ML2 and FL2 error). Note that the performance of DESIRE-SI-IT0

Best in [16] is provided for the task of predicting 4s of motion. We linearly interpolated

this performance to obtain its performance on predicting 4.8s of motion and reported

the interpolated number in Table 2.

The T-LSTM baseline achieves a lower ML2 error than Linear, SF, and S-LSTM

models. However, the gaps between the FL2 errors of T-LSTM and SF or S-LSTM

models are narrow, suggesting that the T-LSTM model tends to be relatively inaccurate

when predicting the last future time-steps. We observe that S-LSTM performs poorly

compared to MS-LSTM - especially in terms of FL2 error. We believe multi-source

attention performs better due to scattered key semantics in SDD scenes. In all experi-

ments, CAR-Net outperforms baselines methods regarding all metrics. Moreover, our

model outperforms DESIRE with top 1 sample (DESIRE Best). This is consistent with

[16] suggesting that regression-based models such as CAR-Net are a better fit for use

cases where regression accuracy matters more than generating a probabilistic output.

Generalization to unseen locations. CAR-Net generalizes to unseen locations in all

datasets. This suggests that our model leverages observable scene features, rather than

location-specific information. First, CAR-Net achieves better accuracy than other base-

line methods on F1 test set, which is exclusively composed of unseen F1 racing tracks.

Second, 9/17 (53%) locations in the SDD test set are unseen. The remaining 8/17 (47%)

locations in the SDD test set are visually similar to training locations (seen locations).

We evaluate our trained model’s performance on the seen and on the unseen SDD test

locations, separately. CAR-Net achieves similar performances on both seen and unseen

test SDD locations - mean L2 distance of 23.87 and 26.93 pixels on the seen and unseen

locations, respectively - proving its ability to generalize to unseen SDD locations.
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Fig. 5. Qualitative results of MS-LSTM, SS-LSTM, and CAR-Net (rows) predicting trajectories

on Car-Racing, F1, and SDD datasets (columns). CAR-Net successfully leverages both single-

source and multi-source attention mechanisms to predict future paths.

Quantitative analysis of the impact of agent-space interactions. To analyze CAR-

Net’s ability to leverage agent-space interactions, we split the test set of SDD into scenes

whose geometries are complex and likely to influence the trajectories of agents (e.g.

scenes with grass lawns, pavements, buildings), and scenes whose observable context

varies little across the top-view image (e.g. an open field with no roads, grass, etc). We

refer to these scenes as semantically complex and simple, respectively. Details about

the splitting process and sample images of complex and simple scenes can be found

in the supplementary material. We tested CAR-Net (that uses the scene context) and

T-LSTM (that does not use any scene context) on SDD’s semantically complex and

simple test scenes. Our results are reported in Table 3. CAR-Net and T-LSTM achieve

similar performance on simple scenes, where scene semantics should not typically af-

fect the trajectories of agents. In contrast, CAR-Net achieves much better performance

than T-LSTM on complex scenes, where scene semantics are likely to highly influence

the trajectories of agents. This experiment shows CAR-Net’s ability to successfully

leverage scene context over T-LSTM.

Model Complex Simple

T-LSTM 31.31 30.48

CAR-Net 24.32 30.92

Table 3: Performance of T-LSTM and CAR-Net on SDD semantically complex and simple

scenes. We report the Mean L2 error (ML2) in pixels space of the original image. Our method,

CAR-Net, is able to effectively use the scene context to predict future trajectories.
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Fig. 6. Qualitative analysis: (a) Very long-term path prediction on the Car-Racing dataset. Predic-

tions stay on track, showing that our model successfully uses scene context for path prediction.

(b) By manually moving the attention to other parts of the image, we show that prediction heav-

ily depends on the scene geometry. (c) When manually imposing the initial car position to be

off-road, the predicted trajectory comes back on the road using the visual cues.

4.5 Qualitative analysis

Visualization details. In all figures, ground-truth and predicted trajectories are plot-

ted in red and blue, respectively. Past positions are circled in black. We display the

weight maps of the multi-source attention mechanism over time by white highlights.

The single-source attention grids are also displayed over time: yellow dots represent

the centers of the grids, and rectangles represent bounding boxes of the attention grid.

Short-term predictions. Fig. 5 shows sample trajectories predicted by our models on

the datasets used in our experiments. On racing track datasets (Car-Racing and F1), we

expect the region of the road close to the car to contain salient semantic elements. We

observe that MS-LSTM successfully attends to the area around the car. On the mid-left

and mid-center figures, we observe that the attention grid of SS-LSTM is initially off

(white rectangle), before jumping to a small area close to the car, thereby identifying the

relevant visual information. As shown in the bottom row, CAR-Net focuses on a narrow

region of the image close to the car, using the single-source attention. It is also able to

attend to further areas such as the next curve, using multi-source attention, proving its

ability to leverage both attention mechanisms on racing track datasets.

On SDD, where key semantic elements are scattered, the multi-source attention

mechanism successfully attends to multiple relevant visual areas (top and bottom right

images). We observe that on SDD the multi-source attention attends to regions that get

larger over time. This may reflect a growing prediction uncertainty. The single-source

attention grid attends to areas further ahead of the agent on SDD, compared to racing

track datasets (e.g., the mid-right figure). It shows that attending only close to the agent

would not capture all salient semantics so attention grids reach ahead.

Very long-term trajectory prediction on Car-Racing dataset. In this section we

present qualitative results on the task of predicting future positions beyond 4.8s on

the Car-Racing dataset, as a complementary result. We do not claim that our model

achieves similar path prediction performance beyond 4.8s on real-world datasets. Fig.

6(a) shows CAR-Net’s predictions of 100 consecutive time steps of a middle trajectory

on the Car-Racing dataset. We observe that predictions remain on the road over time.
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Note that the initial few positions of the agent are not helpful to predict future trajec-

tories on very long time intervals (e.g. after a couple turns from the initial position).

The fact that the predictions stay on the road proves that CAR-Net successfully extracts

semantic understanding from the scene context in this case. We observe that both single

and multi-source attention mechanisms are consistent with the predicted positions over

time, as they attend to the salient parts of the scene - e.g., the curve in front of the car.

Qualitative analysis of agent-space interactions. We further investigate the ability of

our model to leverage agent-space dependencies on racing track datasets. First, we show

that road geometry has a large influence on the prediction of future positions. As shown

in Fig. 6(b) left, on the Car-Racing dataset, we manually place the visual attention on

an irrelevant part of the road which is oriented along the top-right direction. We observe

that the model predicts positions following a similar top-right axis, while the expected

trajectory without any scene information would follow a top-left direction. We observe

similar behaviors in the bottom-left image of Fig. 6(b). The same experiment on the

real-world F1 dataset results in similar behaviors, as shown in Fig. 6(b) right.

Second, we study whether CAR-Net is robust enough to recover from errors or

perturbations by manually setting the agent’s past positions outside the road. The left

image in Fig. 6(c) shows the result of this experiment on the Car-Racing dataset, using

the model trained on the middle trajectories. The predicted future trajectory successfully

comes back on the road and remains stable afterwards, showing our model’s ability to

recover from strong prediction errors on Car-Racing dataset. The right image in Fig.

6(c) shows a similar experiment on the real-world F1 dataset. Since this dataset is more

challenging than the Car-Racing dataset, we apply a smaller perturbation to the past

trajectory of the agent, moving it slightly off the road. We observe that this perturbation

does not affect the predicted trajectory which follows the road.

5 Conclusions

In this paper, we tackle the trajectory prediction task with CAR-Net, a deep attention-

based model that processes past trajectory positions and top-view images of naviga-

tion scenes. We propose an attention mechanism that successfully leverages multiple

types of visual attention. To study our model’s ability to leverage dependencies be-

tween agents’ behaviors and their environment, we introduce a new dataset composed

of top-view images of hundreds of F1 race tracks where the vehicles’ dynamics are

largely governed by specific regions within the images (e.g., an upcoming curve). CAR-

Net outperforms previous state-of-the-art approaches on the SDD trajectory forecasting

benchmark by a large margin. By visualizing the output of the attention mechanism, we

showed that our model leverages relevant scene semantic features in the prediction task.
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