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Fig. 1. SwapNet can interchange garment appearance between two single view images
(A and B) of people with arbitrary shape and pose.

Abstract. We present Swapnet, a framework to transfer garments across
images of people with arbitrary body pose, shape, and clothing. Gar-
ment transfer is a challenging task that requires (i) disentangling the
features of the clothing from the body pose and shape and (ii) real-
istic synthesis of the garment texture on the new body. We present a
neural network architecture that tackles these sub-problems with two
task-specific sub-networks. Since acquiring pairs of images showing the
same clothing on different bodies is difficult, we propose a novel weakly-
supervised approach that generates training pairs from a single image
via data augmentation. We present the first fully automatic method for
garment transfer in unconstrained images without solving the difficult
3D reconstruction problem. We demonstrate a variety of transfer results
and highlight our advantages over traditional image-to-image and anal-
ogy pipelines.

1 Introduction

Imagine being able to try on different types of clothes from celebrities’ red carpet
appearance within the comfort of your own home, within minutes, and without
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hours of shopping. In this work, we aim to fulfill this goal with an algorithm to
transfer garment information between two single view images depicting people
in arbitrary pose, shape, and clothing (Figure 1). Beyond virtual fitting room
applications, such a system could be useful as an image editing tool. For example,
after a photo-shoot a photographer might decide that the subject would look
better in a different outfit for the photographic setting and lighting condition.
Garment transfer is also useful for design ideation to answer questions like “how
does this style of clothing look on different body shapes and proportions?”

These applications require solving the challenging problem of jointly inferring
the body pose, shape, and clothing of a person. Most virtual try-on applications
address this challenge by making simplifying assumptions. They either use pre-
defined virtual avatars in a small set of allowed poses or require an accurate 3D
scan of the individual to demonstrate a limited selection of clothes using physical
cloth simulation [1]. The recent approach for garment recovery and transfer [2]
involves 3D reconstruction of the human body and estimation of the parameters
of pre-defined cloth templates. The proposed model fitting approach is compu-
tationally expensive and the quality is limited by the representational power
of the pre-defined templates. None of these approaches address the problem of
transferring arbitrary clothes to an arbitrary person and pose in the image space.

Transferring garment information between images inherently requires solving
three sub-problems. First, the garment pieces need to be identified from the input
images. Second, the shape, e.g., the outline of each garment piece, needs to be
transferred across two bodies with potentially different pose and shape. Finally,
the texture of the garment needs to be synthesized realistically in this new
shape. Our approach focuses on solving the last two stages, warping (Figure 2)
and texturing (Figure 6), using a learning approach.

Assume we have an image A, depicting the desired clothing, and B, showing
the target body and pose. Learning to directly transfer detailed clothing from
A to B is challenging due to large differences in body shape, cloth outlines, and
pose between the two images. Instead, we propose to first transfer the clothing
segmentation Acs of A, based on the body segmentation Bbs of B to generate the
appropriate warped clothing segmentation B′

cs which is different from B’s orig-
inal clothing segmentation Bcs. This segmentation warping operation is easier
to learn since it does not require the transfer of high frequency texture details.
Once the desired clothing segmentation B′

cs is generated, we next transfer the
clothing details from A to B conditioned on B′

cs for final result.

In the ideal scenario, given pairs of photos (A, B) of people in different poses
with different proportions wearing the exact same clothing, we could train a 2-
stage pipeline in a supervised manner. However, such a dataset is hard to obtain
and therefore we propose a novel weakly supervised approach where we use a
single image and its augmentations as exemplars of A and B to train warping and
texturizing networks. We introduce mechanisms to prevent the networks from
learning the identity mapping such that warping and texturizing can be applied
when A and B depict different individuals at test time. At both training and
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Fig. 2. Demonstration of clothing transfer.

test time, we assume that we have access to the body and clothing segmentation
of the image from state-of-the-art human parsing pipelines.

No previous works address the problem we have at hand – transferring gar-
ment from the picture of one person to the picture of another with no constraints
on identity, poses, body shapes and clothing categories in the source and target
images. We argue that garment transfer in our unconstrained setting is a more
challenging task. It requires disentangling the target clothing from the corre-
sponding body and retargetting it to a different body where ideal training data
for supervised learning are hard to obtain.

To summarize, we make the following contributions: (1) We present the first
method that operates in image-space to transfer garment information across
images with arbitrary clothing, body poses, and shapes. Our approach eschews
the need for 3D reconstruction or parameter estimation of cloth templates. (2)
With the absence of ideal training data for supervision, we introduce a weakly
supervised learning approach to accomplish this task.

2 Related Work

Human parsing and understanding. There is significant work in the com-
puter vision community for human understanding from monocular images. We
can group the related work under two main methodologies, where, one line of
work explicitly focuses on parsing clothing items from images [3], while the other
approaches focus on modeling the human body in terms of 2D pose [4], body
part segmentation [5], 3D pose [6], or 3D body shape [7]. A few approaches
tackle the problem of jointly modeling the 3D body shape and garments but re-
quire additional information in the form of depth scans [8, 9]. The recent work of
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Yang et al. [2] is the first automatic method to present high-resolution garment
transfer results from a single image. However, this approach relies on the exis-
tence of a deformable body model and a database of cloth templates. It solves a
computationally expensive optimization that requires priors for regularization.
In contrast, our method operates fully in the image space, learns to disentangle
the garment features from the human body pose and shape in a source image
and transfers the garment to another image with arbitrary pose and shape.

Generative adversarial networks (GANs). Generative adversarial net-
works [10–13] and variational auto-encoders [14, 15] have recently been used
for image-based generation of faces [16–18], birds [19], and scenes [12]. Con-
ditional GANs have been particularly popular for generating images based on
various kinds of conditional signals such as class information [20], attributes [21],
sketch [22–24], text [19, 25], or pose [26]. Image-to-image translation networks [22,
27] have demonstrated image synthesis conditioned on images. The texturing
stage of our framework is inspired from the U-Net architecture [28]. However,
we have two conditioning images where one provides the desired garment and
the other shows the desired body pose and shape.

Image-based garment synthesis. Several recent works attempt to solve
problems similar to ours. The work by Lassneret al. [29] presents an approach
to generate images of people in arbitrary clothing conditioned on pose. More
recent methods [30, 26] propose a framework to modify the viewpoint or the
pose of a person from an image while keeping the clothing the same. Some recent
works [31, 32] attempt to transfer a stand-alone piece of clothing to an image of
a person, whilst another work [33] solves the opposite task of generating a stand-
alone piece of clothing given a person image. Finally, the work of Zhu et al. [34]
generates different clothing from a given image based on textual descriptions,
whilst retaining the pose of the original image. Yang et al, [2] propose a pipeline
different from generative models, which involves estimation of the 3D body model
followed by cloth simulation. Ma et al. [35] propose an approach to disentangle
pose, foreground, and background from an image in an unsupervised manner such
that different disentangled representations can be used to generate new images.
They did not solve our exact problem of transferring the garment from source to
target while maintaining the target picture’s identity. In fact, the identity is often
lost in their transfer process. Another difference is that they represent the desired
pose to transfer garments to as silhouette derived from sparse pose key points
while we operate on individual cloth segments. Clothing segmentation provides
more informative signals than pose key points, which allows us to transfer the
garment from source to target more precisely.

Visual analogies. There has been recent interest in visual analogy pipelines
which synthesize an image by inferring the transformation between a pair of
images and then applying that transformation to a new image. The work by Reed
et al. [36] generates the analogous image for a particular input instance given
the relationship between a similar pair of images. They show good generation
results on simple 2D shapes, 3D car models and video game sprites. The more
recent work by Liao et al. [37] presents a framework that, given two images, A
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and B’, generates two additional images A’ and B, such that each input and
output image form an analogical pair (A, A’) and (B, B’). Our work is similar in
spirit to this work in that, given two full-body images of people in clothing, we
can transfer the clothing between the pair of images. However, our formulation
is more challenging, as the system has to reason about the concept of clothing
explicitly.

3 SwapNet
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Fig. 3. Our pipeline consists of two stages: (1) the warping stage, which generates a
clothing segmentation consistent with the desired pose and (2) the texturing stage,
which uses clothing information from desired clothing image to synthesize detailed
clothing texture consistent with the clothing segmentation from the previous stage.

We present a garment transfer system that can swap clothing between a
pair of images while preserving the pose and body shape. We achieve this by
disentangling the concept of clothing from that of body shape and pose, so that
we can change either the person or the clothing and recombine them as we desire.

Given an image A containing a person wearing desired clothing and an image
B portraying another person in the target body shape and pose, we generate an
image B′ composed of the same person as in B wearing the desired clothing in
A. Note that A and B can depict different persons of diverse body shape and
pose wearing arbitrary clothing.

Increasingly popular conditional generative models use encoder-decoder types
of network architectures to transform an input image to produce output pixels
directly. Recent work such as pix2pix and Scribbler [27, 22] have shown high
quality results on image translation tasks where the structure and shape in the
output does not deviate much from the input. However, our garment transfer task
presents unique challenges. A successful transfer involves significant structural
changes to the input images. As shown in previous work [34], directly transfer-
ring both the shape and the texture details of the desired clothing to a target
body gives the network too much burden resulting in poor transfer quality.
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We propose a two-stage pipeline (Figure 3) to tackle the shape and texture
synthesis separately. Specifically, we argue that clothing and body segmentations
provide a concise and necessary representation of the desired clothing and the
target body. Thus, we first operate on these segmentations to perform the desired
shape change, i.e., generate a clothing segmentation in the target body shape
and pose of B but with the clothing in A. We assume the clothing segmentation
of image A and the body segmentation of image B are given or are computed by
previous work [7, 3]. In a second stage, we propose a texturization network that
takes as input the synthesized clothing segmentation and image of the desired
clothing to generate the final transfer result.

3.1 Warping Module

...

n - Resblocks

512 X 16 X 16

18 X 128 X 128

3 X 128 X 128

2 X 2 X 1024

512 X 16 X 16

16 X 16 X 512

18 X 128 X 128Pose 
Encoder

Clothing
Encoder Upsampling

Cloth 
Decoder

Fig. 4. Architecture of stage 1 module. The warp module consists of a dual-path U-net
strongly conditioned on the body segmentation and weakly conditioned on the clothing
segmentation.

The first stage of our pipeline, which we call the warping module, operates
on Acs, the clothing segmentation of A, and Bbs, the body segmentation of B,
to generate B′

cs, a clothing segmentation of B consistent with the segmentation
shapes and labels in A while strictly following the body shape and pose in B

as given in Figure 4. We pose this problem as a conditioned generative process

where the clothing should be conditioned on Acs whereas the body is conditioned
on Bbs.

We use a dual path [28] network to address the dual conditioning problem.
The dual path network consists of two streams of encoders, one for the body
and one for the clothing, and one decoder that combines the two encoded hidden
representations to generate the final output. We represent the clothing with a 18-
channel segmentation mask where we exclude small accessories such as belts or
glasses. Given this 18-channel segmentation map where each channel contains the
probability map of one clothing category, the cloth encoder produces a feature
map of size 512× 16× 16 (16× 16 features of size 512). Given a color-coded 3-
channel body segmentation, the body encoder similarly produces a feature map
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of size 512×16×16 to represent the target body. These encoded feature maps are
concatenated and passed through 4 residual blocks. The resulting feature map
is then up-sampled to generate the desired 18-channel clothing segmentation.

The generated image is strongly conditioned on the body segmentation and
weakly conditioned on the clothing segmentation. This is achieved by encoding
the clothing segmentation into a narrow representation of 2 × 2 × 1024, before
upsampling it to a feature map of the required size. This compact representation
encourages the network to distill high-level information such as the types of
clothing items (top, bottom, shoes, skin, etc.) and the general shape of each item
from the clothing stream, whilst restricting the generated segmentation to closely
follow the target pose and body shape embedded in the body segmentation.

To supervise the training, ideally we need ground-truth triplets (Bbs + Acs

⇒ B′

cs) as in [26]. However, such a dataset is hard to obtain and is often not
scalable for larger variation in clothing. Instead, we use a self-supervised ap-
proach to generate the required triplets. Specifically, given a single image B,
we consider the triplet (Bbs + Bcs ⇒ B′

cs) for which we can directly supervise.
With this setting, however, there is a danger for the network to learn the identity
mapping since Bcs = B′

cs. To avoid this, we use augmentations of Bcs instead.
We perform random affine transformations (including random crops and flips).
This encourages the network to discard locational cues from Bcs and pick up
only high-level cues regarding the types and structures of the clothing segments.

We choose to represent the clothing segmentation as a 18-channel probability
map instead of a 3-channel color-coded segmentation image to allow the model
more flexibility to warp each individual segment separately. During training,
each channel of the segmentation image undergoes a different affine transform,
and hence the network should learn higher level relational reasoning between
each channel and the corresponding body segment. For the body segmentation,
in contrast, we use the 3-channel color-coded image, similar to Lassner et al.
[29] as we observe a more fine-grained encoding of the body segmentation does
not offer much more information. The color-coded body segmentation image also
provides guidance as to where each clothing segment should be aligned, which
overall provides a stronger cue about body shape and pose. Additionally, since
clothing segments span over multiple body segments, keeping the structure of
the entire body image is more beneficial than splitting the body segment into
individual channels.

The warping module is trained with the combination of cross entropy loss
and GAN loss. Specifically, our warping module zcs = f1(Acs, Bbs) has the the
following learning objectives:

LCE = −

18∑

c=1

✶(Acs(i, j) = c)(log(zcs(i, j)) (1)

Ladv = Ex∼p(Acs)[D(x)] + Ez∼p(f1enc(Acs,Bbs))[1−D(f1dec(z))] (2)

Lwarp = LCE + λadvLadv (3)

where λadvLadv refers to the adversarial component of the loss and f1enc and
f1dec are the encoder and decoder components of the warp module. The weights
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of each component are tuned such that the gradient contribution from each loss
is around the same order of magnitude. In our experiments, we observe that
adding a small adversarial weight helps produce better convergence and shape
retention of the generated segmentation.

Finally, to train and test this network, we use the DeepFashion dataset [38],
where we use the LIP SSL pretrained network [3] to generate clothing segmen-
tations and use “Unite the People” [39] to obtain the body segmentation as in
Figure 5

Clothing segmentation 
of A (desired clothing)

Body segmentation of 
B (desired pose)

Generated clothing  
segmentation for  B

Original clothing 
segmentation of B 

(a) (b) (c) (d) (a) (b) (c) (d)

Fig. 5. Stage 1 segmentation visualization. (a) Clothing segmentation of A; (b) Body
segmentation of B; (c) Generated clothing segmentation for B by warping module; (d)
Original clothing segmentation of B.

3.2 Texturing Module
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Fig. 6. Architecture of the stage 2 module. The texturing module is trained in a self su-
pervised manner. The shape information input to the encoder is obtained from clothing
segmentation and the texture information is obtained using ROI pooling.
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Our second stage network, the texturing module, is a U-Net architecture
trained to generate texture details given the clothing segmentation at the desired
body shape and pose, B′

cs, and an embedding of the desired clothing shown in
image A. We obtain this embedding by ROI pooling on each of the 6 body parts
(main body, left arm, right arm, left leg, right leg and face) of A and generating
feature maps of size 3×16×16, which are then upsampled to the original image
size. We stack these feature maps with B′

cs before feeding them into the U-Net.
The idea is to use the clothing segmentation to control the high-level structure
and shape and use the clothing embedding to guide the hallucination of low-level
color and details.

Similar to the first stage, we train the texturing module in a weakly super-
vised way. Specifically, given an input image B, we consider the inputs to be
(Bcs + embedding of the clothing in B ⇒ B). To avoid learning the identity
mapping, we compute an embedding of the desired clothing from augmentations
of B by performing random flips and crops. We use the L1 reconstruction loss,
feature loss (VGG-19) and the GAN loss with DRAGAN gradient penalty [40]
which has been shown to improve the sharpness of the results and stabilize the
training of GANs. The learning objective of the second stage texturing module
f2 is given as follows:

LL1 = ||f2(z′cs, A)−A||1 (4)

Lfeat =
∑

l

λl||φl(f2(z
′

cs, A))− φl(A)||2 (5)

Ladv = Ex∼p(A)[D(x)] + Ez∼p(f2enc)[1−D(f2dec(z))] (6)

where, φl accounts for loss w.r.t activations of some layer of a pretrained VGG-19
network. The discriminator for this stage has the following objective:

Ladvd = Ex∼p(A)[D(x)]+Ez∼p(f2enc)[1−D(f2dec(z))]+λgpEz∼P (z)[||∇zD(z)||2]
(7)

During testing, we use the clothing segmentation generated by the previous
stage. Note that we flatten the 18 channel segmentation map by performing an
argmax operation across the channels. This is done mainly to prevent artifacts
due to output of stage 1 having non-zero values in more than 1 channel at a
particular pixel location. This step is non-differentiable, and therefore disallows
end-to-end training. However, we can perform an end-to-end fine-tuning of these
pretrained networks by skipping the argmax step and employing a softmax in-
stead. We would like to point out that our framework is robust to the noise in
the input clothing and body segmentation. The second stage operates on noisy
clothing segmentation generated from the first stage and learns to ignore the
noise while filling in textures and colors.

The major advantage of our network lies in the fact that unlike [29] the
clothing segmentation and body segmentation need not be very clean for our
framework to be effective. Our segmentations are obtained by state of the art
human parsing and body parsing models, however the predictions of these are
still noisy and often have holes. Our network however, can learn to compensate
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for the noise in these intermediate representation. The noisy clothing and body
segmentations provide a very rich and structured signal as opposed to pose
keypoints whilst not being as restrictive as inputs to pix2pix and Scribbler that
require precise sketches or segmentation as input to generate reasonable results.

Additionally, we perform some post processing on the output of the first stage
to preserve the identity of the target individual before feeding it into the second
stage. In particular, in the generated clothing segmentation B′

cs, we replace the
“face” and “hair” segments with corresponding segments in the original clothing
segmentation Bcs. Similarly, at the end of the second stage, we copy the face and
hair pixels from B into the result. Without these steps, the whole framework
becomes akin to reposing the same individual instead of re-targeting the clothing
to a different individual.

4 Experiments

In this section, we show results of each stage and provide detailed quantitative
and qualitative comparisons with baselines. We first explain the baseline methods
and then discuss our findings.

4.1 Qualitative evaluation

no Aug, no flip, ours, best 
model, best model with no 
flip 

(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)DP DP

DC DC

Fig. 7. Ablation study showing the need for various augmentations. Results from mod-
els trained with (a) no augmentations, (b) no flips + affine transforms, (c) flips + small
affine transforms, (d) flips + large affine transforms (e) no flip on stage 2

Need for Augmentation: To analyze the effects of different types of aug-
mentation, we present an ablation study (Figure 7), where stage 1 is trained (a)
with no augmentation, (b) with only affine transforms, (c) with random flips
and small affine transforms and (d) with flips and large affine transforms. While
flips help to handle cases when source and target are on different regions of
the frame, affine transformations are necessary in part to handle scale changes
between source and target. We also show that crops and flips reduce leaking
artifacts for the second stage (e).
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(a) (b) (c) (d) (a) (b) (c) (d)

Fig. 8. Comparision with PG2. (a) Source pose, (b) Target Pose, (c) Ours (d) PG2.

Comparison with PG2: We compare SwapNet with the work of Ma et
al. [26] on their provided test split (Figure 8). We notice visible high frequency
artifacts as a result of the second stage network in PG2. In contrast, as demon-
strated by many previous work, adding feature loss makes the generated quality
better because we match higher level feature statistics in addition to the color
of the clothing component. Furthermore, we see that a “learned” representation
of pose, such as body segmentation, provides richer guidance to the original
target pose, as opposed to extracting a hand engineered mask from pose key-
points as in [26]. Additionally, body segmentations allow for just as much control
as pose keypoints, whilst still being constrained by the body shape (similar to
a deformable parts model). We evaluate the performance of SwapNet in this

(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

Fig. 9. Comparision with PG2. (a) Source pose, (b) Target Pose, (c) Ours, (d) Ours
after user corrects intermediate clothing segmentation (e) PG2.

setting, and since we have direct supervision as to what the generated image
should look like, we can calculate the SSIM metric and perceptual distance (1)
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on this matched pair of images. Additionally, We also demonstrate the advan-
tage of using clothing segmentation as an intermediate representation (Figure
9(d)). In cases where the clothing segment is ambiguous, the user can edit the
intermediate representation to better fit the clothing.

Comparison with VITON and visual analogy:

Desired Pose Desired Clothing SwapNetVITON(stage1) SwapNet - GANSwapNet - FEATVisual AnalogyProduct Image VITON(stage2)

Fig. 10. Results of SwapNet, VITON and Visual Analogy on the Zolando dataset.
Additional results on SwapNet-Feat (trained without Feature loss) and SwapNet-Gan
(trained without GAN loss)

We present additional comparisons with VITON[32] and Deep Visual Anal-
ogy[37]. VITON transfers a product image of a clothing item onto an image of an
individual using a two-stage approach, where the first stage involves generating
a coarse transferred image using an Encoder-decoder network, and the second
stage involves refining the generated image by warping the product image. Deep
Visual Analogies produce images to complete analogies of the form A:A’::B:B’.
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Particularly, it generates images A’ and B, given style and content image A and
B’. We highlight that VITON and Deep Visual Analogy are not strict baselines
since our target task of swapping clothing between portrait images in the wild is
different from the task of VITON (virtual try-on based on product image) and
Deep Visual Analogy (Style transfer). We cannot find other previous work ad-
dressing the same problem as ours, so we modify our problem setting slightly to
compare with these related but different works. We use the test split used by VI-
TON for fair comparison. VITON demonstrates clothing transfer on the Zolando
dataset[32]. We observe that our model trained on the DeepFashion dataset is
able to generalize to the Zolando dataset without additional finetuning.

4.2 Quantitative Results

We present the performance of different models on some of the common metrics
for evaluating generative models. The inception score is a measure of how realistic
images from a set look and how diverse they are. We also present the SSIM on
a subset of data for which we have paired information.

Additionally, we use the VGG perceptual metric (PD) as suggested by [41].
We present PD(TP) – the perceptual distance to the target pose and PD(TC)
– the perceptual distance to the target clothing image.

Table 1. Quantitative metrics for different models. Higher score is better for IS and
SSIM and smaller is better for PD

Model IS SSIM PD(TP) PD(TC)

CGAN 2.11 0.22 - -
PG2 3.06 0.09 - -

Ours (w/o GAN w/o feat) 2.63 ± 0.061 0.84 0.075 0.114
Ours (w/o feat) 2.72 ± 0.032 0.82 0.057 0.100
Ours (w/o GAN) 2.75 ± 0.13 0.81 0.061 0.101
Ours 3.04 ± 0.052 0.83 0.056 0.099

Dataset 3.28 -

For the most part we see that scores of all methods are clustered around
similar values. The IS and SSIM metrics provide a good proxy to measure the
performance but are not a true measurement of how well the model is performing
the required task. The perceptual losses provide some more insights about the
transfer performance. Particularly, we see that the SSIM scores favourably for
a model trained without the GAN loss and feature loss. Since the network is
trained with only L1 loss, the SSIM predicts that the generations are very close
to ground truth. However, with the perceptual metric it can be clearly seen that
the model w/o GAN and w/o feature loss performs worse perceptually. We see
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that our SwapNet model performs the best both in terms of inception score and
the perceptual distance on the task of reposing a given clothing image.

4.3 Limitations

A B B   A A BA   B B   A A   B

DC DP Gen DC DP Gen

Fig. 11. Limitations of SwapNet for clothing transfer. First row demonstrates extreme
pose changes (DP: Desired pose; DC: Desired clothing; Gen: Generated image) . Second
row demonstrates occlusion by rare classes (hat, purse).

Our framework has difficulty handling large pose changes between source and
target images (top row of Figure 11). If one of the images contain a truncated
body and the other contains a full body, our model is not able to hallucinate
appropriate details for the missing lower limbs. Furthermore, our framework is
sensitive to occlusions by classes like hats and sunglasses, and might generate
blending artifacts (the bottom row Figure 11). The third row in Figure 10 also
shows that the network is sometimes unable to handle partial self occlusion.

5 Conclusion

We present SwapNet, a framework for single view garment transfer. We moti-
vate the need for a two-stage approach as opposed to a traditional “end-to-end”
training pipeline and highlight the use of split channel segmentation as an in-
termediary stage for garment transfer. Additionally, we employ a novel weakly
supervised training procedure to train the warping and texturization modules in
the absence of supervised data for same clothing in different poses. In the future
we aim to leverage a supervised subset that could potentially enable the model
to handle larger pose and scale variations. We could also leverage approaches
like warping as in [32], to further improve the details in the generated clothing.
Acknowledgements: This work was partially funded by Adobe Research and
NSF award 1561968
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