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Abstract. Triplet loss, popular for metric learning, has made a great
success in many computer vision tasks, such as fine-grained image clas-
sification, image retrieval, and face recognition. Considering that the
number of triplets grows cubically with the size of training data, triplet
selection is thus indispensable for efficiently training with triplet loss.
However, in practice, the training is usually very sensitive to the selec-
tion of triplets, e.g., it almost does not converge with randomly selected
triplets and selecting the hardest triplets also leads to bad local minima.
We argue that the bias in the selection of triplets degrades the per-
formance of learning with triplet loss. In this paper, we propose a new
variant of triplet loss, which tries to reduce the bias in triplet selection by
adaptively correcting the distribution shift on the selected triplets. We
refer to this new triplet loss as adapted triplet loss. We conduct a number
of experiments on MNIST and Fashion-MNIST for image classification,
and on CARS196, CUB200-2011, and Stanford Online Products for im-
age retrieval. The experimental results demonstrate the effectiveness of
the proposed method.
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1 Introduction

Deep metric learning aims to learn a similarity or distance metric which enjoys
a small intra-class variation and a large inter-class variation [42]. Triplet loss is
a popular loss function for deep metric learning and has made a great success in
many computer vision tasks, such as fine-grained image classification [39], image
retrieval [17, 22], person re-identification [6, 14], and face recognition [34, 31].
Recently, deep metric learning approaches employing triplet loss have attracted a
lot of attention due to their efficiency for dealing with enormous of labels, e.g., the
extreme multi-label classification problem [32]. More specifically, for conventional
classification approaches, the number of parameters will increase linearly with
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Fig. 1: The pipeline of triplet loss based deep metric learning. In the first stage, a
mini-batch is sampled from the training data, which usually contains k identities
with several images per identity. Deep neural networks then are used to learn
a feature embedding, e.g., a 128-D feature vector. In the third stage, a subset
of triplets are selected using some triplet selection methods. Lastly, the loss is
evaluated using the selected triplets.

the number of labels, and it is impractical to learn an N-way softmax classifier
with millions of labels [29]. However, with triplet loss, deep metric learning is able
to efficiently deal with an extreme multi-label classification problem by learning
a compact embedding, which is known as the large margin nearest neighbor
(LMNN) classification [42]. As a result, deep metric learning exploiting triplet
loss is very efficient for applications with enormous labels, e.g., the number of
objects in image retrieval [17], the number of identities in face recognition [34]
and person re-identification [14].

To learn a discriminative feature embedding, triplet loss maximizes the mar-
gin between the intra-class distance and the inter-class distance. As a result,
for each triplet (xa, xp, xn), where xa is called the anchor point, xp is called
the positive point having the same label with xa, and xn is called the negative
point having a different label, the intra-class distance d(xa, xp) will be smaller
than the inter-class distance d(xa, xn) in the learned embedding space. As the
number of triplets grows cubically with the size of training data, triplet selection
thus is indispensable for efficiently training with triplet loss. Specifically, triplet
selection usually works in an online manner, i.e., triplets are constructed within
each mini-batch [34], and we describe a typical pipeline of deep metric learning
using triplet loss in Fig. 1.

However, the performance of triplet loss is heavily influenced by triplet se-
lection methods [6, 14], i.e., training with randomly selected triplets almost does
not converge while training with the hardest triplets often leads to a bad lo-
cal solution [34]. To ensure fast convergence, it is crucial to select “good” hard
triplets [34] and a variety of triplet selection methods have been designed in dif-
ferent applications [39, 17, 34, 14]. Although selecting hard triplets leads to fast
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Fig. 2: An example illustrating the distribution shift in triplet selection. In online
triplet selection, all triplets DT are constructed from each mini-batch and will
induce a dataset D̂T . For the selected triplets DS , they also induce a dataset D̂S .
We evaluate the distribution shift between DS and DT using the distribution
shift between D̂S and D̂T .

convergence, it has the risk of introducing a selection bias, which is an essen-
tial problem for learning. A triplet selection method thus needs to balance the
trade-off between mining hard triplets and introducing selection bias. In con-
trast to struggling with this trade-off by carefully selecting triplets, we address
this problem by directly minimizing the selection bias. More specifically, let DT

denote all possible triplets and DS indicate the subset of selected triplets from
DT . If the triplet selection is unbiased, DS and DT then share the same distri-
bution. Otherwise, we can correct the bias in triplet selection by minimizing the
distribution shift between DS and DT .

The problem of distribution shift falls within the scope of domain adaption
[3, 16], which arises when learning a predictor from the source domain S while
the target domain T changes. In learning with triplet loss, the model is trained
using selected triplets DS while the target is to learn a model using all possible
triplets DT . To measure the distribution shift between DS and DT , we define
a set of triplet-induced data, i.e., given a set of triplets, e.g., DS , the triplet-
induced data D̂S is defined as follows:

D̂S = {(xa
i , y

a
i ), (x

p
i , y

p
i ), (x

n
i , y

n
i )| ∀(x

a
i , x

p
i , x

n
i ) ∈ DS}, (1)

where yi are the corresponding labels of xi. The induced data D̂T can be
defined similarly. We give an example of the distribution shift between DS

and DT in Fig. 2. To deal with the problem of distribution shift, distribution
matching approaches learn a domain invariant representation and have been
widely employed [3, 2, 30]. Due to triplet loss often involves lots of labels and
inspired by the methods in [48, 11], we try to minimize the distribution shift be-
tween D̂S and D̂T by learning a conditional invariant representation Φ(X), i.e.,
PS(Φ(X)|Y ) ≈ P T (Φ(X)|Y ), where X and Y stand the random variables for
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data and label, respectively. More specifically, we propose a distribution match-
ing loss function by employing Maximum Mean Discrepancy (MMD) [16], which
measures the difference between PS(Φ(X)|Y ) and P T (Φ(X)|Y ). As a result, we
learn a discriminative and conditional invariant embedding by jointly training
with the triplet loss and the distribution matching loss.

In this paper, we first introduce the problem of triplet selection bias for
learning with triplet loss. We then address this problem by reducing distribution
shift between the triplet-induced data D̂S and D̂T . As the proposed distribution
matching loss adaptively corrects the distribution shift, we refer to this new
variant of triplet loss as adapted triplet loss. Lastly, we conduct a number of
experiments on MNIST [23] and Fashion-MNIST [45] for image classification, on
CARS196 [20], CUB200-2011 [38], and Stanford Online Products [29] for image
retrieval. The experimental results demonstrate the effectiveness of the proposed
method.

2 Related Work

Deep Metric Learning and Triplet Loss. Many problems in machine learn-
ing and computer vision depend heavily on learning a distance metric [42]. In-
spired by the great success of deep learning [21], deep neural networks have been
widely used to learn a discriminative feature embedding [39, 15]. Deep metric
learning employing triplet loss raises a lot of attention due to its impressive per-
formance on FaceNet [34] for face verification and recognition. After that, triplet
loss has been widely used to learn a discriminative embedding for a variety of
applications, such as image classification [39] and image retrieval [17, 22, 49, 12,
47]. A majority of applications for triplet loss lies in visual object recognition,
such as action recognition [33], vehicle recognition [26], place recognition [1], 3d
pose recognition [43], face recognition [34, 31, 9], and person re-identification [10,
46, 6, 25, 4, 14].

Triplet Selection Methods. Triplet selection is the key for the success of
triplet loss and a variety of triplet selection methods have been used in different
applications [39, 15, 34, 31, 40, 7]. More specifically, in the deep ranking model
proposed by [39], triplets are selected according to the pair-wise relevance score.
In [40], the triplets are selected using the top k triplets in each mini-batch based
on the margin d(xa, xp) − d(xa, xn). In [15], it selects only hard triplets, i.e.,
d(xa, xp) < d(xa, xn), while [34, 31] select semi-hard triplets which violate the
triplet constraint, i.e., d(xa, xp) + α < d(xa, xn), where α is a positive scalar.
Unlike [34], which defines semi-hard triplet using moderate negatives, [35] se-
lect semi-hard triplets based on moderate positives. [7] proposes an online hard
negative mining method for triplet selection to boost the performance on triplet
loss. In [14], it proposes a batch-hard triplet selection method, i.e., it first select
a set of hard anchor-positive pairs, and it then select hardest negatives within
the mini-batch. Recently, [44] proposes a weighted sampling method to address
the sampling matters in deep metric learning.
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Domain Adaptation. Domain adaptation methods can be divided into
four categories due to different assumptions about how the distribution shifts
across domains. (1) Covariate shift [16] assumes the marginal distribution P (X)
changes across domains while the conditional distribution P (Y |X) stays the
same. (2) Model shift [41] assumes that both P (X) and P (Y |X) independently
change across domains. (3) Target shift [48] assumes that the marginal distribu-
tion P (Y ) shifts wile P (X|Y ) stays the same. (4) Generalized target shift [11,
27, 24] assumes that both P (Y ) and P (X|Y ) independently change. Since triplet
loss is widely used for extreme multi-label classification problems, we model the
triplet selection bias by the change of P (X|Y ) in this paper.

3 Formulation

In this section, we first introduce triplet loss for deep metric learning and a
widely used triplet selection method, i.e., semi-hard triplets [34]. We then for-
mulate the problem of triplet selection bias as the distribution shift problem on
triplet induced data. To minimize the distribution shift, we propose a distribu-
tion matching loss, which jointly works with the triplet loss to adaptively correct
the distribution shift. As a result, we refer to this new triplet loss as adapted
triplet loss.

3.1 Triplet Loss for Deep Metric Learning

Let X,Y denote two random variables, which indicate data and label, respec-
tively. Let D denote a set of training data sampled from P (X,Y ), i.e., D =
{(xi, yi)| (xi, yi) ∼ P (X,Y )}. Metric learning aims to learn a distance function
that assigns small (or large) distance to a pair of similar (or dissimilar) exam-
ples. A widely used distance metric, i.e., the Mahalanobis distance, is defined as
follows:

d2K(xi, xj) = (xi − xj)
⊤K(xi − xj), (2)

where K is a symmetric positive semi-definite matrix. As K can be decomposed
as K = L⊤L, we then have

d2K(xi, xj) = ‖L(xi − xj)‖
2
2 = ‖x′

i − x′
j‖

2
2, (3)

where x′
i = Lxi and x′

j = Lxj . Inspired by this, deep metric learning uses deep
neural networks to learn a feature embedding x′ = Φ(x), which generalizes the
linear transformation x′ = Lx to a non-linear transformation Φ(x). That is, the
learned distance metric is

d2K(xi, xj) = ||Φ(xi)− Φ(xj)||
2
2. (4)

To learn a discriminative feature embedding Φ(x), i.e., intra-class distance is
smaller than inter-class distance [42], triplet loss is defined as follows:

L∗
triplet =

∑

(xa,xp,xn)∈DT

[d2K(xa, xp)− d2K(xa, xn) + α]+, (5)
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where [·]+ = max(0, ·), α ≥ 0 is the margin, and DT is a set of triplets con-
structed from the original training data D, i.e.,

DT = {(xa, xp, xn)| ya = yp and ya 6= yn}. (6)

3.2 Triplet Selection Bias

Let DT denote all possible triplets constructed within a mini-batch and DS

denote the subset of selected triplets, i.e., DS ⊆ DT . More specifically, given a
mini-batch of training data with k identities and c images per identity, there will
be k(k − 1)c2(c − 1) possible triplets in total. As the number of triplets grows
cubically with the number of training data, triplet loss usually is evaluated using
only a selected subset of the total triplets. A typical triplet selection methods
used in [34], which is referred to as semi-hard triplet selection, can be described
as follows: it uses all possible anchor-positive pairs, i.e., kc(c− 1) pairs in total.
For each anchor-positive pair (xa, xp), a semi-hard negative xn then is randomly
selected from all negatives under the constraint

d2K(xa, xp) ≤ d2K(xa, xn) < d2K(xa, xp) + α. (7)

That is, triplet loss is evaluated on DS , i.e.,

Ltriplet =
∑

(xa,xp,xn)∈DS

[d2K(xa, xp)− d2K(xa, xn) + α]+, (8)

As a result, there will be always a distribution shift between DS and DT . To
measure the distribution shift between DS and DT , we define the triplet-induced
data D̂S for DS as follows:

D̂S = {(xa, ya), (xp, yp), (xn, yn)| ∀(xa, xp, xn) ∈ DS}. (9)

Similarly, we also define D̂T as the data induced by DT . If DS and DT shares
the same distribution P (xa, xp, xn), we then have, ∀x ∈ D̂S ,

PS(x) =
∑

i∈{a,p,n}

P (xi) ∗ 1{x = xi} = P T (x). (10)

where PS(x) and P T (x) are the probability density functions for D̂S and D̂T

respectively. That is, there will be no distribution shift between the triplet-
induced data D̂S and D̂T . As a result, we use the difference between D̂S and
D̂T as a measure the distribution shift in triplet loss.

3.3 Adapted Triplet Loss

To correct the triplet selection bias, we thus try to minimize the distribution shift
between D̂S and D̂T during learning the representation. Let x ∈ X denote an
input data and Φ(x) denote the representation learned by deep neural networks,
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input space embedding space

Fig. 3: An example illustrating the conditional invariant representation. There
is a distribution shift between the source domain and the target domain in the
input space, i.e., PS(X|Y ) 6= P T (X|Y ). By learning a conditional invariant
representation Φ(x), both source domain and target domain shares similar dis-
tribution in the embedding space, i.e., PS(Φ(X)|Y ) = P T (Φ(X)|Y ). That is,
the embedding Φ(x) generalizes well on the target domain while it is learned on
source domain. Intuitively, the source domain consists of the selected triplets DS

while the target domain consists of all triplets DT . That is, we learn a condi-
tional invariant embedding using selected triplets and it will generalize well on
all triplets.

i.e., a dimension fixed feature vector. Inspired by [48, 11], we learn a shared
conditional invariant representation between D̂S and D̂T , i.e.,

PS(Φ(X)|Y ) = P T (Φ(X)|Y ). (11)

See Fig. 3 for an example of the conditional invariant representation. Maxi-
mum Mean Discrepancy (MMD) has been widely used to estimate the difference
between two distributions [16] and we thus use the conditional mean feature
embedding to estimate the difference between PS(Φ(X)|Y ) and P T (Φ(X)|Y ).
As a result, the distribution matching loss can be defined as follows:

Lmatch =
∑

y

‖ΦS
y − ΦT

y ‖
2
2, (12)



8 B. Yu, T. Liu, M. Gong, C. Ding, and D. Tao

where ΦS
y and ΦT

y are class-specific mean feature embeddings on D̂S and D̂T

respectively, i.e.,

ΦS
y =

∑

(X,Y=y)∈D̂S

PS(Φ(X)|Y ) ∗ Φ(X) (13)

and

ΦT
y =

∑

(X,Y=y)∈D̂T

P T (Φ(X)|Y ) ∗ Φ(X). (14)

To correct the distribution shift in learning with triplet loss, we thus learn a
discriminative and conditional invariant feature embedding by jointly minimizing
the triplet loss as well as the distribution matching loss, i.e.,

L = Ltriplet + λ ∗ Lmatch, (15)

where λ is a trade-off parameter. Considering that this new variant of triplet loss
adaptively corrects the triplet selection bias, we refer to it as adapted triplet loss.

3.4 Semi-supervised Adapted Triplet Loss

Unlabeled data are usually very helpful for domain adaptation. We believe that
the unlabeled data will also be helpful for correcting the triplet selection bias.
To scale the adapted triplet loss for exploiting large scale unlabeled data, we
extend it for the semi-supervised setting.

Given a set of labeled data D1 and a set of unlabeled data D2. Let DT1

denote the all triplets constructed from D1 and DS denote the subset of selected
triplets, i.e., DS ⊆ DT1

. Let DT2
be the latent triplets constructed using the un-

labeled data D2, which is actually unavailable since we do not know the latent
labels of D2. Different from the supervised setting, in which we learn a condi-
tional invariant representation among DS and DT1

, we consider how to learn a
conditional invariant representation between DS , DT1

, and DT2
, i.e.,

PS(Φ(X)|Y ) = P T1(Φ(X)|Y ) = P T2(Φ(X)|Y ). (16)

Given the target PS(Φ(X)|Y ) = P T2(Φ(X)|Y ), we then have

∑

y

P T2(Φ(X)|Y )P T2(Y ) =
∑

y

PS(Φ(X)|Y )P T2(Y ). (17)

That is, if we know the class ratio P T2(Y ) for triplet-induced data D̂T2
, we are

able to estimate the difference between PS(Φ(X)|Y ) and P T2(Φ(X)|Y ). Inspired
by [18], we estimate the class ratio P T2(Y ) by converting it into an optimization
problem, i.e.,

θT2 = argmin
θ

‖
∑

y

θT2

y ∗ ΦS
y − ΦT2‖22, s.t.

∑

y

θy = 1, (18)
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where ΦT2 = E
P

T2

X

[Φ(X)] and θT2

y = P T2(Y = y). This optimization problem

can be solved as follows:

θT2

1:|Y |−1 = (A⊤A)−1A⊤B, and θT2

0 = 1−

|Y |−1∑

y=1

θT2

y , (19)

where A = [ΦS
1 − ΦS

0 , . . . , Φ
S
|Y |−1 − ΦS

0 ] and B = ΦT2 . We can then define the
distribution matching loss in a semi-supervised manner, i.e.,

Lsemi-match = ‖
∑

y

θT2

y ∗ ΦS
y − ΦT2‖22. (20)

4 Experiment

In this section, we evaluate the proposed adapted triplet loss function on im-
age classification and retrieval. For image classification, we use MNIST [23] and
Fashion-MNIST [45] datasets. The MNIST dataset contains 60,000 training ex-
amples and 10,000 test examples, in which all examples are 28×28 grayscale
images of handwritten digits. The Fashion-MNIST dataset contains a set of
28×28 grayscale article images and shares the same structure with the MNIST
dataset, i.e., 60,000 training examples and 10,000 test examples. For image re-
trieval, we use three popular datasets, CARS196 [20], CUB200-2011 [38], and
Stanford Online Products [29]. The CARS196 dataset contains 16,185 images
of 196 different car models, the CUB200-2011 dataset contains 11,788 images of
200 different species of birds, and the Stanford Online Products contains 120,053
images of 22,634 different products.

4.1 Implementation Details

We implement the proposed method using Caffe [19]. Following [34], we always
use a L2 normalization layer before the triplet loss layer. We use the margin α =
0.2 in all experiments. We train our models using the stochastic gradient descent
(SGD) algorithm with momentum 0.9 and weight decay 2e-5. For experiments on
MNIST and Fashion-MNIST datasets, we learn 64-D feature embeddings using
a modified LeNet [23]. More specifically, we use 3×3 filters in all convolutional
layers and replace all activation layers with the PReLU [13] layer. The batch
size is set to 256, which is large enough for both MNIST and Fashion-MNIST
datasets, i.e., we are able to select enough triplets from each mini-batch. We use
the learning rate 0.001 and the maximum iterations are set to 20k and 50k for
MNIST and Fashion-MNIST, respectively.

For experiments on CARS196, CUB200-2011, and Stanford Online Products,
we use GoogLeNet [37] as our base network and all layers except the last fully
connected layer are initialized from the model trained on ImageNet [8]. The
last fully connected layer is changed to learn 128-D feature embeddings and is
initialized with random weights. All training images are resized to 256×256 and
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randomly cropped to 224×224. We use a learning rate 0.0005 with the batch size
120 and the maximum training iterations are set to 15k iterations on CARS196,
20k iterations on CUB200-2011, and 50k iterations on Stanford Online Products
datasets. To ensure enough triplets in each mini-batch, we prepare the training
data using a similar method with [34], i.e., each mini-batch is randomly sampled
from 20 classes with 6 images per class.

4.2 Experiment on Image Classification

In this subsection, we describe the experimental results on MNIST and Fashion-
MNIST datasets. To demonstrate the effectiveness of the proposed method, we
compare the classification accuracy of models trained using the original triplet
loss function (baseline) and the adapted triplet loss function. The evaluation
metric can be described as follows: to learn a fixed dimensional feature embed-
ding Φ(x), we train our models using the original triplet loss function and the
adapted triplet loss function respectively.
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Fig. 4: Results on MNIST dataset. In figure (a), we use λ = 2.0 for adapted
triplet loss and compare its performance with the original triplet loss for every
100 iterations. In figure (b), we compare the test accuracy for using different λ.

For testing, we first evaluate the conditional mean embedding E [Φ(x)|y], i.e.,
the mean point in embedding space, for each class y using the training data. For
each input x in test set, we then assign it to a class ŷ according to the nearest
mean point, i.e.,

ŷ = argmin
y

‖Φ(x)− E[(Φ(x)|y)]‖22 (21)

We demonstrate the results on MNIST dataset in Fig. 4. More specifically, we
find that: in figure (a), the adapted triplet loss brings improvement after 5k itera-
tions. Possible explanations for this improvement can be described as follows: for
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the original triplet loss, the gradient might be dominated by the noise triplets or
the hard triplets from some specific classes while the distribution matching loss
can adaptively corrects the triplet selection bias between selected triplets and all
possible triplets. That is, the adapted triplet loss will generate more balanced
gradients for each iteration. Another reason is that the distribution matching
loss acts as a regularizer for the original triplet loss, which reduces the risk of
overfitting. We evaluate the performance for the adapted triplet loss using dif-
ferent loss weight λ, i.e., λ = 0, 0.1, 0.5, 1.0, 2.0, 5.0 in figure (b). Specifically,
we use λ = 0 for the original triplet loss, which is a special case of the adapted
triplet loss. We find that a trade-off on λ are required for using adapted triplet
loss to learn a discriminative and conditional invariant embedding. Furthermore,
we demonstrate similar results on Fashion-MNIST in Fig. 5.

0 10k 20k 30k 40k 50k
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Fig. 5: Results on Fashion-MNIST dataset. In figure (a), we use λ = 2.0. For the
original triplet loss, the test accuracy is reduced after 40k iterations, while the
adapted triplet loss does not suffer from the problem of overfitting.

To demonstrate the feature embeddings learned by both the original triplet
loss and the adapted triplet loss, we use t-SNE [28], which has been widely used
for the visualization of high dimensional data, to convert embeddings into 2D
space. In Fig. 6, we show the embeddings learned by the adapted triplet loss.
Comparing with the embeddings learned by the original triplet loss, we find
that the embedding learned by the adapted triplet loss forms uniform margins
between different classes, while the embedding learned by the original triplet loss
fails to keep a clear margins between some classes.

4.3 Experiment on Image Retrieval

In this subsection, we evaluate the adapted triplet loss on image retrieval. For
CARS196, CUB200-2011, and Stanford Online Products datasets, we use similar
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(a) Original
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(b) Adapated

Fig. 6: An example for the visualization of feature embeddings learned by the
adapted triplet loss as well as the baseline model, i.e., the original triplet loss.
We use the model trained on the training set of MNIST and show the learned
embeddings on the test set. For the embedding learned by the original triplet
loss, the margin between the two classes in the dash-line rectangle area is not
large enough.

train/test splits with [29]. More specifically, for CARS196 dataset, we use all 8054
images from the first 98 classes as the training data and the rest as test data
(8131 images); For CUB200-2011 dataset, we use the data from the first 100
classes as the training data (5864 images) and the rest 5924 images for test; For
Stanford Online Products dataset, we use the standard train/test split provided
in the dataset, i.e., 59,551 images of the first 11,318 classes for training and the
rest 60,502 images of 11,316 classes for testing.

For all experiments on image retrieval, we use the standard Recall@K metric,
i.e., the same protocol used in [29]. More specifically, the Recall@K metric can
be described as follows: given a query image and its K nearest neighbors, if at
least one example hit the query image, i.e., with the same label, the recall rate is
equal to 1, otherwise the recall rate is 0. We then report the mean recall rate on
all query images. For CARS196, CUB200-2011, and Stanford Online Products
datasets, we train all models using only the training split and use all test images
as the query images to evaluate the recall rate.

We demonstrate the recall rate on CARS196, CUB200-2011, and Stanford
Online Products datasets in Table. 1. We can see that the adapted triplet loss
outperforms the baseline with all differentK values. The maximum improvement
usually appears at K = 1, which is the most valuable component for image
retrieval. Another observation is that the adapted triplet loss usually recalls
more positive neighbors. Furthermore, we demonstrate the retrieval results on
CARS196 and CUB200-2011 datasets in Fig. 7. More specifically, we select four
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Loss Function R@1 R@2 R@3 R@4 R@5 R@10 R@20

Original (λ = 0) 0.7781 0.8582 0.8903 0.9105 0.9217 0.9523 0.9716

Adapted (λ = 0.001) 0.7858 0.8587 0.8921 0.9094 0.9228 0.9525 0.9715

Adapted (λ = 0.005) 0.7912 0.8666 0.8966 0.9133 0.9250 0.9535 0.9716

Adapted (λ = 0.010) 0.7917 0.8627 0.8939 0.9135 0.9237 0.9570 0.9745

Adapted (λ = 0.050) 0.7917 0.8627 0.8939 0.9135 0.9237 0.9570 0.9745

Adapted (λ = 0.100) 0.7631 0.8463 0.8774 0.8996 0.9130 0.9449 0.9665

(a) CARS196

Loss function R@1 R@2 R@3 R@4 R@5 R@10 R@20

Original (λ = 0) 0.4450 0.5724 0.6435 0.6913 0.7275 0.8207 0.8893

Adapted (λ = 0.005) 0.4439 0.5763 0.6464 0.6884 0.7250 0.8253 0.8964

Adapted (λ = 0.010) 0.4660 0.5861 0.6555 0.6997 0.7343 0.8288 0.9024

Adapted (λ = 0.100) 0.4512 0.5768 0.6475 0.6904 0.7230 0.8160 0.8902

Adapted (λ = 0.500) 0.4483 0.5682 0.6381 0.6879 0.7245 0.8114 0.8890

(b) CUB200-2011

Loss function R@1 R@2 R@3 R@4 R@5 R@10 R@100

Original (λ = 0) 0.6274 0.6865 0.7170 0.7384 0.7524 0.7955 0.9050

Adapted (λ = 0.010) 0.6303 0.6882 0.7206 0.7416 0.7550 0.7982 0.9071

Adapted (λ = 0.050) 0.6303 0.6876 0.7191 0.7386 0.7530 0.7964 0.9063

Adapted (λ = 0.100) 0.6297 0.6874 0.7183 0.7378 0.7526 0.7957 0.9044

(c) Stanford Online Products

Table 1: Recall rate on CARS196, CUB200-2011, and Stanford Online Products
datasets. For the adapted triplet loss, we train multiple models on all datasets
using different λ, i.e., we use λ = 0.001, 0.005, 0.01, 0.05, 0.1 on CARS196,
λ = 0.005, 0.01, 0.1, 0.5 on CUB200-2011, and λ = 0.01, 0.05, 0.1 on Stanford
Online Products. For the original triplet loss, we use the adapted triplet loss
with λ = 0.

query images and 10 retrieval results for each query image using the adapted
triplet loss and the original triplet loss respectively.

5 Conclusion

In this paper, we address the problem of triplet selection bias for triplet loss
by using a domain adaption method. We propose an adapted triplet loss, which
adaptively corrects the selection bias for the original triplet loss. Considering that
the selection bias is common in deep metric learning, the proposed method can
be extended to a variety of loss functions, e.g., pair-based [36], triplet-based[29],
and quadruplet-based [5] loss functions, which will be the subject of future study.



14 B. Yu, T. Liu, M. Gong, C. Ding, and D. Tao

Query 1 2 3 4 5 6 7 8 9 10

(a) CARS196

(b) CUB200-2011

Fig. 7: Retrieval results on CARS196 and CUB200-2011. The first column is the
query image. For each query image, the first row contains 10 nearest neighbors
for the original triplet loss; The second row contains 10 nearest neighbors for
the adapted triplet loss. We highlight false positive examples with a white/black
cross (best view in color).
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