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Abstract. Omnidirectional cameras offer great benefits over classical cameras

wherever a wide field of view is essential, such as in virtual reality applications

or in autonomous robots. Unfortunately, standard convolutional neural networks

are not well suited for this scenario as the natural projection surface is a sphere

which cannot be unwrapped to a plane without introducing significant distortions,

particularly in the polar regions. In this work, we present SphereNet, a novel

deep learning framework which encodes invariance against such distortions ex-

plicitly into convolutional neural networks. Towards this goal, SphereNet adapts

the sampling locations of the convolutional filters, effectively reversing distor-

tions, and wraps the filters around the sphere. By building on regular convolu-

tions, SphereNet enables the transfer of existing perspective convolutional neural

network models to the omnidirectional case. We demonstrate the effectiveness of

our method on the tasks of image classification and object detection, exploiting

two newly created semi-synthetic and real-world omnidirectional datasets.

1 Introduction

Over the last years, omnidirectional imaging devices have gained in popularity due to

their wide field of view and their widespread applications ranging from virtual reality

to robotics [10,16,21,27,28]. Today, omnidirectional action cameras are available at an

affordable price and 360◦ viewers are integrated into social media platforms. Given the

growing amount of spherical imagery, there is an increasing interest in computer vision

models which are optimized for this kind of data.

The most popular representation of 360◦ images is the equirectangular projection

where latitude and longitude of the spherical image are mapped to horizontal and ver-

tical grid coordinates, see Figs. 1+2 for an illustration. However, the equirectangular

image representation suffers from heavy distortions in the polar regions which implies

that an object will appear differently depending on its latitudinal position. This presents

a challenge to modern computer vision algorithms, such as convolutional neural net-

works (CNNs) which are the state-of-the-art solution to many computer vision tasks.

While CNNs are capable of learning invariances to common object transformations

and intra-class variations, they would require significantly more parameters, training

samples and training time to learn invariance to these distortions from data. This is un-

desirable as data annotation is time-consuming and annotated omnidirectional datasets
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(a) 360◦ Cameras (b) 360◦ Image (c) Regular Kernel (d) SphereNet Kernel

Fig. 1: Overview. (a+b) Capturing images with fisheye or 360◦ action camera results in

images which are best represented on the sphere. (c) Using regular convolutions (e.g.,

with 3 × 3 filter kernels) on the rectified equirectangular representation (see Fig. 2b)

suffers from distortions of the sampling locations (red) close to the poles. (d) In contrast,

our SphereNet kernel exploits projections (red) of the sampling pattern on the tangent

plane (blue), yielding filter outputs which are invariant to latitudinal rotations.

are scarce and smaller in size than those collected for the perspective case. An attrac-

tive alternative is therefore to encode invariance to geometric transformations directly

into a CNN, which has been proven highly efficient in reducing the number of model

parameters as well as the required number of training samples [4, 29].

In this work, we present SphereNet, a novel framework for processing omnidirec-

tional images with convolutional neural networks by encoding distortion invariance into

the architecture of CNNs. SphereNet adjusts the sampling grid locations of the convolu-

tional filters based on the geometry of the spherical image representation, thus avoiding

distortions as illustrated in Figs. 1+2. The SphereNet framework applies to a large num-

ber of projection models including perspective, wide-angle, fisheye and omnidirectional

projection. As SphereNet builds on regular convolutional filters, it naturally enables the

transfer of CNNs between different image representations by adapting the sampling

locations of the convolution kernels. We demonstrate this by training object detectors

on perspective images and transferring them to omnidirectional inputs. We provide ex-

tensive experiments on semi-synthetic as well as real-world datasets which demonstrate

the effectiveness of the proposed approach for image classification and object detection.

In summary, this paper makes the following contributions:

• We introduce SphereNet, a framework for learning spherical image representations

by encoding distortion invariance into convolutional filters. SphereNet retains the

original spherical image connectivity and, by building on regular convolutions, en-

ables the transfer of perspective CNN models to omnidirectional inputs.

• We improve the computational efficiency of SphereNet using an approximately uni-

form sampling of the sphere which avoids oversampling in the polar regions.

• We create two novel semi-synthetic and real-world datasets for object detection in

omnidirectional images.

• We demonstrate improved performance as well as SphereNet’s transfer learning

capabilities on the tasks of image classification and object detection and compare

our results to several state-of-the-art baselines.
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2 Related Work

There are few deep neural network architectures specifically designed to operate on

omnidirectional inputs. In this section, we review the most related approaches.

Khasanova et al. [14] propose a graph-based approach for omnidirectional image

classification. They represent equirectangular images using a weighted graph, where

each image pixel is a vertex and the weights are designed to minimize the difference

between filter responses at different image locations. This graph structure is processed

by a graph convolutional network, which is invariant to rotations and translations [15].

While a graph representation solves the problem of discontinuities at the borders of an

equirectangular image, graph convolutional networks are limited to small graphs and

image resolutions (50 × 50 pixels in [15]) and have not yet demonstrated recognition

performance comparable to regular CNNs on more challenging datasets. In contrast,

our method builds on regular convolutions, which offer state-of-the-art performance for

many computer vision tasks, while also retaining the spherical image connectivity.

In concurrent work, Cohen et al. [3] propose to use spherical CNNs for classification

and encode rotation equivariance into the network. However, often full rotation invari-

ance is not desirable: similar to regular images, 360◦ images are mostly captured in one

dominant orientation (i.e., it is rare that the camera is flipped upside-down). Incorporat-

ing full rotation invariance in such scenarios reduces discriminative power as evidenced

by our experiments. Furthermore, unlike our work which builds on regular convolutions

and is compatible with modern CNN architectures, it is non-trivial to integrate either

graph or spherical convolutions into network architectures for more complex computer

vision tasks like object detection. In fact, no results beyond image classification are pro-

vided in the literature. In contrast, our framework readily allows for adapting existing

CNN architectures for object detection or other higher-level vision tasks to the omnidi-

rectional case. While currently only few large omnidirectional datasets exist, there are

many trained perspective CNN models available, which our method enables to transfer

to any omnidirectional vision task.

Su et al. [30] propose to process equirectangular images with regular convolutions

by increasing the kernel size towards the polar regions. However, this adaptation of the

convolutional filters is a simplistic approximation of distortions in the equirectangular

representation and implies that weights can only be shared along each row, resulting in

a significant increase in model parameters. Thus, this model is hard to train from scratch

and kernel-wise pre-training against a trained perspective model is required. In contrast,

we retain weight sharing across all rows and columns so that our model can be trained

directly end-to-end. At the same time, our method better approximates the distortions

in equirectangular images and allows for perspective-to-omnidirectional representation

transfer.

One way of mitigating the problem of learning spherical representations are cube

map projections as considered in [19, 22]. Here, the image is mapped to the six faces

of a cube which are considered as image planes of six virtual perspective cameras and

processed with a regular CNN. However, this approach does not remove distortions but

only minimizes their effect. Besides, additional discontinuities at the patch boundaries

are introduced and post-processing may be required to combine the individual outputs
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of each patch. We avoid these problems by providing a suitable representation for spher-

ical signals which can be directly trained end-to-end.

Besides works on distortion invariance, several works focus on invariances to geo-

metric transformations such as rotations or flips. Jaderberg et al. [11], introduce a sep-

arate network which learns to predict the parameters of a spatial transformation of an

input feature map. Scattering convolution networks [1,25] use predefined wavelet filters

to encode stable geometric invariants into networks while other recent works encode in-

variances into learned convolutional filters [4, 9, 29, 31]. These works are orthogonal to

the presented framework and can be advantageously combined.

Several recent works also consider adapting the sampling locations of convolutional

networks, either dynamically [5] or statically [12, 18]. Unlike our work, these methods

need to learn the sampling locations during training, which requires additional model

parameters and training steps. In contrast, we take advantage of the geometric properties

of the camera to inject this knowledge explicitly into the network architecture.

3 Method

This section introduces the proposed SphereNet framework. First, we describe the adap-

tation of the sampling pattern to achieve distortion invariance on the surface of the

sphere (Section 3.1). Second, we propose an approximation which uniformly samples

the sphere to improve the computational efficiency of our method (Section 3.2). Finally,

we present details on how to incorporate SphereNet into a classification model (Sec-

tion 3.3) as well as how to perform object detection on spherical inputs (Section 3.4).

3.1 Kernel Sampling Pattern

The central idea of SphereNet is to lift local CNN operations (e.g. convolution, pooling)

from the regular image domain to the sphere surface where fisheye or omnidirectional

images can be represented without distortions. This is achieved by representing the

kernel as a small patch tangent to the sphere as illustrated in Fig. 1d. Our model focuses

on distortion invariance and not rotation invariance, as in practice 360◦ images are

mostly captured in one dominant orientation. Thus, we consider upright patches which

are aligned with the great circles of the sphere.

More formally, let S be the unit sphere with S2 its surface. Every point s = (φ, θ) ∈
S2 is uniquely defined by its latitude φ ∈ [−π

2 ,
π
2 ] and longitude θ ∈ [−π, π]. Let

further Π denote the tangent plane located at sΠ = (φΠ , θΠ). We denote a point on Π

by its coordinates x ∈ R
2. The local coordinate system of Π is hereby centered at s and

oriented upright. Let Π0 denote the tangent plane located at s = (0, 0). A point s on

the sphere is related to its tangent plane coordinates x via a gnomonic projection [20].

While the proposed approach is compatible with convolutions of all sizes, in the

following we consider a 3 × 3 kernel, which is most common in state-of-the-art archi-

tectures [8, 26]. We assume that the input image is provided in equirectangular format

which is the de facto standard representation for omnidirectional cameras of all form

factors (e.g. catadioptric, dioptric or polydioptric). In Section 3.2 we consider a more

efficient representation that improves the computational efficiency of our method.
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Fig. 2: Kernel Sampling Pattern at φ = 0 (blue) and φ = 1.2 (red) in spherical (a) and

equirectangular (b) representation. Note the distortion of the kernel at φ = 1.2 in (b).

The kernel shape is defined so that its sampling locations s(j,k), with j, k ∈ {−1, 0, 1}
for a 3× 3 kernel, align with the step sizes ∆θ and ∆φ of the equirectangular image at

the equator. This ensures that the image can be sampled at Π0 without interpolation:

s(0,0) = (0, 0) (1)

s(±1,0) = (±∆φ, 0) (2)

s(0,±1) = (0,±∆θ) (3)

s(±1,±1) = (±∆φ,±∆θ) (4)

The position of these filter locations on the tangent plane Π0 can be calculated via the

gnomonic projection [20]:

x(φ, θ) =
cosφ sin(θ − θΠ0

)

sinφΠ0
sinφ+ cosφΠ0

cosφ cos(θ − θΠ0
)

(5)

y(φ, θ) =
cosφΠ0

sinφ− sinφΠ0
cosφ cos(θ − θΠ0

)

sinφΠ0
sinφ+ cosφΠ0

cosφ cos(θ − θΠ0
)

(6)

For the sampling pattern s(j,k), this yields the following kernel pattern x(j,k) on Π0:

x(0,0) = (0, 0) (7)

x(±1,0) = (± tan∆θ, 0) (8)

x(0,±1) = (0,± tan∆φ) (9)

x(±1,±1) = (± tan∆θ,± sec∆θ tan∆φ) (10)

We keep the kernel shape on the tangent fixed. When applying the filter at a different

location sΠ = (φΠ , θΠ) of the sphere, the inverse gnomonic projection is applied

φ(x, y) = sin−1

(

cos ν sinφΠ +
y sin ν cosφΠ

ρ

)

(11)

θ(x, y) = θΠ + tan−1

(

x sin ν

ρ cosφΠ cos ν − y sinφΠ sin ν

)

where ρ =
√

x2 + y2 and ν = tan−1 ρ.
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Fig. 3: Sampling Locations. This figure compares the sampling locations of SphereNet

(red) to the sampling locations of a regular CNN (blue) at the boundaries of the equirect-

angular image. Note how the SphereNet kernel automatically wraps at the left image

boundary (a) while correctly representing the discontinuities and distortions at the pole

(b). SphereNet thereby retains the original spherical image connectivity which is dis-

carded in a regular convolutional neural network that utilizes zero-padding along the

image boundaries.

The sampling grid locations of the convolutional kernels thus get distorted in the

same way as objects on a tangent plane of the sphere get distorted when projected from

different elevations to an equirectangular image representation. Fig. 2 demonstrates this

concept by visualizing the sampling pattern at two different elevations φ.

Besides encoding distortion invariance into the filters of convolutional neural net-

works, SphereNet additionally enables the network to wrap its sampling locations around

the sphere. As SphereNet uses custom sampling locations for sampling inputs or inter-

mediary feature maps, it is straightforward to allow a filter to sample data across the

image boundary. This eliminates any discontinuities which are present when process-

ing omnidirectional images with a regular convolutional neural network and improves

recognition of objects which are split at the sides of an equirectangular image represen-

tation or which are positioned very close to the poles, see Fig. 3.

By changing the sampling locations of the convolutional kernels while keeping their

size unchanged, our model additionally enables the transfer of CNN models between

different image representations. In our experimental evaluation, we demonstrate how an

object detector trained on perspective images can be successfully applied to the omnidi-

rectional case. Note that our method can be used for adapting almost any existing deep

learning architecture from perspective images to the omnidirectional setup. In general,

our SphereNet framework can be applied as long as the image can be mapped to the unit

sphere. This is true for many imaging models, ranging from perspective over fisheye4

to omnidirectional models. Thus, SphereNet can be seen as a generalization of regular

CNNs which encodes the camera geometry into the network architecture.

Implementation: As the sampling locations are fixed according to the geometry of

the spherical image representation, they can be precomputed for each kernel location at

4 While in some cases the single viewpoint assumption is violated, the deviations are often small

in practice and can be neglected at larger distances.
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every layer of the network. Further, their relative positioning is constant in each image

row. Therefore, it is sufficient to calculate and store the sampling locations once per

row and then translate them. We store the sampling locations in look-up tables. These

look-up tables are used in a customized convolution operation which is based on highly

optimized general matrix multiply (GEMM) functions [13]. As the sampling locations

are real-valued, interpolation of the input feature maps is required. In our experiments,

we compare nearest neighbor interpolation to bilinear interpolation. For an arbitrary

sampling location (px, py) in a feature map f , interpolation is defined as:

f(px, py) =
H
∑

n

W
∑

m

f(m,n)g(px,m)g(py, n) (12)

with a bilinear interpolation kernel:

g(a, b) = max(0, 1− |a− b|) (13)

or a nearest neighbor kernel :

g(a, b) = δ(⌊a+ 0.5⌋ − b) (14)

where δ(·) is the Kronecker delta function.

3.2 Uniform Sphere Sampling

In order to improve the computational efficiency of our method, we investigate a more

efficient sampling of the spherical image. The equirectangular representation oversam-

ples the spherical image in the polar regions (see Fig. 4a), which results in near duplicate

image processing operations in this area. We can avoid unnecessary computation in the

polar regions by applying our method to a representation where data is stored uniformly

on the sphere, in contrast to considering the pixels of the equirectangular image.

To sample points evenly from a sphere, we leverage the method of Saff and Kuijlaars

[24] as it is fast to compute and works with an arbitrary number of sampling points

N , including large values of N . More specifically, we obtain points along a spiral that

encircles the sphere in a way that the distance between adjacent points along the spiral is

approximately equal to the distance between successive coils of the spiral. As visualized

in Fig. 4 for an equirectangular image with Ne = 20× 10 = 200 sampling points, this

results in a sampling grid of N = 127 points with a similar sampling density to the

equirectangular representation at the equator, while significantly reducing the number

of sampling points at the poles.

To minimize the loss of information when sampling the equirectangular image we

use bilinear interpolation. Afterwards, the image is represented by an N × c matrix,

where c is the number of image channels. Unlike the equirectangular format, this rep-

resentation no longer encodes the spatial position of each data point. Thus, we save this

information in a separate matrix. This location matrix is used to compute the look-up ta-

bles for the kernel sampling locations as described in Section 3.1. Downsampling of the

image is implemented by recalculating a reduced set of sampling points. For applying

the kernels and downsampling the image nearest neighbor interpolation is used.
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Fig. 4: Uniform Sphere Sampling. Comparison of an equirectangular sampling grid on

the sphere with N = 200 points (a) to an approximation of evenly distributing N = 127
sampling points on a sphere with the method of Saff and Kuijlaars [24] (b, c). Note that

the sampling points at the poles are much more evenly spaced in the uniform sphere

sampling (b) compared to the equirectangular representation (a) which oversamples the

image in these regions.

3.3 Spherical Image Classification

SphereNet can be integrated into a convolutional neural network for image classifi-

cation by adapting the sampling locations of the convolution and pooling kernels as

described in Section 3.1. Furthermore, it is straightforward to additionally utilize a uni-

form sphere sampling (see Section 3.2), which we will compare to nearest neighbor

and bilinear interpolation on an equirectangular representation in the experiments. The

integration of SphereNet into an image classification network does not introduce novel

model parameters and no changes to the training of the network are required.

3.4 Spherical Object Detection

In order to perform object detection on the sphere, we propose the Spherical Single

Shot MultiBox Detector (Sphere-SSD), which adapts the popular Single Shot MultiBox

Detector (SSD) [17] to objects located on tangent planes of a sphere. SSD exploits a

fully convolutional architecture, predicting category scores and box offsets for a set of

default anchor boxes of different scales and aspect ratios. We refer the reader to [17] for

details. As in the regular SSD, Sphere-SSD uses a weighted sum between a localization

loss and confidence loss. However, in contrast to the original SSD, anchor boxes are now

placed on tangent planes of the sphere and are defined in terms of spherical coordinates

of their respective tangent plane, the width/height of the box on the tangent plane as

well as an in-plane rotation. An illustration of anchor boxes at different scales and

aspect ratios is provided in Fig. 5.

In order to match anchor boxes to ground truth detections, we select the anchor box

closest to each ground truth box. During inference, we perform non-maximum suppres-

sion. For evaluation, we use the Jaccard index computed as the overlap of two polygonal

regions which are constructed from the gnomonic projections of evenly spaced points

along the rectangular bounding box on the tangent plane.
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Fig. 5: Spherical Anchor Boxes are gnomonic projections of 2D bounding boxes of

various scales, aspect ratios and orientations on tangent planes of the sphere. The above

figure visualizes anchors of the same orientation at different scales and aspect ratios on

a 16× 8 feature map on a sphere (a) and an equirectangular grid (b).

4 Experimental Evaluation

While the main focus of this paper is on the detection task, we first validate our model

with respect to several existing state-of-the-art methods using a simple omnidirectional

MNIST classification task.

4.1 Classification: Omni-MNIST

For the classification task, we create an omnidirectional MNIST dataset (Omni-MNIST),

where MNIST digits are placed on tangent planes of the image sphere and an equirect-

angular image of the scene is rendered at a resolution of 60× 60 pixels.

We compare the performance of our method to several baselines. First, we trained a

regular convolutional network operating on the equirectangular images (EquirectCNN)

as well as one operating on a cube map representation of the input (CubeMapCNN).

We further improved the EquirectCNN model by combining it with a Spherical Trans-

former Network (SphereTN) which learns to undistort parts of the image by performing

a global rotation of the sphere. A more in-depth description of the Spherical Trans-

former Network is provided in the supplemental. Finally, we also trained the graph

convolutional network of Khasanova et al. [14] and the spherical convolutional model

of Cohen et al. [3]. For [3] we use the code published by the authors5. As [14] does not

provide code, we reimplemented their model based on the code of Defferrard et al. [6]6.

The network architecture for all models consist of two blocks of convolution and

max-pooling, followed by a fully-connected layer. We use 32 filters in the first and 64
filters in the second layer and each layer is followed by a ReLU activation. The fully

connected layer has 10 output neurons and uses a softmax activation function. In the

CNN and SphereNet models, the convolutional filter kernels are of size 5 × 5 and are

applied with stride 1. Max pooling is performed with kernels of size 3× 3 and a stride

of 2. The Spherical Transformer Network uses an identical network architecture but

replaces the fully-connected output layer with a convolutional layer that outputs the

5 https://github.com/jonas-koehler/s2cnn
6 https://github.com/mdeff/cnn graph

https://github.com/jonas-koehler/s2cnn
https://github.com/mdeff/cnn_graph
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Table 1: Classification Results on Omni-MNIST. Performance comparison on the om-

nidirectional MNIST dataset.

Method Test error (%) # of Parameters

GCNN [14] 17.21 282K

S2CNN [3] 11.86 149K

CubeMapCNN 10.03 167K

EquirectCNN 9.61 196K

EquirectCNN+SphereTN 8.22 291K

SphereNet (Uniform) 7.16 144K

SphereNet (NN) 7.03 196K

SphereNet (BI) 5.59 196K

parameters of the rotation. After applying the predicted transformation of the Spherical

Transformer the transformed output is then used as input to the EquirectCNN model.

Similarly, the graph convolutional baseline (GCNN) uses graph-conv layers with 32
and 64 filters of polynomial order 25 each, while the spherical CNN baseline (S2CNN)

uses an S2-conv layer with 32 filters and a SO(3)-conv layer with 64 filters. Downsam-

pling in the S2CNN model is implemented with bandwidths of 30, 10, 6 as suggested

in [3]. Thus, all models have a comparable number of trainable model parameters (see

Table 1). In addition, all models are trained with identical training parameters using

Adam, a base learning rate of 0.0001 and batches of size 100 for 100 epochs.

Results on Omni-MNIST: Table 1 compares the performance of SphereNet with uni-

form sphere sampling (Uniform), nearest neighbor interpolation in the equirectangular

image (NN) and bilinear interpolation in the equirectangular image (BI) to the baseline

methods. Our results show that all three variants of SphereNet outperform all baselines.

Despite its high number of model parameters, the graph convolutional (GCNN)

model struggles to solve the Omni-MNIST classification task. The spherical convolu-

tional (S2CNN) model performs better but is outperformed by all CNN-based models.

For the CNN-based models, the CubeMapCNN has a higher test error than EquirectCNN,

most likely du to the discontinuities at cube borders and varying digit orientation in the

top and bottom faces. The performance of the EquirectCNN is improved when com-

bined with a Spherical Transformer Network (EquirectCNN+SphereTN), demonstrat-

ing that the SphereTN is able to support the classification task. However, it does not

reach the performance of SphereNet, thus confirming the effectiveness of encoding dis-

tortion invariance into the network architecture itself compared to learning it from data.

For SphereNet, the uniform sphere sampling (Uniform) variant performs similar to

the nearest neighbor (NN) variant, which demonstrates that the loss of information by

uniformly sampling the sphere is negligible. SphereNet with bilinear interpolation (BI)

overall performs best, improving upon all baselines by a significant margin.

Please consult the supplemental for further analysis on the impact of varying object

scale, object elevation and choice of interpolation on the performance of each model.
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Fig. 6: Detection Results on FlyingCars Dataset. The ground truth is shown in green,

our SphereNet (NN) results in red.

Table 2: Detection Results on FlyingCars Dataset. All models are trained and tested

on the FlyingCars dataset.

Method Test mAP (%) Training speed Inference Speed

EquirectCNN+SphereTN 38.91 3.0 sec/step 0.232 sec/step

EquirectCNN 41.57 1.7 sec/step 0.091 sec/step

EquirectCNN++ 45.65 3.1 sec/step 0.175 sec/step

CubeMapCNN 48.42 1.8 sec/step 0.095 sec/step

SphereNet (NN) 50.18 2.1 sec/step 0.101 sec/step

4.2 Object Detection: FlyingCars

We now consider the object detection task. Due to a lack of suitable existing omnidirec-

tional image benchmarks, we create the novel FlyingCars dataset. FlyingCars combines

real-world background images of an omnidirectional 360◦ action camera with rendered

3D car models. For the 3D car models we select a subset of 50 car models from the pop-

ular ShapeNet dataset [2], which are rendered onto the background images at different

elevations, distances and orientations.

The scenes are rendered using an equirectangular projection to images of dimension

512 × 256, covering a complete 360◦ field of view around the camera. Each rendered

scene contains between one to three cars, which may be partially occluded. Object

bounding boxes are automatically extracted and represented by the lat/lon coordinates

(φi, θi) of the object’s tangent plane as well as the object width w and height h on the

tangent plane and its in-plane rotation α. All groundtruth coordinates are normalized

to a range of [−1.0, 1.0]. In total, the dataset comprises 1, 000 test and 5, 000 training

images with multiple objects each, out of which a subset of 1, 000 images is used as

validation set.

For this task, we integrate the nearest neighbor variant (NN) of SphereNet into the

Sphere-SSD framework (see Section 3.4) as it strikes a balance between computational
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efficiency and ease of integration into an object detection model. Because the graph

and spherical convolution baselines are not applicable to the object detection task, we

compare the performance of SphereNet to a CNN operating on the cube map (Cube-

MapCNN) and equirectangular representation (EquirectCNN). The latter is again tested

in combination with a Spherical Transformer Network (EquirectCNN+SphereTN).

Following [30] we evaluate a version of EquirectCNN where the size of the con-

volutional kernels is enlarged towards the poles to approximate the object distortion

in equirectangular images (EquirectCNN++). Like [30] we limit the maximum kernel

dimension to 7 × 7. However, unlike [30] we keep weight tying in place for image

rows with filters of the same dimension, thus reducing the number of model parame-

ters. We thereby enable regular training of the network without kernel-wise knowledge

distillation as in [30]. In addition, we utilize pre-trained weights when kernel dimen-

sions match with the kernels in a pre-trained network architecture so that not all model

parameters need to be trained from scratch.

As feature extractor all models use a VGG-16 network [26], which is initialized

with weights pre-trained on the ILSVRC-2012-CLS dataset [23]. We change the max-

pooling kernels to size 3 × 3 and use ReLU activations, L2 regularization with weight

4e−5 and batch normalization in all layers of the network. Additional convolutional box

prediction layers of depth 256, 128, 128, 128 are attached to layer conv5 3. Anchors of

scale 0.2 to 0.95 are generated for layer conv4 3, conv5 3 and the box prediction layers.

The aspect ratio for all anchor boxes is fixed to the aspect ratio of the side view of

the rendered cars (2 : 1). The full network is trained end-to-end in the Sphere-SSD

framework with the RMSProp optimizer, batches of size 5 and a learning rate of 0.004.

Results on FlyingCars: Table 2 presents the results for the object detection task on

the FlyingCars dataset after 50, 000 steps of training. Following common practice, we

use an intersection-over-union (IoU) threshold of 0.5 for evaluation. Again, our results

demonstrate that SphereNet outperforms the baseline methods. Qualitative results of

the SphereNet model are shown in Fig. 6.

Compared to the classification experiments, the Spherical Transformer Network

(SphereTN) demonstrates less competitive performance as no transformation is able to

account for undistorting all objects in the image at the same time. It is thus outperformed

by the EquirectCNN. The performance of the EquirectCNN model is improved when

the kernel size is enlarged towards the poles (EquirectCNN++), but all EquirectCNN

models perform worse than the CNN operating on a cube map representation (Cube-

MapCNN). The reason for the improved performance of the CubeMapCNN compared

to the classification task is most likely that discontinuities at the patch boundaries are

less often present in the FlyingCars dataset due to the smaller relative size of the objects.

Besides accuracy, another important property of an object detector is its training

and inference speed. Table 2 therefore additionally lists the training time per batch and

inference time per image on an NVIDIA Tesla K20. The numbers show similar run-

times for EquirectCNN and CubeMapCNN. SphereNet has a small runtime overhead

of factor 1.1 to 1.2, while the EquirectCNN++ and EquirectCNN+SphereTN models

have a larger runtime overhead of factor 1.8 for training and 1.9 to 2.5 for inference.
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Fig. 7: Detection Results on OmPaCa Dataset. The ground truth is shown in green,

our SphereNet (NN) results in red.

Table 3: Transfer Learning Results on OmPaCa Dataset. We transfer detection mod-

els trained on perspective images from the KITTI dataset [7] to an omnidirectional rep-

resentation and finetune the models on the OmPaCa dataset.

Method Test mAP (%)

CubeMapCNN 34.19

EquirectCNN 43.43

SphereNet (NN) 49.73

4.3 Transfer Learning: OmPaCa

Finally, we consider the transfer learning task, where a model trained on a perspective

dataset is transferred to handle omnidirectional imagery. For this task we record a new

real-world dataset of omnidirectional images of real cars with a handheld action cam-

era. The images are recorded at different heights and orientations. The omnidirectional

parked cars (OmPaCa) dataset consists of 1, 200 labeled images of size 512×256 with

more than 50 different car models in total. The dataset is split into 200 test and 1, 000
training instances, out of which a subset of 200 is used for validation.

We use the same detection architecture and training parameters as in Section 4.2 but

now start from a perspective SSD model trained on the KITTI dataset [7], convert it to

our Sphere-SSD framework and fine-tune for 20, 000 iterations on the OmPaCa dataset.

For this experiment we only compare against the EquirectCNN and CubeMapCNN

baselines. Both the EquirectCNN+SphereTN as well as the EquirectCNN++ are not

well suited for the transfer learning task due to the introduction of new model param-

eters, which are not present in the perspective detection model and which would thus

require training from scratch.

Results on OmPaCa: Our results for the transfer learning task on the OmPaCa dataset

are shown in Table 3 and demonstrate that SphereNet outperforms both baselines. Un-

like in the object detection experiments on the FlyingCars dataset, the CubeMapCNN
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performs worse than the EquirectCNN by a large margin of nearly 10%, indicating

that the cube map representation is not well suited for the transfer of perspective mod-

els to omnidirectional images. On the other hand, SphereNet performs better than the

EquirectCNN by more than 5%, which confirms that the SphereNet approach is better

suited for transferring perspective models to the omnidirectional case.

A selection of qualitative results for the SphereNet model is visualized in Fig. 7. As

evidenced by our experiments, the SphereNet model is able to detect cars at different

elevations on the sphere including the polar regions where regular convolutional object

detectors fail due to the heavy distortions present in the input images. Several additional

qualitative comparisons between SphereNet and the EquirectCNN model for objects

located in the polar regions are provided in the supplementary material.

5 Conclusion and Future Work

We presented SphereNet, a framework for deep learning with 360◦ cameras. SphereNet

lifts 2D convolutional neural networks to the surface of the unit sphere. By applying 2D

convolution and pooling filters directly on the sphere’s surface, our model effectively

encodes distortion invariance into the filters of convolutional neural networks. Wrap-

ping the convolutional filters around the sphere further avoids discontinuities at the

borders or poles of the equirectangular projection. By updating the sampling locations

of the convolutional filters we allow for easily transferring perspective CNN models

to handle omnidirectional inputs. Our experiments show that the proposed method im-

proves upon a variety of strong baselines in both omnidirectional image classification

and object detection.

We expect that with the increasing availability and popularity of omnidirectional

sensors in both the consumer market (e.g., action cameras) as well as in industry (e.g.,

autonomous cars, virtual reality), the demand for specialized models for omnidirec-

tional images such as SphereNet will increase in the near future. We therefore plan to

exploit the flexibility of our framework by applying it to other related computer vision

tasks, including semantic (instance) segmentation, optical flow and scene flow estima-

tion, single image depth prediction and multi-view 3D reconstruction in the future.
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