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Abstract. There has been significant progress on pose estimation and
increasing interests on pose tracking in recent years. At the same time,
the overall algorithm and system complexity increases as well, making
the algorithm analysis and comparison more difficult. This work provides
simple and effective baseline methods. They are helpful for inspiring and
evaluating new ideas for the field. State-of-the-art results are achieved on
challenging benchmarks. The code will be available at https://github.
com/leoxiaobin/pose.pytorch.
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1 Introduction

Similar as many vision tasks, the progress on human pose estimation problem is
significantly advanced by deep learning. Since the pioneer work in [31, 30], the
performance on the MPII benchmark [3] has become saturated in three years,
starting from about 80% PCKH@0.5 [30] to more than 90% [22, 8, 7, 33]. The
progress on the more recent and challenging COCO human pose benchmark [20]
is even faster. The mAP metric is increased from 60.5 (COCO 2016 Challenge
winner [9, 5]) to 72.1(COCO 2017 Challenge winner [6, 9]) in one year. With the
quick maturity of pose estimation, a more challenging task of “simultaneous pose
detection and tracking in the wild” has been introduced recently [2].

At the same time, the network architecture and experiment practice have
steadily become more complex. This makes the algorithm analysis and com-
parison more difficult. For example, the leading methods [22, 8, 7, 33] on MPII
benchmark [3] have considerable difference in many details but minor difference
in accuracy. It is hard to tell which details are crucial. Also, the representative
works [21, 24, 12, 6, 5] on COCO benchmark are also complex but differ signifi-
cantly. Comparison between such works is mostly on system level and less in-
formative. About pose tracking, although there has not been much work [2],
the system complexity can be expected to further increase due to the increased
problem dimension and solution space.
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This work aims to ease this problem by asking a question from the opposite
direction, how good could a simple method be? To answer the question, this work
provides baseline methods for both pose estimation and tracking. They are quite
simple but surprisingly effective. Thus, they hopefully would help inspiring new
ideas and simplifying their evaluation. The code, as well as pre-trained models,
will be released to facilitate the research community.

Our pose estimation is based on a few deconvolutional layers added on a
backbone network, ResNet [13] in this work. It is probably the simplest way
to estimate heat maps from deep and low resolution feature maps. Our single

model’s best result achieves the state-of-the-art at mAP of 73.7 on COCO test-
dev split, which has an improvement of 1.6% and 0.7% over the winner of COCO
2017 keypoint Challenge’s single model and their ensembled model [6, 9].

Our pose tracking follows a similar pipeline of the winner [11] of ICCV’17
PoseTrack Challenge [2]. The single person pose estimation uses our own method
as above. The pose tracking uses the same greedy matching method as in [11].
Our only modification is to use optical flow based pose propagation and similarity

measurement. Our best result achieves a mAP score of 74.6 and a MOTA score
of 57.8, an absolute 15% and 6% improvement over 59.6 and 51.8 of the winner
of ICCV’17 PoseTrack Challenge [11, 26]. It is the new state-of-the-art.

This work is not based on any theoretic evidence. It is based on simple
techniques and validated by comprehensive ablation experiments, at our best.
Note that we do not claim any algorithmic superiority over previous methods,
in spite of better results. We do not perform complete and fair comparison with
previous methods, because this is difficult and not our intent. As stated, the
contribution of this work are solid baselines for the field.

2 Pose Estimation Using A Deconvolution Head Network

ResNet [13] is the most common backbone network for image feature extraction.
It is also used in [24, 6] for pose estimation. Our method simply adds a few
deconvolutional layers over the last convolution stage in the ResNet, called C5.
The whole network structure is illustrated in Fig. 1(c). We adopt this structure
because it is arguably the simplest to generate heatmaps from deep and low
resolution features and also adopted in the state-of-the-art Mask R-CNN [12].

By default, three deconvolutional layers with batch normalization [15] and
ReLU activation [19] are used. Each layer has 256 filters with 4× 4 kernel. The
stride is 2. A 1 × 1 convolutional layer is added at last to generate predicted
heatmaps {H1 . . . Hk} for all k key points.

Same as in [30, 22], Mean Squared Error (MSE) is used as the loss between
the predicted heatmaps and targeted heatmaps. The targeted heatmap Ĥk for
joint k is generated by applying a 2D gaussian centered on the kth joint’s ground
truth location.

Discussions To understand the simplicity and rationality of our baseline, we
discuss two state-of-the-art network architectures as references, namely, Hour-
glass [22] and CPN [6]. They are illustrated in Fig. 1.
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Fig. 1. Illustration of two state-of-the-art network architectures for pose estimation (a)
one stage in Hourglass [22], (b) CPN [6], and our simple baseline (c).

Hourglass [22] is the dominant approach on MPII benchmark as it is the basis
for all leading methods [8, 7, 33]. It features in a multi-stage architecture with
repeated bottom-up, top-down processing and skip layer feature concatenation.

Cascaded pyramid network (CPN) [6] is the leading method on COCO 2017
keypoint challenge [9]. It also involves skip layer feature concatenation and an
online hard keypoint mining step.

Comparing the three architectures in Fig. 1, it is clear that our method differs
from [22, 6] in how high resolution feature maps are generated. Both works [22,
6] use upsampling to increase the feature map resolution and put convolutional
parameters in other blocks. In contrary, our method combines the upsampling
and convolutional parameters into deconvolutional layers in a much simpler way,
without using skip layer connections.

A commonality of the three methods is that three upsampling steps and also
three levels of non-linearity (from the deepest feature) are used to obtain high-
resolution feature maps and heatmaps. Based on above observations and the
good performance of our baseline, it seems that obtaining high resolution feature

maps is crucial, but no matter how. Note that this discussion is only preliminary
and heuristic. It is hard to conclude which architecture in Fig. 1 is better. This
is not the intent of this work.
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Fig. 2. The proposed flow-based pose tracking framework.

3 Pose Tracking Based on Optical Flow

Multi-person pose tracking in videos first estimates human poses in frames, and
then tracks these human pose by assigning a unique identification number (id)
to them across frames. We present human instance P with id as P = (J, id),
where J = {ji}1:NJ

is the coordinates set of NJ body joints and id indicates the
tracking id. When processing the kth frame Ik, we have the already processed
human instances set Pk−1 = {P k−1

i }1:Nk−1
in frame Ik−1 and the instances set

Pk = {P k
i }1:Nk

in frame Ik whose id is to be assigned, where Nk−1 and Nk are
the instance number in frame Ik−1 and Ik. If one instance P k

j in current frame

Ik is linked to the instance P k−1

i in Ik−1 frame, then idk−1

i is propagated to idkj ,

otherwise a new id is assigned to P k
j , indicating a new track.

The winner [11] of ICCV’17 PoseTrack Challenge [2] solves this multi-person
pose tracking problem by first estimating human pose in frames using Mask R-
CNN [12], and then performing online tracking using a greedy bipartite matching
algorithm frame by frame.

The greedy matching algorithm is to first assign the id of P k−1

i in frame
Ik−1 to P k

j in frame Ik if the similarity between P k−1

i and P k
j is the highest,

then remove these two instances from consideration, and repeat the id assigning
process with the highest similarity. When an instance P k

j in frame Ik has no

existing P k−1

i left to link, a new id number is assigned, which indicates a new
instance comes up.

We mainly follow this pipeline in [11] with two differences. One is that we
have two different kinds of human boxes, one is from a human detector and the
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other are boxes generated from previous frames using optical flow. The second
difference is the similarity metric used by the greedy matching algorithm. We
propose to use a flow-based pose similarity metric. Combined with these two
modifications, we have our enhanced flow-based pose tracking algorithm, illus-
trated in Fig. 2. We elaborate our flow-based pose tracking algorithm in the
following.

3.1 Joint Propagation using Optical Flow

Simply applying a detector designed for single image level (e.g. Faster-RCNN [27],
R-FCN [16]) to videos could lead to missing detections and false detections due
to motion blur and occlusion introduced by video frames. As shown in Fig. 2(c),
the detector misses the left black person due to fast motion. Temporal informa-
tion is often leveraged to generate more robust detections [36, 35].

We propose to generate boxes for the processing frame from nearby frames
using temporal information expressed in optical flow.

Given one human instance with joints coordinates set Jk−1

i in frame Ik−1

and the optical flow field Fk−1→k between frame Ik−1 and Ik, we could estimate

the corresponding joints coordinates set Ĵk
i in frame Ik by propagating the

joints coordinates set Jk−1

i according to Fk−1→k. More specifically, for each joint
location (x, y) in Jk−1

i , the propagated joint location would be (x+ δx, y + δy),
where δx, δy are the flow field values at joint location (x, y). Then we compute a

bounding of the propagated joints coordinates set Ĵk
i , and expand that box by

some extend (15% in experiments) as the candidated box for pose estimation.
When the processing frame is difficult for human detectors that could lead

to missing detections due to motion blur or occlusion, we could have boxes
propagated from previous frames where people have been detected correctly. As
shown in Fig. 2(c), for the left black person in images, since we have the tracked
result in previous frames in Fig. 2(a), the propagated boxes successfully contain
this person.

3.2 Flow-based Pose Similarity

Using bounding box IoU(Intersection-over-Union) as the similarity metric (SBbox)
to link instances could be problematic when an instance moves fast thus the
boxes do not overlap, and in crowed scenes where boxes may not have the cor-
responding relationship with instances. A more fine-grained metric could be a
pose similarity (SPose) which calculates the body joints distance between two
instances using Object Keypoint Similarity (OKS). The pose similarity could
also be problematic when the pose of the same person is different across frames
due to pose changing. We propose to use a flow-based pose similarity metric.

Given one instance Jk
i in frame Ik and one instance J l

j in frame I l, the
flow-based pose similarity metric is represented as

SFlow(J
k
i , J

l
j) = OKS(Ĵ l

i , J
l
j), (1)
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Table 1. Notations in Algorithm 1.

Ik kth frame
Q tracked instances queue
LQ max capacity of Q

Pk instances set in kth frame

J k instances set of body joints in kth frame

P k
i ith instance in kth frame

Jk
i body joints set of ith instance in kth frame

Fk→l flow field from kth frame to lth frame
Msim similariy matrix

Bk
det boxes from person detector in kth frame

Bk
flow boxes generated by joint propagating in kth frame

Bk
unified boxes unified by box NMS in kth frame

Ndet person detection network
Npose human pose estimation network
Nflow flow estimation network

Fsim function for calculating similarity matrix
FNMS function for NMS operation
FFlowBoxGen function for generating boxes by joint propagating
FAssignID function for assigning instance id

where OKS represents calculating the Object Keypoint Similarity (OKS) be-

tween two human pose, and Ĵ l
i represents the propagated joints for Jk

i from
frame Ik to I l using optical flow field Fk→l.

Due to occlusions with other people or objects, people often disappear and
re-appear again. Considering consecutive two frames is not enough, thus we have
the flow-based pose similarity considering multi frames, denoted as SMulti−flow,

meaning the propagated Ĵk comes from multi previous frames. In this way, we
could relink instances even disappearing in middle frames.

3.3 Flow-based Pose Tracking Algorithm

With the joint propagation using optical flow and the flow-based pose similar-
ity, we propose the flow-based pose tracking algorithm combining these two, as
presented in Algorithm 1. Table 1 summarizes the notations used in Algorithm 1.

First, we solve the pose estimation problem. For the processing frame in
videos, the boxes from a human detector and boxes generated by propagating
joints from previous frames using optical flow are unified using a bounding box
Non-Maximum Suppression (NMS) operation. The boxes generated by progagat-
ing joints serve as the complement of missing detections of the detector (e.g. in
Fig. 2(c)). Then we estimate human pose using the cropped and resized images
by these boxes through our proposed pose estimation network in Section 2.
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Algorithm 1 The flow-based inference algorithm for video human pose tracking

1: input: video frames {Ik}, Q = [], Q’s max capacity LQ.
2: B0

det = Ndet(I
0)

3: J 0 = Npose(I
0, B0

det)
4: P0 = (J 0, id) ⊲ initialize the id for the first frame
5: Q = [P0] ⊲ append the instance set P0 to Q

6: for k = 1 to ∞ do

7: Bk
det = Ndet(I

k)
8: Bk

flow = FFlowBoxGen(J
k−1, Fk−1→k)

9: Bk
unified = FNMS(B

k
det, B

k
flow) ⊲ unify detection boxes and flow boxes

10: J k = Npose(I
k, Bk

unified)
11: Msim = Fsim(Q,J k)
12: Pk = FAssignID(Msim,J k)
13: append Pk to Q ⊲ update the Q

14: end for

Second, we solve the tracking problem. We store the tracked instances in a
double-ended queue(Deque) with fixed length LQ, denoted as

Q = [Pk−1,Pk−2, ...,Pk−LQ
] (2)

where Pk−i means tracked instances set in previous frame Ik−i and theQ’s length
LQ indicates how many previous frames considered when performing matching.

The Q could be used to capture previous multi frames’ linking relationship,
initialized in the first frame in a video. For the kth frame Ik, we calculate the
flow-based pose similarity matrix Msim between the untracked instances set of
body joints J k (id is none) and previous instances sets in Q . Then we assign
id to each body joints instance J in J k to get assigned instance set Pk by using
greedy matching and Msim. Finally we update our tracked instances Q by adding
up kth frame instances set Pk.

4 Experiments

4.1 Pose Estimation on COCO

The COCO Keypoint Challenge [20] requires localization of multi-person key-
points in challenging uncontrolled conditions. The COCO train, validation, and
test sets contain more than 200k images and 250k person instances labeled with
keypoints. 150k instances of them are publicly available for training and valida-
tion. Our models are only trained on all COCO train2017 dataset (includes 57K
images and 150K person instances) no extra data involved, ablation are studied
on the val2017 set and finally we report the final results on test-dev2017 set to
make a fair comparison with the public state-of-the-art results [5, 12, 24, 6].

The COCO evaluation defines the object keypoint similarity (OKS) and uses
the mean average precision (AP) over 10 OKS thresholds as main competition
metric [9]. The OKS plays the same role as the IoU in object detection. It is
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Table 2. Ablation study of our method on COCO val2017 dataset. Those settings used
in comparison are in bold. For example, (a, e, f) compares backbones.

Method Backbone Input Size #Deconv. Layers Deconv. Kernel Size AP

a ResNet-50 256× 192 3 4 70.4
b ResNet-50 256× 192 2 4 67.9

c ResNet-50 256× 192 3 2 70.1
d ResNet-50 256× 192 3 3 70.3

e ResNet-101 256× 192 3 4 71.4
f ResNet-152 256× 192 3 4 72.0

g ResNet-50 128× 96 3 4 60.6
h ResNet-50 384× 288 3 4 72.2

calculated from the distance between predicted points and ground truth points
normalized by scale of the person.

Training The ground truth human box is made to a fixed aspect ratio, e.g.,
height : width = 4 : 3 by extending the box in height or width. It is then
cropped from the image and resized to a fixed resolution. The default resolution
is 256 : 192. It is the same as the state-of-the-art method [6] for a fair comparison.
Data augmentation includes scale(±30%), rotation(±40 degrees) and flip.

Our ResNet [13] backbone network is initialized by pre-training on ImageNet
classification task [28]. In the training for pose estimation, the base learning rate
is 1e-3. It drops to 1e-4 at 90 epochs and 1e-5 at 120 epochs. There are 140
epochs in total. Mini-batch size is 128. Adam [18] optimizer is used. Four GPUs
on a GPU server is used.

ResNet of depth 50, 101 and 152 layers are experimented. ResNet-50 is used
by default, unless otherwise noted.

Testing A two-stage top-down paradigm is applied, similar as in [24, 6]. For
detection, by default we use a faster-RCNN [27] detector with detection AP 56.4
for the person category on COCO val2017. Following the common practice in [6,
22], the joint location is predicted on the averaged heatmpaps of the original
and flipped image. A quarter offset in the direction from highest response to the
second highest response is used to obtain the final location.

Ablation Study Table 2 investigates various options in our baseline in Sec-
tion 2.

1. Heat map resolution. Method (a) uses three deconvolutional layers to gen-
erate 64 × 48 heatmaps. Method (b) generates 32 × 24 heatmaps with two
deconvolutional layers. (a) outperform (b) by 2.5 AP with only slightly in-
creased model capacity. By default, three deconvolutional layers are used.
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Table 3. Comparison with Hourglass [22] and CPN [6] on COCO val2017 dataset.
Their results are cited from [6]. OHKM means Online Hard Keypoints Mining.

Method Backbone Input Size OHKM AP

8-stage Hourglass - 256× 192 ✗ 66.9
8-stage Hourglass - 256× 256 ✗ 67.1
CPN ResNet-50 256× 192 ✗ 68.6
CPN ResNet-50 384× 288 ✗ 70.6
CPN ResNet-50 256× 192 ✓ 69.4
CPN ResNet-50 384× 288 ✓ 71.6

Ours ResNet-50 256× 192 ✗ 70.4
Ours ResNet-50 384× 288 ✗ 72.2

2. Kernel size.Methods (a, c, d) show that a smaller kernel size gives a marginally
decrease in AP, which is 0.3 point decrease from kernel size 4 to 2. By default,
deconvolution kernel size of 4 is used.

3. Backbone. As in most vision tasks, a deeper backbone model has better
performance. Methods (a, e, f) show steady improvement by using deeper
backbone models. AP increase is 1.0 from ResNet-50 to Resnet-101 and 1.6
from ResNet-50 to ResNet-152.

4. Image size.Methods (a, g, h) show that image size is critical for performance.
From method (a) to (g), the image size is reduced by half and AP drops
points. On the other hand, relative 75% computation is saved. Method (h)
uses a large image size and increases 1.8 AP from method (a), at the cost of
higher computational cost.

Comparison with Other Methods on COCO val2017 Table 3 compares
our results with a 8-stage Hourglass [22] and CPN [6]. All the three methods use
a similar top-down two-stage paradigm. For reference, the person detection AP
of hourglass [22] and CPN [6] is 55.3 [6], which is comparable to ours 56.4.

Compared with Hourglass [22, 6], our baseline has an improvement of 3.5 in
AP. Both methods use an input size of 256×192 and no Online Hard Keypoints
Mining(OHKM) involved.

CPN [6] and our baseline use the same backbone of ResNet-50. When OHKM
is not used, our baseline outperforms CPN [6] by 1.8 AP for input size 256×192,
and 1.6 AP for input size 384×288. When OHKM is used in CPN [6], our baseline
is better by 0.6 AP for both input sizes.

Note that the results of Hourglass [22] and CPN [6] are cited from [6] and
not implemented by us. Therefore, the performance difference could come from
implementation difference. Nevertheless, we believe it is safe to conclude that
our baseline has comparable results but is simpler.

Comparisons on COCO test-dev dataset Table 4 summarizes the results
of other state-of-the-art methods in the literature on COCO Keypoint Leader-
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Table 4. Comparisons on COCO test-dev dataset. Top: methods in the literature,
trained only on COCO training dataset. Middle: results submitted to COCO test-dev
leaderboard [9], which have either extra training data (*) or models ensamled (+).
Bottom: our single model results, trained only on COCO training dataset.

Method Backbone Input Size AP AP50 AP75 APm APl AR

CMU-Pose [5] - - 61.8 84.9 67.5 57.1 68.2 66.5
Mask-RCNN [12] ResNet-50-FPN - 63.1 87.3 68.7 57.8 71.4 -
G-RMI [24] ResNet-101 353× 257 64.9 85.5 71.3 62.3 70.0 69.7
CPN [6] ResNet-Inception 384× 288 72.1 91.4 80.0 68.7 77.2 78.5

FAIR* [9] ResNeXt-101-FPN - 69.2 90.4 77.0 64.9 76.3 75.2
G-RMI* [9] ResNet-152 353× 257 71.0 87.9 77.7 69.0 75.2 75.8
oks* [9] - - 72.0 90.3 79.7 67.6 78.4 77.1
bangbangren*+ [9] ResNet-101 - 72.8 89.4 79.6 68.6 80.0 78.7
CPN+ [6, 9] ResNet-Inception 384× 288 73.0 91.7 80.9 69.5 78.1 79.0

Ours ResNet-152 384× 288 73.7 91.9 81.1 70.3 80.0 79.0

board [9] and COCO test-dev dataset. For our baseline here, a human detector
with person detection AP of 60.9 on COCO std-dev split dataset is used. For
reference, CPN [6] use a human detector with person detection AP of 62.9 on
COCO minival split dataset.

Compared with CMU-Pose [5], which is a bottom-up approach for multi-
person pose estimation, our method is significantly better. Both G-RMI [24] and
CPN [6] have a similar top-down pipeline with ours. G-RMI also uses ResNet
as backbone, as ours. Using the same backbone Resnet-101, our method outper-
forms G-RMI for both small (256× 192) and large input size (384× 288). CPN
uses a stronger backbone of ResNet-Inception [29]. As evidence, the top-1 error
rate on ImageNet validation set of Resnet-Inception and ResNet-152 are 18.7%
and 21.4% respectively [29]. Yet, for the same input size 384 × 288, our result
73.7 outperforms both CPN’s single model and their ensembled model, which
have 72.1 and 73.0 respectively.

4.2 Pose Estimation and Tracking on PoseTrack

PoseTrack [2] dataset is a large-scale benchmark for multi-person pose estimation
and tracking in videos. It requires not only pose estimation in single frames, but
also temporal tracking across frames. It contains 514 videos including 66,374
frames in total, split into 300, 50 and 208 videos for training, validation and test
set respectively. For training videos, 30 frames from the center are annotated. For
validation and test videos, besides 30 frames from the center, every fourth frame
is also annotated for evaluating long range articulated tracking. The annotations
include 15 body keypoints location, a unique person id and a head bounding box
for each person instance.

The dataset has three tasks. Task 1 evaluates single-frame pose estimation
using mean average precision (mAP) metric as is done in [25]. Task 2 also eval-
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Fig. 3. Some sample results on PoseTrack Challenge test set.

uates pose estimation but allows usage of temporal information across frames.
Task 3 evaluates tracking using multi-object tracking metrics [4]. As our tracking
baseline uses temporal information, we report results on Task 2 and 3. Note that
our pose estimation baseline also performs best on Task 1 but is not reported
here for simplicity.

Training Our pose estimation model is fine-tuned from those pre-trained on
COCO in Section 4.1. As only key points are annotated, we obtain the ground
truth box of a person instance by extending the bounding box of its all key
points by 15% in length (7.5% on both sides). The same data augmentation as
in Section 4.1 is used. During training, the base learning rate is 1e-4. It drops
to 1e-5 at 10 epochs and 1e-6 at 15 epochs. There are 20 epochs in total. Other
hyper parameters are the same as in Section 4.1.

Testing Our flow based tracking baseline is closely related to the human detec-
tor’s performance, as the propagated boxes could affect boxes from a detector.
To investigate its effect, we experiment with two off-the-shelf detectors, a faster
but less accurate R-FCN [16] and a slower but more accurate FPN-DCN [10].
Both use ResNet-101 backbone and are obtained from public implementation [1].
No additional fine tuning of detectors on PoseTrack dataset is performed.

Similar as in [11], we first drop low-confidence detections, which tends to
decrease the mAP metric but increase the MOTA tracking metric. Also, since
the tracking metric MOT penalizes false positives equally regardless of the scores,
we drop low confidence joints first to generate the result as in [11]. We choose
the boxes and joints drop threshold in a data-driven manner on validation set,
0.5 and 0.4 respectively.

For optical flow estimation, the fastest model FlowNet2S in FlowNet fam-
ily [14] is used, as provided on [23]. We use the PoseTrack evaluation toolkit for
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Table 5. Ablation study on PoseTrack Challenge validation dataset. Top: Results of
ResNet-50 backbone using R-FCN detector. Middle: Results of ResNet-50 backbone
using FPN-DCN detector. Bottom: Results of ResNet-152 backbone using FPN-DCN
detector.

Method Backbone Detector
With Joint
Propagation

Similarity
Metric

mAP
Total

MOTA
Total

a1 ResNet-50 R-FCN ✗ SBbox 66.0 57.6
a2 ResNet-50 R-FCN ✗ SPose 66.0 57.7
a3 ResNet-50 R-FCN ✓ SBbox 70.3 61.4
a4 ResNet-50 R-FCN ✓ SPose 70.3 61.8
a5 ResNet-50 R-FCN ✓ SFlow 70.3 61.8
a6 ResNet-50 R-FCN ✓ SMulti−Flow 70.3 62.2

b1 ResNet-50 FPN-DCN ✗ SBbox 69.3 59.8
b2 ResNet-50 FPN-DCN ✗ SPose 69.3 59.7
b3 ResNet-50 FPN-DCN ✓ SBbox 72.4 62.1
b4 ResNet-50 FPN-DCN ✓ SPose 72.4 61.8
b5 ResNet-50 FPN-DCN ✓ SFlow 72.4 62.4
b6 ResNet-50 FPN-DCN ✓ SMulti−Flow 72.4 62.9

c1 ResNet-152 FPN-DCN ✗ SBbox 72.9 62.0
c2 ResNet-152 FPN-DCN ✗ SPose 72.9 61.9
c3 ResNet-152 FPN-DCN ✓ SBbox 76.7 64.8
c4 ResNet-152 FPN-DCN ✓ SPose 76.7 64.9
c5 ResNet-152 FPN-DCN ✓ SFlow 76.7 65.1
c6 ResNet-152 FPN-DCN ✓ SMulti−Flow 76.7 65.4

results on validation set and report final results on test set from the evaluation
server. Fig. 3 illustrates some results of our approach on PoseTrack test dataset.

Our main ablation study is performed on ResNet-50 with input size 256×192,
which is already strong when compared with state-of-the-art. Our best result is
on ResNet-152 with input size 384× 288.

Effect of Joint Propagation Table 5 shows that using boxes from joint propa-
gation introduces improvement on both mAP and MOTA metrics using different
backbones and detectors. With R-FCN detector, using boxes from joint prop-
agation (method a3 vs. a1) introduces improvement of 4.3 % mAP and 3.8 %
MOTA. With the better FPN-DCN detector, using boxes from joint propaga-
tion (method b3 vs. b1) introduces improvement of 3.1 %mAP and 2.3 % MOTA.
With ResNet-152 as backbone (method c3 vs. c1), improvement is 3.8 % mAP
and 2.8 % MOTA. Note that such improvement does not only come from more
boxes. As noted in [11], simply keeping more boxes of a detector, e.g., by using a
smaller threshold, would lead to an improvement in mAP, but a drop in MOTA
since more false positives would be introduced. The joint propagation improves
both mAP and MOTA metrics, indicating that it finds more persons that are
missed by the detector, possibly due to motion blur or occlusion in video frames.
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Table 6. Multi-person Pose Estimation Performance on PoseTrack Challenge dataset.
“*” means models trained on train+validation set. Top: Results on PoseTrack valida-
tion set. Bottom: Results on PoseTrack test set

Method Dataset
Head
mAP

Sho.
mAP

Elb.
mAP

Wri.
mAP

Hip
mAP

Knee
mAP

Ank.
mAP

Total
mAP

Girdhar et al. [11] val 67.5 70.2 62.0 51.7 60.7 58.7 49.8 60.6
Xiu et al. [32] val 66.7 73.3 68.3 61.1 67.5 67.0 61.3 66.5
Ours:ResNet-50 val 79.1 80.5 75.5 66.0 70.8 70.0 61.7 72.4
Ours:ResNet-152 val 81.7 83.4 80.0 72.4 75.3 74.8 67.1 76.7

Girdhar et al.* [11] test - - - - - - - 59.6
Xiu et al. [32] test 64.9 67.5 65.0 59.0 62.5 62.8 57.9 63.0
Ours:ResNet-50 test 76.4 77.2 72.2 65.1 68.5 66.9 60.3 70.0
Ours:ResNet-152 test 79.5 79.7 76.4 70.7 71.6 71.3 64.9 73.9

Another interesting observation is that the less accurate R-FCN detector
benefits more from joint propagation. For example, the gap between using FPN-
DCN and R-FCN detector in ResNet-50 is decreased from 3.3% mAP and 2.2%
MOTA (from a1 to b1) to 2.1% mAP and 0.4% MOTA (from a3 to b3). Also,
method a3 outperforms method b1 by 1.0% mAP and 1.6% MOTA, indicating
that a weak detector R-FCN combined with joint propagation could perform
better than a strong detector FPN-DCN along. While, the former is more efficient
as joint propagation is fast.

Effect of Flow-based Pose Similarity Flow-based pose similarity is shown
working better when compared with bounding box similarity and pose similarity
in Table 5. For example, flow-based similarity using multi frames (method b6)
and single frame (method b5) outperforms bounding box similarity (method b3)
by 0.8% MOTA and 0.3% MOTA.

Note that flow-based pose similarity is better than bounding box similar-
ity when person moves fast and their boxes do not overlap. Method b6 with
flow-based pose similarity considers multi frames and have an 0.5% MOTA im-
provement when compared to method b5, which considers only one previous
frame. This improvement comes from the case when people are lost shortly due
to occlusion and appear again.

Comparison with State-of-the-Art We report our results on both Task 2
and Task 3 on PoseTrack dataset. As verified in Table 5, method b6 and c6
are the best settings and used here. Backbones are ResNet-50 and ResNet-152,
respectively. The detector is FPN-DCN [10].

Table 6 reports the results on pose estimation (Task 2). Our small model
(ResNet-50) outperforms the other methods already by a large margin. Our
larger model (ResNet-152) further improves the state-of-the-art. On validation
set it has an absolute 16.1% improvement in mAP over [11], which is the winner
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Table 7. Multi-person Pose Tracking Performance on PoseTrack Challenge dataset.“*”
means models trained on train+validation set. Top: Results on PoseTrack validation
set. Bottom: Results on PoseTrack test set

Method Dataset
MOTA
Head

MOTA
Sho.

MOTA
Elb.

MOTA
Wri.

MOTA
Hip

MOTA
Knee

MOTA
Ank.

MOTA
Total

MOTP
Total

Prec
Total

Rec
Total

Girdhar et al. [11] val 61.7 65.5 57.3 45.7 54.3 53.1 45.7 55.2 61.5 66.4 88.1
Xiu et al. [32] val 59.8 67.0 59.8 51.6 60.0 58.4 50.5 58.3 67.8 70.3 87.0
Ours:ResNet-50 val 72.1 74.0 61.2 53.4 62.4 61.6 50.7 62.9 84.5 86.3 76.0
Ours:ResNet-152 val 73.9 75.9 63.7 56.1 65.5 65.1 53.5 65.4 85.4 85.5 80.3

Girdhar et al.* [11] test - - - - - - - 51.8 - - -
Xiu et al. [32] test 52.0 57.4 52.8 46.6 51.0 51.2 45.3 51.0 16.9 71.2 78.9
Ours:ResNet-50 test 65.9 67.0 51.5 48.0 56.2 54.6 46.9 56.4 45.5 81.0 75.7
Ours:ResNet-152 test 67.1 68.4 52.2 48.9 56.1 56.6 48.8 57.6 62.6 79.4 79.9

Table 8. Results of Mulit-Person Pose Tracking on PoseTrack Challenge Leader-
board.“*” means models trained on train+validation set.

Entry Additional Training Dataset mAP MOTA

ProTracker [11] COCO 59.6 51.8
PoseFlow [26] COCO+MPII-Pose 63.0 51.0
MVIG [26] COCO+MPII-Pose 63.2 50.7
BUTD2 [17] COCO 59.2 50.6
SOPT-PT [26] COCO+MPII-Pose 58.2 42.0
ML-LAB [34] COCO+MPII-Pose 70.3 41.8

Ours:ResNet152* COCO 74.6 57.8

of ICCV’17 PoseTrack Challenge, and also has an 10.2% improvement over a
recent work [32], which is the previous best.

Table 7 reports the results on pose tracking (Task 3). Compared with [11] on
validation and test dataset, our larger model (ResNet-152) has an 10.2 and 5.8
improvement in MOTA over its 55.2 and 51.8 respectively. Compared with the
recent work [32], our best model (ResNet-152) has 7.1% and 6.6% improvement
on validation and test dataset respectively. Note that our smaller model (ResNet-
50) also outperform the other methods [11, 32].

Table 8 summarizes the results on PoseTrack’s leaderboard. Our baseline
outperforms all public entries by a large margin. Note that all methods differ
significantly and this comparison is only on system level.

5 Conclusions

We present simple and strong baselines for pose estimation and tracking. They
achieve state-of-the-art results on challenging benchmarks. They are validated
via comprehensive ablation studies. We hope such baselines would benefit the
field by easing the idea development and evaluation.
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