
Real-time ‘Actor-Critic’ Tracking

Boyu Chen1[0000−0003−2397−7669], Dong Wang1∗[0000−0002−6976−4004], Peixia

Li1[0000−0001−6167−5309], Shuang Wang2[0000−0002−6462−6040], and Huchuan

Lu1[0000−0002−6668−9758]

1 School of Information and Communication Engineering,

Dalian University of Technology, China
2 Alibaba Group, China
∗Corresponding Author

bychen@mail.dlut.edu.cn, wdice@dlut.edu.cn,

pxli@mail.dlut.edu.cn, uu.ws@alibaba-inc.com,

lhchuan@dlut.edu.cn

Abstract. In this work, we propose a novel tracking algorithm with real-time

performance based on the ‘Actor-Critic’ framework. This framework consists of

two major components: ‘Actor’ and ‘Critic’. The ‘Actor’ model aims to infer the

optimal choice in a continuous action space, which directly makes the tracker

move the bounding box to the object’s location in the current frame. For offline

training, the ‘Critic’ model is introduced to form a ‘Actor-Critic’ framework with

reinforcement learning and outputs a Q-value to guide the learning process of

both ‘Actor’ and ‘Critic’ deep networks. Then, we modify the original deep de-

terministic policy gradient algorithm to effectively train our ‘Actor-Critic’ model

for the tracking task. For online tracking, the ‘Actor’ model provides a dynamic

search strategy to locate the tracked object efficiently and the ‘Critic’ model acts

as a verification module to make our tracker more robust. To the best of our

knowledge, this work is the first attempt to exploit the continuous action and

‘Actor-Critic’ framework for visual tracking. Extensive experimental results on

popular benchmarks demonstrate that the proposed tracker performs favorably

against many state-of-the-art methods, with real-time performance.

Keywords: Visual tracking, Real-time tracking, Reinforcement learning

1 Introduction

Visual tracking aims to locate the target specified in the initial frame, which has many

realistic applications such as video surveillance, augment reality and behavior analysis.

In spite of many efforts having been done [1–3], it is still a challenge task due to many

factors such as deformation, illumination change, rotation, occlusion, to name a few.

Deep-learning-based tracking algorithms have significantly improved the tracking

performance in recent years [4–7]. The pre-trained convolutional neural networks (e.g.,

AlexNet, VGG-16 and VGG-M) are usually adopted to obtain rich feature representa-

tion for robust tracking. Among these methods, the MDNet tracker [5] achieves top-

ranked performance in popular benchmarks (such as OTB-100 [8] and VOT2015 [9]).

2 B. Chen, D. Wang, P. Li, S. Wang, H. Lu

(a) (b) (c)

Fig. 1. The search strategies of of different trackers. (a) MDNet [5]: search with random sampling;

(b) ADNet [10]: iterative search with a series of discrete actions; and (c) our tracker: fast search

with only one continuous action.

This method embeds the offline trained VGG-M network into the particle filter frame-

work, where 256 candidate samples are randomly generated and each sample is verified

using a CNN-based observation model in each frame. However, it is very slow due to

the random sampling search strategy. To address this issue, Yun et al. [10] propose a

reinforcement-learning-based tracker with an action-decision network (ADNet). This

method takes a series of discrete actions to iteratively search the tracked object in each

frame. Experimental results show that the ADNet tracker achieves slightly worse but

three times faster performance than the MDNet method. The search strategies of MD-

Net and ADNet methods are illustrated in Figure 1 (a) and (b), respectively. We note

that the learned iterative strategy in [10] is also far from the real-time requirement since

it requires many iterative steps in every frame.

In this work, we develop a learning-based search strategy with continuous actions

based on the ‘Actor-Critic’ framework. The core idea of this work is to predict only one

continuous action using the ‘Actor’ model to locate the tracked object in each frame (see

Figure 1 (c)). The reinforcement learning is exploited to offline train a good policy for

determining the optimal action. In addition, the ‘Critic’ network acts as a verification

scheme for both offline training and online tracking. The experimental results demon-

strate that our ‘Actor-Critic’ tracker achieves better performance than other competing

methods with real-time performance.

The contributions of this work can be summarized as follows.

(1) Our work is the first attempt to exploit the continuous actions for visual tracking.

Visual tracking is treated as a dynamic search process where only one action output by

the ‘Actor’ model is taken to locate the tracked object in each frame.

(2) Our work is also the first attempt to develop the ‘Actor-Critic’ tracking frame-

work. The ‘Actor-Critic’ model is not only used to offline train the ‘Actor’ model based

on reinforcement learning but also adopted to improve the robustness of our tracker

during the tracking process. In addition, we improve the deep deterministic policy gra-

Real-time ‘Actor-Critic’ Tracking 3

dient algorithm to effectively train our ‘Actor-Critic’ model with supervised learning

and probability expert decision guidance.

(3) The proposed tracker is compared with some state-of-the-art trackers using the

popular benchmarks, and the experimental results show that our tracker achieves good

results with real-time performance.

2 Related Work

Visual Tracking. From the perspective of object localization, visual tracking can be

treated as a dynamic search process to accurately locate the target in the current frame

based on previous observations. Usually, this dynamic search process can be achieved

with the sampling-verification framework. In each frame, a set of candidate states are

randomly or densely sampled to describe possible object locations [11–13]. Then, an

observation model is exploited to verify each candidate and determine the optimal state

of the tracked object. However, the tracker with a robust observation model will be very

slow since it requires calculating verification scores for a large number of sampled can-

didates, for both traditional methods [14–17] and deep visual trackers [5, 18, 19]. The

correlation filter (CF) technique [20] could speed up verifying the densely sampled can-

didates with circulant matrix structures, resulting in many real-time trackers with good

performance. Many attempts have been done to improve the original CF model in terms

of feature combination [21,22], scale estimation [23,24], part-based extension [25,26],

multi-task learning [27, 28], bound effect [29, 30], to name a few. However, this speed

merit of CF significantly whittled away when we combine it with deep features to pur-

suit higher accuracies (like HCFT [4], C-COT [31], ECO [7], LSART [32], DRT [33]).

Besides, the iterative search process can be adopted to conduct visual tracking, such

as Meanshift [34], Lucas-Kanade [35] and their variants [36–39]. These methods are

very efficient since they merely require a relative small of iterative steps (rather than

a large number of sampled candidates) for locating the tracked object in each frame.

However, their tracking accuracies are not satisfactory due to the following two rea-

sons. First, the adopted low-level hand-crafted features limit their performance. Second,

their search strategies are derived based on image or histogram gradients, without con-

sidering the high-level semantic information. Thus, the study of learning-based search

strategies with deep neural networks may facilitate the trackers’ taking a better trade-off

between robustness and efficiency. Yun et al. [10] develop an ADNet tracking algorithm

based on reinforcement learning, in which a series of iterative steps (corresponding to

motion actions) are determined by the offline trained action-decision network. It speeds

up the relevant MDNet method [5] more than three times without losing much accuracy.

However, the learned iterative strategy in [10] is also far from the real-time requirement

since it requires many iterative steps in each frame. In this work, we attempt to develop

a learning-based search strategy with only one continuous action in each frame, which

will significantly speed up the tracking method.

Reinforcement Learning. Reinforcement learning (RL) is a sequence learning method

benefiting from trail and error, aiming to generate an agent for maximizing the cumula-

tive future rewards. Due to the strong ability of deep neural networks, the RL technique

has been applied on many computer vision tasks [40–42]. Recently, there exist some

4 B. Chen, D. Wang, P. Li, S. Wang, H. Lu

attempts to exploit the RL technique for visual tracking. In [10], Yun et al. propose

an action-decision network based on RL, which learns a good policy to select a se-

ries of actions from the action pool (including eleven candidate actions for translation

moves, scale changes, and stop). Then, the tracker decides sequential actions to search

the optimal position of the tracked object in the current frame, and then goes to deal

with the next frame. In [43], Huang et al. exploit RL to learn an early decision pol-

icy for adaptively selecting efficient features during the tracking process. Based on the

learned policy, eight discrete actions are taken to decide whether the tracker locates

the tracked object on an early layer or continues processing subsequence layers. This

method could effectively speed up the deep tracker without losing accuracy since it

encourages the tracker to handle easy frames with cheap features while still to deal

with difficult frames with expensive deep features. In [44], the tracker is modeled as

an active agent to make online decisions whether the agent is still to ‘track’ or requires

to ‘reinitialize’ and whether the current observation should be ‘update’ or ‘ignored’.

In [45], the RL method is utilized to construct a template selection strategy, encourag-

ing the tracker choose the best template from finite candidate templates in every frame.

Different from above-mentioned methods, we propose a novel ‘Actor-Critic’ tracking

framework, which can effectively learn a good policy to determine one optimal action

based on reinforcement learning.

3 Tracking via the ‘Actor-Critic’ Network

3.1 Overview

Visual tracking aims to infer the location of an arbitrary object in each subsequent frame

given its initial position in the first frame. In this work, we attempt to conduct tracking

within a novel ‘Actor-Critic’ framework, the overall pipeline of which is illustrated in

Figure 2. The ‘Actor’ model aims to give one continuous action to directly make the

tracker move the bounding box to the object location in the current frame. It can be

effectively offline trained with a ‘Critic’ network based on deep reinforcement learn-

ing. During the tracking process, the ‘Critic’ model combines the action produced by

‘Actor’ to determine the quality of the action and facilitates improving the tracking

performance. The details of our tracking framework are presented as follows.

3.2 Problem Settings

Considering tracking as a sequential decision problem, our algorithm follows Markov

Decision Process (MDP). The basic components of MDP include states s ∈ S, actions

a ∈ A, the state transition function s
′

= f(s, a), and the reward r(s, a). In our MDP

framework, the tracker is treated as an agent to infer the accurate bounding box of the

tracked object in each frame. This agent is interacted with an environment through a

sequence of observations s1, s2, ..., st, actions a1, a2, ..., at and rewards r1, r2, ..., rt
. In the t-th frame, the agent gives the continuous action at according to the current

state st and obtains the tracking result as s
′

t. In this work, the action at is defined as

the relative motion of the tracked object indicating how its bounding box should move

Real-time ‘Actor-Critic’ Tracking 5

Δǆ
ΔǇ
Δs

Q

Score

c_conv2

c_conv3

c_fc4
c_fc5

c_fc6_train

c_fc6_test

107*107*3

51*51*96
11*11*256

3*3*512
512

512

512 + 3

a_conv1

a_conv2

107*107*3

51*51*96

a_conv3

11*11*256

a_fc4

3*3*512

a_fc5

512

a_fc6

512

c_conv1

Train

Test

Train

Train

Test

Fig. 2. The pipeline of the proposed tracking algorithm. ‘a’ means ‘Actor’ and ‘c’ means ‘Critic’.

directly in frame t. Different with ADNet [10], our tracker takes only one continuous

action to locate the tracked object, which makes our tracker more efficient. The detailed

settings of s, a, f (s, a) and r are presented as follows (we drop the frame index t for

clarity in this subsection).

State. In this work, we define the state s as the observation image patch within the

bounding box b = [x, y, h, w], where (x, y) is the center position and h and w stand for

the height and width respectively. To be specific, we define a per-processing function s

= φ (b, F) to crop the image patch within the bounding box b in a given frame F and

resize it to fit the input size of the deep network.

Action and State Transition. To conduct continuous control, the action space is as-

sumed to be continuous, indicating how the bounding box should move directly. Here,

we use the action a = [∆x,∆y,∆s] to depict the relative motion of the tracked object,

where ∆x and ∆y denote the relative horizontal and vertical translations and ∆s stands

for the relative scale change. Considering the temporal continuity in the tracking prob-

lem, we introduce some constraints to restrict the range of the action a: −1 ≤ ∆x ≤ 1,

−1 ≤ ∆y ≤ 1 and −0.05 ≤ ∆s ≤ 0.05. By applying the action a to the original

bounding box b, the new bounding box b
′

=
[

x
′

, y
′

, h
′

, w
′

]

can be obtained as























x
′

= x+∆x× h

y
′

= y +∆y × w

h
′

= h+∆s× h

w
′

= w +∆s× w

. (1)

Then, the state transition process s
′

= f (s, a) can be implicitly achieved by applying

the per-processing function φ
(

b
′

, F
)

.

In this work, we attempt to directly infer the optimal action a based on the state s us-

ing an ‘Actor’ model, i.e., a = µ (s|θµ). µ (.) denotes the deep network for our ‘Actor’

model with the parameter θµ. The ‘Actor’ model is trained offline with the proposed

6 B. Chen, D. Wang, P. Li, S. Wang, H. Lu

training strategy in Section 3.3, and then applied for online tracking. In practice, we

exploit a double bounding box scheme to build the ‘Actor’ model (i.e., two bounding

boxes of the target size and twice target size with the same center location).

Reward. The reward function r(s, a) describes the localization accuracy improvement

when transferring state s into state s
′

with a given action a. Thus, it can be defined

based on the overlap ratio of the new bounding box b
′

and the ground truth G,

r(s, a) =

{

1 if IoU(b
′

, G) > 0.7

−1 else
, (2)

where IoU denotes the Intersection-over-Union criterion (i.e., IoU(u, v) = u ∩ v/u ∪ v

for bounding boxes u and v). With every action, the reward will be generated and then

be used to update the deep networks in offline learning.

3.3 Offline Training

Network Structure. Inspired by the recent successful trackers with lightweight deep

networks, we use the pre-trained VGG-M model to initialize our ‘Actor’ and ‘Critic’

networks. As illustrated in Figure 2, there are three convolutional layers in both two

networks, which are consistent with the first three convolutional layers of the VGG-M

network. For the ‘Actor’ network, the next two fully connected layers with 512 output

nodes are combined with the ReLU operation, and the last fully connected layer gen-

erates a three-dimensional output. For offline training, the ‘Critic’ model has similar

structures with ‘Actor’ expect the last fully connected layer as it requires concatenating

the three-dimensional action vector to obtain a Q-value for action evaluation according

to the current state.

Training via DDPG. In this work, we train our ‘Actor-Critic’ network using the DDPG

approach [46], the core idea of which is to iteratively update the ‘Critic’ and ‘Actor’

models with training sample pairs collected based on the RL rule. Given N pairs of

(si, ai, ri, s
′

i), the ‘Critic’ model Q(s, a) can be learned using the Bellman equation as

in Q-learning. With the utilization of the target networks µ
′

and Q
′

, the learning process

can be achieved by minimizing the following loss,

L =
1

N

∑

i

(yi −Q(si, ai|θ
Q))2, (3)

where yi = ri + γQ
′

(s
′

i, µ
′

(s
′

i|θ
µ
′

)|θQ
′

).
Then, the ‘Actor’ model can be updated by applying the chain rule to the expected

return from the start distribution J with respect to the model parameters:

∇θµJ ≈
1

N

∑

i

∇aQ(s, a|θQ)
∣

∣

s=si,a=µ(si)
∇θµµ(s|θµ)|s=si

. (4)

During the training iteration, we randomly select a piece of training sequences

[Fk, Fk+1, . . . , Fk+T] with their ground truth [Gk, Gk+1, . . . , Gk+T] from the train-

ing data (k is the start frame number and T is the frame length). After that, we apply

our tracker in the selected sequence to obtain a training pair (st, at, rt, s
′

t) at frame t.

Real-time ‘Actor-Critic’ Tracking 7

Algorithm 1 Offline training the ‘Actor’ network

Input: Training sequences [F] and their corresponding ground truths [G]

Output: Trained weights for the ‘Actor’ network

Initialize ‘Critic’ Q(s, a) and ‘Actor’ µ(s|θµ) with weights θQ and θµ.

Initialize the target network Q
′

and µ
′

with weights θQ
′

← θQ, θµ
′

← θµ

Initialize the replay buffer R

repeat

Randomly select a piece of frames [Fk, Fk+1, . . . , Fk+T] with their ground truth

[Gk, Gk+1, . . . , Gk+T]
Receive initial observation state sk according to Fk and Gk

Train the ‘Actor’ network for an iteration utilizing s1
for each t = 2, T + 1 do

1. Obtain state st according to state st−1 and Fk−1+t

2. Select action at = µ(st|θ
µ) according to the current policy and exploration probability

ǫ;

3. Execute action at according to the transition in Eq. 1, observe reward rt as Eq. 2 and

the next state s
′

t

4. Store transition (st, at, rt, s
′

t) in R

end for

Sample a random mini-batch of N transitions (si, ai, ri, s
′

i) from R

Update ‘Critic’ Q(s, a) by minimizing the loss following Eq. 3

Update ‘Actor’ µ(s|θµ) using the sampled policy gradient following Eq. 4

Update the target networks:

θ
Q

′

← τθ
Q + (1− τ)θQ

′

θ
µ
′

← τθ
µ + (1− τ)θµ

′
(5)

until Reward become stable

Training Process Improvement. It is not feasible to directly apply the original DDPG

framework to train our model, since the action space is very huge in our tracking prob-

lem. Thus, we attempt to improve the training process from two following aspects.

(1) Due to the huge action space, it is difficult to obtain a positive reward when an

agent follows a random exploration strategy for a given video clip. This will make the

DDPG method less effective in training our model. To solve this problem, we utilize the

supervised information from the first frame to initialize the ‘Actor’ model for adapting

the current environment. That is, the ‘Actor’ model is fine-tuned through the adaptive

moment estimation method to minimize the following L2 loss function,

min
1

M

M
∑

m=1

[µ (sm|θµ)− am]
2
, (6)

where M is the number of training samples and µ (.|θµ) denotes the ‘Actor’ network

with parameter θµ. sm is the m-th sampled state and am denotes its ground truth action.

8 B. Chen, D. Wang, P. Li, S. Wang, H. Lu

(2) The initialization scheme above cannot fully solve the imbalance problem of

positive and negative samples as there are many unpredicted challenges causing track-

ing drifts. Thus, we exploit expert decisions to guide the learning process. The original

DDPG algorithm introduces an exploration policy µ
′

by adding noise sampled from a

noise process N to the actor policy µ(st) = µ(st|θ
µ
t) + N . However, this similar ex-

ploration mechanism is not suitable for our tracking task due to the huge action space.

Therefore, we adopt a probabilistic expert decision guidance to supersede exploration

mechanism in reinforcement learning. In a video sequence, with a certain probability

ǫ, an expert decision guidance is applied to replace the action output by the ‘Actor’

network. The probability ǫ gradually decreases during the training process.

Our ‘Actor’ network can be effectively trained offline by the DDPG method with

two improvements above. The overall training process is summarized in Algorithm 1.

3.4 Online Tracking

Network Initialization. To make our tracker further suitable for the current sequence,

we initialize both ‘Actor’ and ‘Critic’ models with the ground truth in the first frame.

For ‘Actor’, we first sample M candidate bounding boxes bm|Mm=1 around the

ground truth and calculate their corresponding accurate actions am|Mm=1. Then, we

extract the image observation sm for the candidate location bm using per-processing

function sm = φ (bm, F) (defined in Section 3.2). Thus, the ‘Actor’ network can be

fine-tuned using the Adam method to minimize the L2 loss 1
M

M
∑

m=1
[µ (sm|θµ)− am]

2
.

For online tracking, the ‘Critic’ model v (s|θν) is a classification network. To ini-

tialize it, we assign a binary label lm to the m-th candidate using the following rule,

lm =

{

1 if IoU(bm, G) > 0.7

0 else
, (7)

where G denotes the ground truth bounding box. With the collected image-label pairs

{sm, lm}|Mm=1, the ‘Critic’ network is initialized using the Adam method to minimize

the following loss function,

argmin
θν

−
∑

s∈S+

p+(s|ν; θ
ν)−

∑

s∈S−

p−(s|ν; θ
ν), (8)

where S+ and S− denote positive and negative training sets respectively. The ‘Critic’

network outputs the foreground and background probabilities p+(s|ν; θ
ν) and p−(s|ν; θ

ν)
for a given state (or observation patch) s.

Tracking via ‘Actor-Critic’. For online tracking, we exploit both ‘Actor’ and ‘Critic’

networks within a tracking-and-verification scheme. In the t-th frame, we first calculate

the state st using the preprocessing function φ
(

b
′

t−1, Ft

)

(b
′

t−1 denotes the optimal

object location in the t − 1 frame and F is the image frame). Second, we put the state

st into the the ‘Actor’ network resulting in the action at, i.e., at = µ (st|θ
µ). With the

action at and location b
′

t−1, we can obtain the new location b
′

t and its corresponding

Real-time ‘Actor-Critic’ Tracking 9

state s
′

t in the current frame. Then, we utilize the ‘Critic’ network to verify the obser-

vation s
′

t, i.e., v
(

s
′

t|θ
ν
)

. If the score given by the ‘Critic’ network is large than 0, we

treat the action at being reliable and adopt the location b
′

t as the optimal location in the

t-th frame. Otherwise, we exploit a re-detection technique using the ‘Critic’ network

to evaluate a series of sampled candidates bmt |Mm=1 around b
′

t−1 (same as the sampling

strategy in Network Initialization). After that, the optimal location b
′

t is obtained as the

candidate with the highest score outputed by ‘Critic’.

Network Update. An effective updating strategy helps our tracker take a good trade-off

between robustness and efficiency. The ‘Actor’ model has a stable performance during

the tracking process due to our offline training, thus, we merely update the ‘Critic’

network when needed. If the verification score given by ‘Critic’ is less than 0, we think

it does not fit well with the appearance change in the current environment and use

positive and negative samples collected in previous 10 frames to update the network

based on Eq.8.

3.5 Implementation Details

Samples generation. To train the networks in both offline and online tracking stages,

we sample Xi
t =

(

xi
t, y

i
t, z

i
t

)

, i = 1, . . . , N (x and y are horizontal and vertical transla-

tions; z denotes the scale) from a Gaussian distribution centered by the object location

in frame t− 1. The covariance is a diagonal matrix diag
(

0.09d2, 0.09d2, 0.25
)

, where

d is the mean of the width and height of the tracked object.

Offline Training. To train our ‘Actor’ network offline, we use 768 video sequences

from the ImageNet Video [47] trainval set. We randomly choose continuous twenty to

forty frames in a video for each iteration. For initializing the ‘Actor’ network in the first

frame, we collect 32 samples whose IoU scores with ground truth are larger than 0.7.

The learning rate is set to 1e-4 in the initialization stage.

The possibility of adopting the expert decision ǫ is set to 0.5 at first and reduced

by 5% after every ten thousand iterations. We update the target networks every ten

thousand iterations. τ in the target networks updating is set to 0.001. The learning rates

of the ‘Actor’ and ‘Critic’ networks are set to 1e-6 and 1e-5, respectively. In addition,

we use a replay buffer size of 104. We finish the training of the ‘Actor’ network after

two hundred and fifty thousand iterations.

Online Tracking. For online tracking, we collect 500 positive samples and 5000 neg-

ative samples with ground truth in the first frame. Only positive samples are used for

training the ‘Actor’ network. We initialize the ‘Actor’ network with learning rates 1e-4

until the loss is less than 1e-4 and initialize the ‘Critic’ network with learning rates 1e-4

for 30 iterations. The batch sizes for the ‘Actor’ and ‘Critic’ models are 64 and 128,

respectively. When the predicted target location of the highest foreground score of all

candidates are less than 0, we consider it as the tracking failure, and the re-detection

is conducted to capture the missed target. We draw 256 samples for the re-detection

scheme. Simultaneously, the ‘Critic’ model is online updated with collected samples

from 10 recent successful tracking frames. We collect 50 positive samples and 150 neg-

ative samples from each successful tracking frame.

10 B. Chen, D. Wang, P. Li, S. Wang, H. Lu

ACT(Ours) SiameFC ECO-HC KCF PTAV

Fig. 3. Qualitative results of our ACT method and other trackers on some challenging sequences

(ClifBar, Girl2, Matrix, MotorRolling, Skiing, Walking2).

4 Experiment

Our tracker is implemented in Python with the Pytorch framework, which runs at 30 fps

on a PC with a 3.4GHz CPU with 32G memory and a TITAN GPU with 12G memory.

The website of our ACT method is available on https://github.com/bychen515/ACT.

Our tracker based on the ‘Actor-Critic’ network is denoted as ACT for clarity. We com-

pare our tracker with many state-of-the-art trackers using standard tracking benchmarks

such as Online Tracking Benchmark (OTB) [8, 48] and Visual Object Tracking chal-

lenge 2016 (VOT2016) [49]. Some representative visual results are shown in Figure 3.

4.1 Evaluation on OTB

In this subsection, we evaluate our tracker using both OTB-2013 [48] and OTB-2015 [8]

datasets. The proposed tracker is compared with ten state-of-the-art trackers with real-

Real-time ‘Actor-Critic’ Tracking 11

time performance including PTAV [50], CFNet [51], ACFN [52], SiameFC [6], ECO-

HC [7], LCT [53], LMCF [54], Staple [22], DSST [55] and KCF [20]. The first four

algorithms employ the feature descriptors from CNNs while the rest of the methods are

based on the traditional hand-crafted features.

In this work, we adopt both precision and success plots to evaluate different trackers.

The precision plot illustrates the percentage of frames where the center location error

between the object location and ground truth is smaller than a per-defined threshold.

Whereas the success plot demonstrates the percentage of frames the Intersection Over

Union (IOU) of the predicted and the ground truth bounding boxes is higher than a given

ratio. The trackers can be ranked the accuracy at 20 pixel threshold in the precision plot

and the Area Under Curve (AUC) score in the success plot.

OTB-2013. We first evaluate our tracker in comparison with ten competing methods

using the OTB-2013 dataset [48]. This dataset is one of the most popular benchmark

including 50 fully-annotated video sequences with 11 various challenging factors such

as fast motion, occlusion, illumination change, motion blur, and background clutter.

These attributes could facilitate understanding the characteristics of our tracker.

Figure 4 (a) illustrates the precision and success plots over 50 sequences in OTB-

2013. From this figure, we can see that our ACT method achieves best performance

in terms of precision and the second best result in terms of success. These outstanding

results are partly attributed to the strength of CNN features, which makes our tracker

effectively depict the appearance of the tracked object compared with low-level hand-

crafted features. In comparison with CFNet, SiameFC and ACFN methods using deep

networks, our ACT algorithm still achieves better performance due to the proposed

learning scheme for determining the accurate action. Table 1 summarizes the average

precision scores of different trackers for 11 challenging attributes in OTB-2013. It can

be seen from this table that our ACT method performs better in handling most of chal-

lenges. The ECO-HC and PTAV also achieve good performance due the improved cor-

relation filter technique or the explicit combination of a tracker and a verifier.

OTB-2015. Wu et al. [8] extend the OTB-2013 dataset with 50 more video, denoted

as OTB-2015. The OTB-2015 dataset introduces more challenges for evaluating online

tracking algorithms. Figure 4 (b) reports the precision and success plots of different

trackers in OTB-2015. The results demonstrate that the proposed tracker is still very

competitive compared with other methods.

4.2 Evaluation on VOT2016

In addition, we report the evaluation results on the VOT2016 dataset [49], which con-

tains 60 sequences with substantial variations.

Different from the OTB dataset, in the VOT challenge protocol, a tracker is re-

initialized whenever tracking fails. The evaluation module reports both accuracy and

robustness, corresponding to the total bounding box overlap ratio and the number of

failures respectively. The VOT2016 challenge introduces the expected average over-

lap (EAO) as a new metric to rank tracking algorithms. It reflects the accuracy of the

algorithm, with taking robustness into account.

Our algorithm is compared with seven trackers, which all join in the VOT2016

challenge. We report the average accuracy and robustness rank of all trackers in the

12 B. Chen, D. Wang, P. Li, S. Wang, H. Lu

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Location error threshold

P
re

ci
si

on

Precision plots of OPE

ACT [0.905]
PTAV [0.894]
ECO−HC [0.874]
ACFN [0.860]
LCT [0.848]
LMCF [0.842]
SiameFC [0.809]
CFNet [0.807]
Staple [0.793]
KCF [0.740]
DSST [0.740]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap threshold

S
uc

ce
ss

 r
at

e

Success plots of OPE

PTAV [0.663]
ACT [0.657]
ECO−HC [0.652]
LCT [0.628]
LMCF [0.628]
CFNet [0.611]
SiameFC [0.607]
ACFN [0.607]
Staple [0.600]
DSST [0.554]
KCF [0.514]

(a) OTB-2013

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Location error threshold

P
re

ci
si

on

Precision plots of OPE

ACT [0.859]
ECO−HC [0.856]
PTAV [0.848]
ACFN [0.795]
LMCF [0.788]
Staple [0.784]
SiameFC [0.771]
LCT [0.762]
CFNet [0.748]
KCF [0.696]
DSST [0.680]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap threshold

S
uc

ce
ss

 r
at

e

Success plots of OPE

ECO−HC [0.643]
PTAV [0.634]
ACT [0.625]
SiameFC [0.582]
Staple [0.581]
LMCF [0.580]
ACFN [0.571]
CFNet [0.568]
LCT [0.562]
DSST [0.513]
KCF [0.477]

(b) OTB-2015

Fig. 4. The precision and success plots of different trackers on the OTB-2013 (a) and OTB-2015

(b) datasets. We can see that our ACT method performs better than other competing trackers.

Table 1. Average precision scores on different attributes: illumination variation (IV), out-of-plane

rotation (OPR), scale variation (SV), occlusion (OCC), deformation (DEF), motion blur (MB),

fast motion (FM), in-plane rotation (IPR), out-of-view(OV), background cluttered (BC) and low

resolution (LR). The best and the second best results are in red and blue colors, respectively.

IV SV OCC DEF MB FM IPR OPR OV BC LR AV

ACT(Ours) 0.855 0.910 0.871 0.882 0.806 0.805 0.867 0.889 0.788 0.915 0.873 0.905

PTAV [50] 0.848 0.837 0.902 0.892 0.815 0.805 0.853 0.894 0.853 0.880 0.615 0.894

ECO-HC [7] 0.793 0.838 0.913 0.863 0.777 0.797 0.801 0.862 0.883 0.816 0.666 0.874

ACFN [52] 0.793 0.813 0.856 0.902 0.709 0.719 0.814 0.870 0.788 0.783 0.429 0.860

LCT [53] 0.792 0.758 0.845 0.873 0.664 0.665 0.802 0.850 0.728 0.796 0.352 0.848

LMCF [54] 0.783 0.775 0.844 0.869 0.714 0.730 0.779 0.826 0.695 0.848 0.555 0.842

SiameFC [6] 0.709 0.796 0.802 0.743 0.698 0.723 0.743 0.788 0.780 0.732 0.659 0.809

CFNet [51] 0.728 0.799 0.758 0.759 0.705 0.691 0.762 0.785 0.500 0.806 0.619 0.807

Staple [22] 0.741 0.733 0.787 0.812 0.688 0.643 0.773 0.773 0.679 0.753 0.550 0.793

DSST [55] 0.730 0.738 0.706 0.658 0.544 0.531 0.768 0.736 0.511 0.694 0.479 0.740

KCF [20] 0.728 0.679 0.749 0.740 0.650 0.602 0.725 0.729 0.650 0.753 0.381 0.740

Real-time ‘Actor-Critic’ Tracking 13

Table 2. Besides, the EAO metric is also shown in this Table which gives the orders of

all trackers. As illustrated in Table 2, our ACT method also achieves very competitive

results. The C-COT and MLDF methods perform better than our ACT method, however,

they merely run less than 2fps.

Table 2. The overall ranking score of accuracy (A), robustness (R) and expected overlap (EAO)

in VOT2016.

Tracker C-COT [31] MLDF ACT(Ours) MDNet-N SiamAN SO-DLT [56] KCF DSST

Accuracy 1.87 2.77 2.25 1.63 2.37 2.23 2.98 2.60

Robustness 2.08 1.95 3.47 2.55 3.43 3.98 3.87 4.45

EAO 0.3310 0.3106 0.2746 0.2572 0.2352 0.2213 0.1924 0.1814

4.3 Analysis

Self-comparison. To verify the contribution of each component in our algorithm, we

implement several variations of our approach and evaluate them using OTB-2013. These

versions include: (1) ‘ACT-vgg’: the ACT method is not pertrained and simple adopts

initial parameters of the VGG-M model to initialize the ‘Actor’ network; (2) ‘ACT-rl’:

the ACT method without the reinforcement learning process; (3) ‘ACT-init’: the ACT

method without using the initialization in the first frame among the training video se-

quence; (4) ‘ACT-ex’: the ACT method replacing the expert decision guidance by nor-

mal exploration in tradition DDPG methods. The performance of all variations and our

final ACT is reported in Figure 5, from which we can see that all components facilitates

improving the tracking performance. For examples, the comparison of the ‘ACT-rl’ and

final ACT methods demonstrates the reinforcement learning process could effectively

learn a good policy for action decision. The ‘ACT-rl’ method cannot learn the action

policy from the training data. We note that the ‘ACT-vgg’ method without offline train-

ing runs at only 2fps with not good performance, which means the ‘Actor’ model with-

out pre-trained cannot output the accurate action and the ‘Critic’ verification scheme

requires to be invoked more frequently.

Compared with ADNet [10] and MDNet [5]. We note that the most relevant trackers

of our ACT method are ADNet [10] and MDNet [5] since they adopt the VGG-M

model as the basic network structure but with different search strategies. The detailed

comparisons are reported in Table 3. The MDNet method performs the best in terms of

accuracy but runs very slow due to the random sampling search strategy. The ADNet

tracker exploits the iterative search strategy with few discrete actions in each frame,

the fast version of which could achieve 15fps with losing about 3% accuracy compared

with MDNet. Our ACT method performs slightly worse than the ADNet tracker and

achieves comparable accuracies with the ADNet-fast one. However, our tracker runs at

30fps, twice than ADNet-fast and more than ten times than the original ADNet. This

can be mainly attributed to the adopted continuous action, which locates the tracked

object using merely one action in each frame.

14 B. Chen, D. Wang, P. Li, S. Wang, H. Lu

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Location error threshold

P
re

ci
si

on

Precision plots of OPE

ACT [0.905]
ACT−rl [0.876]
ACT−ex [0.861]
ACT−init [0.849]
ACT−vgg [0.787]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap threshold

S
uc

ce
ss

 r
at

e

Success plots of OPE

ACT [0.657]
ACT−rl [0.639]
ACT−ex [0.616]
ACT−init [0.577]
ACT−vgg [0.550]

Fig. 5. Precision and success plots on OTB50 for different variations of our algorithm.

Table 3. The comparions of our ACT tracker with ADNet [10] and MDNet [5] methods in OTB.

Method ACT(Ours) ADNet [10] ADNet-fast [10] MDNet [5]

Prec.(20px) on OTB-2013 0.905 0.903 0.898 0.948

IOU(AUC) on OTB-2013 0.657 0.659 0.670 0.708

Prec.(20px) on OTB-2015 0.859 0.880 0.851 0.909

IOU(AUC) on OTB-2015 0.625 0.646 0.635 0.678

FPS 30 3 15 1

5 Conclusions

This work presents a novel ‘Actor-Critic’ tracking method based on reinforcement

learning. The ‘Actor’ model acts as an action decision network to generate an optimal

action that moves the bounding box to the object’s location. Compared with existing al-

gorithms, our method merely takes one continuous action in each frame, which makes

it very efficient. For offline training, a ‘Critic’ network is integrated with the ‘Actor’ one

to construct the ‘Actor-Critic’ framework, which can effectively learn the weights of the

‘Actor’ network. For online tracking, the similar ‘Critic’ network verifies the reliability

of the output action and invokes the re-detection scheme if needed. Extensive exper-

iments demonstrate that the proposed tracking algorithm achieves better performance

than many state-of-the-art real-time trackers.

Acknowledgment. This paper was supported in part by the Natural Science Foundation

of China #61751212, #61502070, #61725202, #61771088, #61472060, #61632006,

#91538201, and in part by the Fundamental Research Funds for the Central Univer-

sities under Grant #DUT18JC30. This work was also supported by Alibaba Group

through Alibaba Innovative Research (AIR) program.

References

1. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Computing Surveys 38(4)

(2006)

Real-time ‘Actor-Critic’ Tracking 15

2. Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A.R., van den Hengel, A.: A survey of appearance

models in visual object tracking. ACM Transactions on Intelligent Systems and Technology

4(4) (2013) 58:1–58:48

3. Li, P., Wang, D., Wang, L., Lu, H.: Deep visual tracking: Review and experimental compari-

son. Pattern Recognition 76 (2018) 323–338

4. Ma, C., Huang, J.B., Yang, X., Yang, M.H.: Hierarchical convolutional features for visual

tracking. In: ICCV. (2015)

5. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking.

In: CVPR. (2016)

6. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional

siamese networks for object tracking. In: ECCV. (2016)

7. Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: ECO: efficient convolution operators for

tracking. In: CVPR. (2017)

8. Wu, Y., Lim, J., Yang, M.: Object tracking benchmark. IEEE Transactions on Pattern Analysis

and Machine Intelligence 37(9) (2015) 1834–1848

9. Kristan, M., Matas, J., Leonardis, A., Felsberg, M., Cehovin, L., Fernández, G., Vojı́r, T.,

Häger, G., Nebehay, G., Pflugfelder, R.P.: The visual object tracking VOT2015 challenge

results. In: ICCV. (2015)

10. Yun, S., Choi, J., Yoo, Y., Yun, K., Choi, J.Y.: Action-decision networks for visual tracking

with deep reinforcement learning. In: CVPR. (2017)

11. Grabner, H., Bischof, H.: On-line boosting and vision. In: CVPR. (2006)

12. Ross, D.A., Lim, J., Lin, R., Yang, M.: Incremental learning for robust visual tracking.

International Journal of Computer Vision 77(1-3) (2008) 125–141

13. Babenko, B., Yang, M., Belongie, S.J.: Robust object tracking with online multiple instance

learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(8) (2011) 1619–

1632

14. Jia, X., Lu, H., Yang, M.: Visual tracking via adaptive structural local sparse appearance

model. In: CVPR. (2012)

15. Zhong, W., Lu, H., Yang, M.: Robust object tracking via sparse collaborative appearance

model. IEEE Transactions on Image Processing 23(5) (2014) 2356–2368

16. Hare, S., Golodetz, S., Saffari, A., Vineet, V., Cheng, M., Hicks, S.L., Torr, P.H.S.: Struck:

Structured output tracking with kernels. IEEE Transactions on Pattern Analysis and Machine

Intelligence 38(10) (2016) 2096–2109

17. Li, Z., Zhang, J., Zhang, K., Li, Z.: Visual tracking with weighted adaptive local sparse ap-

pearance model via spatio-temporal context learning. IEEE Transactions on Image Processing

27(9) (2018) 4478–4489

18. Wang, N., Yeung, D.: Learning a deep compact image representation for visual tracking. In:

NIPS. (2013)

19. Li, H., Li, Y., Porikli, F.: DeepTrack: learning discriminative feature representations by

convolutional neural networks for visual tracking. In: BMVC. (2014)

20. Henriques, J.F., Rui, C., Martins, P., Batista, J.: High-speed tracking with kernelized corre-

lation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 37(3) (2015)

583–596

21. Zhu, G., Wang, J., Wu, Y., Zhang, X., Lu, H.: MC-HOG correlation tracking with saliency

proposal. In: AAAI. (2016)

22. Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., Torr, P.H.S.: Staple: Complementary

learners for real-time tracking. In: CVPR. (2016)

23. Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In:

ECCVW. (2014)

24. Danelljan, M., Häger, G., Khan, F.S., Felsberg, M.: Discriminative scale space tracking.

IEEE Transactions on Pattern Analysis and Machine Intelligence 39(8) (2017) 1561–1575

16 B. Chen, D. Wang, P. Li, S. Wang, H. Lu

25. Li, Y., Zhu, J., Hoi, S.C.H.: Reliable patch trackers: Robust visual tracking by exploiting

reliable patches. In: CVPR. (2015)

26. Liu, T., Wang, G., Yang, Q.: Real-time part-based visual tracking via adaptive correlation

filters. In: CVPR. (2015)

27. Tang, M., Feng, J.: Multi-kernel correlation filter for visual tracking. In: ICCV. (2015)

28. Zhang, T., Xu, C., Yang, M.: Multi-task correlation particle filter for robust object tracking.

In: CVPR. (2017)

29. Danelljan, M., Hager, G., Khan, F.S., Felsberg, M.: Learning spatially regularized correlation

filters for visual tracking. In: ICCV. (2015)

30. Galoogahi, H.K., Fagg, A., Lucey, S.: Learning background-aware correlation filters for

visual tracking. In: ICCV. (2017)

31. Danelljan, M., Robinson, A., Khan, F.S., Felsberg, M.: Beyond correlation filters: Learning

continuous convolution operators for visual tracking. In: ECCV. (2016)

32. Sun, C., Wang, D., Lu, H., Yang, M.H.: Learning spatial-aware regressions for visual track-

ing. In: CVPR. (2018)

33. Sun, C., Wang, D., Lu, H., Yang, M.H.: Correlation tracking via joint discrimination and

reliability learning. In: CVPR. (2018)

34. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Transactions on

Pattern Analysis and Machine Intelligence 25(5) (2003) 564–575

35. Baker, S., Matthews, I.A.: Lucas-kanade 20 years on: A unifying framework. International

Journal of Computer Vision 56(3) (2004) 221–255

36. Jiang, N., Liu, W., Wu, Y.: Learning adaptive metric for robust visual tracking. IEEE Trans-

actions on Image Processing 20(8) (2011) 2288–2300

37. Li, P., Wang, Q.: Robust registration-based tracking by sparse representation with model

update. In: ACCV. (2012)

38. Ning, J., Zhang, L., Zhang, D., Wu, C.: Robust mean-shift tracking with corrected

background-weighted histogram. IET Computer Vision 6(1) (2012) 62–69

39. Oron, S., Bar-Hillel, A., Avidan, S.: Extended lucas-kanade tracking. In: ECCV. (2014)

40. Caicedo, J.C., Lazebnik, S.: Active object localization with deep reinforcement learning. In:

ICCV. (2015)

41. Bellver, M., Giro-i Nieto, X., Marques, F., Torres, J.: Hierarchical object detection with deep

reinforcement learning. In: NIPS. (2016)

42. Jayaraman, D., Grauman, K.: Look-ahead before you leap: End-to-end active recognition by

forecasting the effect of motion. In: ECCV. (2016)

43. Huang, C., Lucey, S., Ramanan, D.: Learning policies for adaptive tracking with deep feature

cascades. In: ICCV. (2017)

44. III, J.R.S., Ramanan, D.: Tracking as online decision-making: Learning a policy from

streaming videos with reinforcement learning. In: ICCV. (2017)

45. Choi, J., Kwon, J., Lee, K.M.: Visual tracking by reinforced decision making. CoRR

abs/1702.06291 (2017)

46. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.:

Continuous control with deep reinforcement learning. CoRR abs/1509.02971 (2015)

47. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,

A., Khosla, A., Bernstein, M.S., Berg, A.C., Li, F.: Imagenet large scale visual recognition

challenge. International Journal of Computer Vision 115(3) (2015) 211–252

48. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: A benchmark. In: CVPR. (2013)

49. Kristan, M., Leonardis, A., Jiri Matas, e.a.: The visual object tracking VOT2016 challenge

results. In: ECCVW. (2016)

50. Fan, H., Ling, H.: Parallel tracking and verifying: A framework for real-time and high accu-

racy visual tracking. In: ICCV. (2017)

Real-time ‘Actor-Critic’ Tracking 17

51. Valmadre, J., Bertinetto, L., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: End-to-end represen-

tation learning for correlation filter based tracking. In: CVPR. (2017)

52. Choi, J., Chang, H.J., Yun, S., Fischer, T., Demiris, Y., Choi, J.Y.: Attentional correlation

filter network for adaptive visual tracking. In: CVPR. (2017)

53. Ma, C., Yang, X., Zhang, C., Yang, M.: Long-term correlation tracking. In: CVPR. (2015)

54. Wang, M., Liu, Y., Huang, Z.: Large margin object tracking with circulant feature maps. In:

CVPR. (2017)

55. Danelljan, M., Häger, G., Khan, F.S., Felsberg, M.: Accurate scale estimation for robust

visual tracking. In: BMVC. (2014)

56. Wang, N., Li, S., Gupta, A., Yeung, D.: Transferring rich feature hierarchies for robust visual

tracking. CoRR abs/1501.04587 (2015)

