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Abstract. In this paper, we explore neural network models that learn to asso-

ciate segments of spoken audio captions with the semantically relevant portions

of natural images that they refer to. We demonstrate that these audio-visual as-

sociative localizations emerge from network-internal representations learned as a

by-product of training to perform an image-audio retrieval task. Our models oper-

ate directly on the image pixels and speech waveform, and do not rely on any con-

ventional supervision in the form of labels, segmentations, or alignments between

the modalities during training. We perform analysis using the Places 205 and

ADE20k datasets demonstrating that our models implicitly learn semantically-

coupled object and word detectors.

Keywords: Vision and language, sound, speech, convolutional networks, multi-

modal learning, unsupervised learning

1 Introduction

Babies face an impressive learning challenge: they must learn to visually perceive the

world around them, and to use language to communicate. They must discover the ob-

jects in the world and the words that refer to them. They must solve this problem when

both inputs come in raw form: unsegmented, unaligned, and with enormous appearance

variability both in the visual domain (due to pose, occlusion, illumination, etc.) and

in the acoustic domain (due to the unique voice of every person, speaking rate, emo-

tional state, background noise, accent, pronunciation, etc.). Babies learn to understand

speech and recognize objects in an extremely weakly supervised fashion, aided not by

ground-truth annotations, but by observation, repetition, multi-modal context, and en-

vironmental interaction [12, 47]. In this paper, we do not attempt to model the cognitive

development of humans, but instead ask whether a machine can jointly learn spoken

language and visual perception when faced with similar constraints; that is, with in-

puts in the form of unaligned, unannotated raw speech audio and images (Figure 1). To

that end, we present models capable of jointly discovering words in raw speech audio,

objects in raw images, and associating them with one another.

There has recently been a surge of interest in bridging the vision and natural lan-

guage processing (NLP) communities, in large part thanks to the ability of deep neural

networks to effectively model complex relationships within multi-modal data. Current

work bringing together vision and language [2, 13, 14, 23, 28, 33, 34, 40, 41, 49, 50, 52]
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relies on written text. In this situation, the linguistic information is presented in a pre-

processed form in which words have been segmented and clustered. The text word car

has no variability between sentences (other than synonyms, capitalization, etc.), and it is

already segmented apart from other words. This is dramatically different from how chil-

dren learn language. The speech signal is continuous, noisy, unsegmented, and exhibits

a wide number of non-lexical variabilities. The problem of segmenting and clustering

the raw speech signal into discrete words is analogous to the problem of visual object

discovery in images - the goal of this paper is to address both problems jointly.

Fig. 1: The input to our models: images

paired with waveforms of speech audio.

Recent work has focused on cross

modal learning between vision and

sounds [3, 4, 36, 37]. This work has fo-

cused on using ambient sounds and video

to discover sound generating objects in

the world. In our work we will also use

both vision and audio modalities except

that the audio corresponds to speech. In

this case, the problem is more challeng-

ing as the portions of the speech signal

that refer to objects are shorter, creating a

more challenging temporal segmentation

problem, and the number of categories

is much larger. Using vision and speech

was first studied in [19], but it was only

used to relate full speech signals and images using a global embedding. Therefore the

results focused on image and speech retrieval. Here we introduce a model able to seg-

ment both words in speech and objects in images without supervision.

The premise of this paper is as follows: given an image and a raw speech audio

recording describing that image, we propose a neural model which can highlight the

relevant regions of the image as they are being described in the speech. What makes our

approach unique is the fact that we do not use any form of conventional speech recog-

nition or transcription, nor do we use any conventional object detection or recognition

models. In fact, both the speech and images are completely unsegmented, unaligned,

and unannotated during training, aside from the assumption that we know which im-

ages and spoken captions belong together as illustrated in Figure 1. We train our models

to perform semantic retrieval at the whole-image and whole-caption level, and demon-

strate that detection and localization of both visual objects and spoken words emerges

as a by-product of this training.

2 Prior Work

Visual Object Recognition and Discovery. State of the art systems are trained using

bounding box annotations for the training data [16, 39], however other works investi-

gate weakly-supervised or unsupervised object localization [5, 7, 9, 56]. A large body

of research has also focused on unsupervised visual object discovery, in which case

there is no labeled training dataset available. One of the first works within this realm



Jointly Discovering Visual Objects and Spoken Words from Raw Sensory Input 3

is [51], which utilized an iterative clustering and classification algorithm to discover

object categories. Further works borrowed ideas from textual topic models [45], as-

suming that certain sets of objects generally appear together in the same image scene.

More recently, CNNs have been adapted to this task [10, 17], for example by learning

to associate image patches which commonly appear adjacent to one another.

Unsupervised Speech Processing. Automatic speech recognition (ASR) systems

have recently made great strides thanks to the revival of deep neural networks. Training

a state-of-the-art ASR system requires thousands of hours of transcribed speech audio,

along with expert-crafted pronunciation lexicons and text corpora covering millions, if

not billions of words for language model training. The reliance on expensive, highly

supervised training paradigms has restricted the application of ASR to the major lan-

guages of the world, accounting for a small fraction of the more than 7,000 human

languages spoken worldwide [31]. Within the speech community, there is a continuing

effort to develop algorithms less reliant on transcription and other forms of supervision.

Generally, these take the form of segmentation and clustering algorithms whose goal

is to divide a collection of spoken utterances at the boundaries of phones or words,

and then group together segments which capture the same underlying unit. Popular ap-

proaches are based on dynamic time warping [21, 22, 38], or Bayesian generative mod-

els of the speech signal [25, 30, 35]. Neural networks have thus far been mostly utilized

in this realm for learning frame-level acoustic features [24, 42, 48, 54].

Fusion of Vision and Language. Joint modeling of images and natural language

text has gained rapidly in popularity, encompassing tasks such as image captioning [13,

28, 23, 49, 52], visual question answering (VQA) [2, 14, 33, 34, 41], multimodal dia-

log [50], and text-to-image generation [40]. While most work has focused on repre-

senting natural language with text, there are a growing number of papers attempting to

learn directly from the speech signal. A major early effort in this vein was the work of

Roy [44, 43], who learned correspondences between images of objects and the outputs

of a supervised phoneme recognizer. Recently, it was demonstrated by Harwath et al

[19] that semantic correspondences could be learned between images and speech wave-

forms at the signal level, with subsequent works providing evidence that linguistic units

approximating phonemes and words are implicitly learned by these models [1, 8, 11, 18,

26]. This paper follows in the same line of research, introducing the idea of “matchmap”

networks which are capable of directly inferring semantic alignments between acoustic

frames and image pixels.

Fusion of Vision and Sounds. A number of recent models have focused on inte-

grating other acoustic signals to perform unsupervised discovery of objects and ambient

sounds [3, 4, 36, 37]. Our work concentrates on speech and word discovery. But combin-

ing both types of signals (speech and ambient sounds) opens a number of opportunities

for future research beyond the scope of this paper.

3 Spoken Captions Dataset

For training our models, we use the Places Audio Caption dataset [19, 18]. This dataset

contains approximately 200,000 recordings collected via Amazon Mechanical Turk

of people verbally describing the content of images from the Places 205 [58] image
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dataset. We augment this dataset by collecting an additional 200,000 captions, resulting

in a grand total of 402,385 image/caption pairs for training and a held-out set of 1,000

additional pairs for validation. In order to perform a fine-grained analysis of our models

ability to localize objects and words, we collected an additional set of captions for 9,895

images from the ADE20k dataset [59] whose underlying scene category was found in

the Places 205 label set. The ADE20k data contains pixel-level object labels, and when

combined with acoustic frame-level ASR hypotheses, we are able to determine which

underlying words match which underlying objects. In all cases, we follow the original

Places audio caption dataset and collect 1 caption per image. Aggregate statistics over

the data are shown in Figure 2. While we do not have exact ground truth transcriptions

for the spoken captions, we use the Google ASR engine to derive hypotheses which we

use for experimental analysis (but not training, except in the case of the text-based mod-

els). A vocabulary of 44,342 unique words were recognized within all 400k captions,

which were spoken by 2,683 unique speakers. The distributions over both words and

speakers follow a power law with a long tail (Figure 2). We also note that the free-form

nature of the spoken captions generally results in longer, more descriptive captions than

exist in text captioning datasets. While MSCOCO [32] contains an average of just over

10 words per caption, the places audio captions are on average 20 words long, with

an average duration of 10 seconds. The extended Places 205 audio caption corpus, the

ADE20k caption data, and a PyTorch implementation of the model training code are

available at http://groups.csail.mit.edu/sls/downloads/placesaudio/.

4 Models

Our model is similar to that of Harwath et al [19], in which a pair of convolutional

neural networks (CNN) [29] are used to independently encode a visual image and a

spoken audio caption into a shared embedding space. What differentiates our models

from prior work is the fact that instead of mapping entire images and spoken utterances

to fixed points in an embedding space, we learn representations that are distributed both

spatially and temporally, enabling our models to directly co-localize within both modal-

ities. Our models are trained to optimize a ranking-based criterion [6, 27, 19], such that

images and captions that belong together are more similar in the embedding space than

mismatched image/caption pairs. Specifically, across a batch of B image/caption pairs

(Ij , Aj) (where Ij represents the output of the image branch of the network for the jth

image, and Aj the output of the audio branch for the jth caption) we compute the loss:

L =

B
∑

j=1

(

max(0, S(Ij , A
imp
j )− S(Ij , Aj) + η)

+ max(0, S(Iimp
j , Aj)− S(Ij , Aj) + η)

)

,

(1)

where S(I, A) represents the similarity score between an image I and audio caption

A, I
imp
j represents the jth randomly chosen imposter image, A

imp
j the jth imposter

caption, and η is a margin hyperparameter. We sample the imposter image and caption

for each pair from the same minibatch, and fix η to 1 in our experiments. The choice of
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similarity function is flexible, which we explore in Section 4.3. This criterion directly

enables semantic retrieval of images from captions and vice versa, but in this paper our

focus is to explore how object and word localization naturally emerges as a by-product

of this training scheme. An illustration of our two-branch matchmap networks is shown

in Figure 3. Next, we describe the modeling for each input mode.

4.1 Image Modeling

(a) (b)

(c) (d)

Fig. 2: Statistics of the 400k spoken cap-

tions. From left to right, the plots repre-

sent (a) the histogram over caption dura-

tions in seconds, (b) the histogram over

caption lengths in words, (c) the estimated

word frequencies across the captions, and

(d) the number of captions per speaker.

We follow [19, 18, 15, 8, 1, 26] by utiliz-

ing the architecture of the VGG16 net-

work [46] to form the basis of the im-

age branch. In all of these prior works,

however, the weights of the VGG net-

work were pre-trained on ImageNet, and

thus had a significant amount of vi-

sual discriminative ability built-in to their

models. We show that our models do

not require this pre-training, and can be

trained end-to-end in a completely un-

supervised fashion. Additionally in these

prior works, the entire VGG network

below the classification layer was uti-

lized to derive a single, global image

embedding. One problem with this ap-

proach is that coupling the output of

conv5 to fc1 involves a flattening oper-

ation, which makes it difficult to recover

associations between any neuron above

conv5 and the spatially localized stim-

ulus which was responsible for its out-

put. We address this issue here by re-

taining only the convolutional banks up

through conv5 from the VGG network,

and discarding pool5 and everything

above it. For a 224 by 224 pixel input im-

age, the output of this portion of the net-

work would be a 14 by 14 feature map across 512 channels, with each location within

the map possessing a receptive field that can be related directly back to the input. In or-

der to map an image into the shared embedding space, we apply a 3 by 3, 1024 channel,

linear convolution (no nonlinearity) to the conv5 feature map. Image pre-processing

consists of resizing the smallest dimension to 256 pixels, taking a random 224 by 224

crop (the center crop is taken for validation), and normalizing the pixels according to a

global mean and variance.
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Fig. 3: The audio-visual matchmap model architecture (left), along with an example

matchmap output (right), displaying a 3-D density of spatio-temporal similarity. Conv

layers shown in blue, pooling layers shown in red, and BatchNorm layer shown in black.

Each conv layer is followed by a ReLU. The first conv layer of the audio network uses

filters that are 1 frame wide and span the entire frequency axis; subsequent layers of the

audio network are hence 1-D convolutions with respective widths of 11, 17, 17, and 17.

All maxpool operations in the audio network are 1-D along the time axis with a width

of 3. An example spectrogram input of approx. 10 seconds (1024 frames) is shown to

illustrate the pooling ratios.

4.2 Audio Caption Modeling

To model the spoken audio captions, we use a model similar to that of [18], but mod-

ified to output a feature map across the audio during training, rather than a single em-

bedding vector. The audio waveforms are represented as log Mel filter bank spectro-

grams. Computing these involves first removing the DC component of each recording

via mean subtraction, followed by pre-emphasis filtering. The short-time Fourier trans-

form is then computed using a 25 ms Hamming window with a 10 ms shift. We take the

squared magnitude spectrum of each frame and compute the log energies within each of

40 Mel filter bands. We treat these final spectrograms as 1-channel images, and model

them with the CNN displayed in Figure 3. [19] utilized truncation and zero-padding of

each spectrogram to a fixed length. While this enables batched inputs to the model, it

introduces a degree of undesirable bias into the learned representations. Instead, we pad

to a length long enough to fully capture the longest caption within a batch, and truncate

the output feature map of each caption on an individual basis to remove the frames cor-

responding to zero-padding. Rather than manually normalizing the spectrograms, we

employ a BatchNorm [20] layer at the front of the network. Next, we discuss methods

for relating the visual and auditory feature maps to one another.
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4.3 Joining the Image and Audio Branches

Zhou et al [57] demonstrate that global average pooling applied to the conv5 layer of

several popular CNN architectures not only provides good accuracy for image classifi-

cation tasks, but also enables the recovery of spatial activation maps for a given target

class at the conv5 layer, which can then be used for object localization. The idea that a

pooled representation over an entire input used for training can then be unpooled for lo-

calized analysis is powerful because it does not require localized annotation of the train-

ing data, or even any explicit mechanism for localization in the objective function or

network itself, beyond what already exists in the form of convolutional receptive fields.

Although our models perform a ranking task and not classification, we can apply simi-

lar ideas to both the image and speech feature maps in order to compute their pairwise

similarity, in the hopes to recover localizations of objects and words. Let I represent the

output feature map output of the image network branch, A be the output feature map of

the audio network branch, and Ip and Ap be their globally average-pooled counterparts.

One straightforward choice of similarity function is the dot product between the pooled

embeddings, S(I, A) = IpTAp. Notice that this is in fact equivalent to first computing

a 3rd order tensor M such that Mr,c,t = ITr,c,:At,:, and then computing the average of

all elements of M . Here we use the colon (:) to indicate selection of all elements across

an indexing plane; in other words, Ir,c,: is a 1024-dimensional vector representing the

(r, c) coordinate of the image feature map, and At,: is a 1024-dimensional vector repre-

senting the tth frame of the audio feature map. In this regard, the similarity between the

global average pooled image and audio representations is simply the average similarity

between all audio frames and all image regions. We call this similarity scoring function

SISA (sum image, sum audio):

SISA(M) =
1

NrNcNt

Nr
∑

r=1

Nc
∑

c=1

Nt
∑

t=1

Mr,c,t (2)

Because M reflects the localized similarity between a small image region (possibly

containing an object) and a small segment of audio (possibly containing a word), we

dub M the “matchmap” tensor between and image and an audio caption. As it is not

completely realistic to expect all words within a caption to simultaneously match all

objects within an image, we consider computing the similarity between an image and an

audio caption using several alternative functions of the matchmap density. By replacing

the averaging summation over image patches with a simple maximum, MISA (max

image, sum audio) effectively matches each frame of the caption with the most similar

image patch, and then averages over the caption frames:

MISA(M) =
1

Nt

Nt
∑

t=1

max
r,c

(Mr,c,t) (3)

By preserving the sum over image regions but taking the maximum across the audio

caption, SIMA (sum image, max audio) matches each image region with only the audio

frame with the highest similarity to that region:

SIMA(M) =
1

NrNc

Nr
∑

r=1

Nc
∑

c=1

max
t

(Mr,c,t) (4)
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In the next section, we explore the use of these similarities for learning semantic corre-

spondences between objects within images and spoken words within their captions.

5 Experiments

5.1 Image and Caption Retrieval

All models were trained using the sampled margin ranking objective outlined in Equa-

tion 1, using stochastic gradient descent with a batch size of 128. We used a fixed mo-

mentum of 0.9 and an initial learning rate of 0.001 that decayed by a factor of 10 every

70 epochs; generally our models converged in less than 150 epochs. We use a held-out

set of 1,000 image/caption pairs from the Places audio caption dataset to validate the

models on the image/caption retrieval task, similar to the one described in [19, 18, 8,

1]. This task serves to provide a single, high-level metric which captures how well the

model has learned to semantically bridge the audio and visual modalities. While pro-

viding a good indication of a model’s overall ability, it does not directly examine which

specific aspects of language and visual perception are being captured. Table 1 displays

the image/caption recall scores achieved when training a matchmap model using the

SISA, MISA, and SIMA similarity functions, both with a fully randomly initialized

network as well as with an image branch pre-trained on ImageNet. In all cases, the

MISA similarity measure is the best performing, although all three measures achieve

respectable scores. Unsurprisingly, using a pre-trained image network significantly in-

creases the recall scores. In Table 1, we compare our models against reimplementations

of two previously published speech-to-image models (both of which utilized pre-trained

VGG16 networks). We also compare against baselines that operate on automatic speech

recognition (ASR) derived text transcriptions of the spoken captions. The text-based

model we used is based on the architecture of the speech and image model, but replaces

the speech audio branch with a CNN that operates on word sequences. The ASR text

network uses a 200-dimensional word embedding layer, followed by a 512 channel, 1-

dimensional convolution across windows of 3 words with a ReLU nonlinearity. A final

convolution with a window size of 3 and no nonlinearity maps these activations into the

1024 multimodal embedding space. Both previously published baselines we compare

to used the full VGG network, deriving an embedding for the entire image from the

fc2 outputs. In the pre-trained case, our best recall scores for the MISA model out-

perform [19] overall as well as [18] on image recall; the caption recall score is slightly

lower than that of [18]. This demonstrates that there is not much to be lost when doing

away with the fully connected layers of VGG, and much to be gained in the form of the

localization matchmaps.

5.2 Speech-Prompted Object Localization.

To evaluate our models’ ability to associate spoken words with visual objects in a

more fine-grained sense, we use the spoken captions for the ADE20k [59] dataset. The

ADE20k images contain pixel-level object masks and labels - in conjunction with a

time-aligned transcription produced via ASR (we use the public Google SpeechRecog-

nition API for this purpose), we can associate each matchmap cell with a specific visual
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Table 1: Recall scores on the held out set of 1,000 images/captions for the three

matchmap similarity functions. We also show results for the baseline models which

use automatic speech recognition-derived text captions. The (P) indicates the use of an

image branch pre-trained on ImageNet

Speech ASR Text

Caption to Image Image to Caption Caption to Image Image to Caption

Model R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

SISA .063 .191 .274 .048 .166 .249 .136 .365 .503 .106 .309 .430

MISA .079 .225 .314 .057 .191 .291 .162 .417 .547 .113 .309 .447

SIMA .073 .213 .284 .065 .168 .255 .134 .389 .513 .145 .336 .459

SISA(P) .165 .431 .559 .120 .363 .506 .230 .525 .665 .174 .462 .611

MISA(P) .200 .469 .604 .127 .375 .528 .271 .567 .701 .183 .489 .622

SIMA(P) .147 .375 .506 .139 .367 .483 .215 .518 .639 .220 .494 .599

[19](P) .148 .403 .548 .121 .335 .463 - - - - - -

[18](P) .161 .404 .564 .130 .378 .542 - - - - - -

object label as well as a word label. These labels enable us to analyze which words are

being associated with which objects. We do this by performing speech-prompted object

localization. Given a word in the speech beginning at time t1 and ending at time t2, we

derive a heatmap across the image by summing the matchmap between t1 and t2. We

then normalize the heatmap to sit within the interval [0,1], threshold the heatmap, and

evaluate the intersection over union (IoU) of the detection mask with the ADE20k label

mask for whatever object was referenced by the word.

Because there are a very large number of different words appearing in the speech,

and no one-to-one mapping between words and ADE20k objects exists, we manually

define a set of 100 word-object pairings. We choose commonly occurring (at least 9 oc-

currences) pairs that are unambiguous, such as the word “building” and object “build-

ing,” the word “man” and the “person” object, etc. For each word-object pair, we com-

pute an average IoU score across all instances of the word-object pair appearing together

in an ADE20k image and its associated caption. We then average these scores across

all 100 word-object pairs and report results for each model type in Table 2. We also

report the IoU scores for the ASR text-based baseline models described in Section 5.1.

Figure 4 displays a sampling of localization heatmaps for several query words using the

non-pretrained speech MISA network.

5.3 Clustering of Audio-Visual Patterns

The next experiment we consider is automatic discovery of audio-visual clusters from

the ADE20k matchmaps using the fully random speech MISA network. Once a matchmap

has been computed for an image and caption pair, we smooth it with an average or max

pooling window of size 7 across the temporal dimension before binarizing it according

to a threshold. In practice, we set this threshold on a matchmap-specific basis to be 1.5

standard deviations above the mean value of the smoothed matchmap. Next, we extract
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Fig. 4: Speech-prompted localization maps for several word/object pairs. From top to

bottom and from left to right, the queries are instances of the spoken words “WOMAN,”

“BRIDGE,”, “SKYLINE”, “TRAIN”, “CLOTHES” and “VEHICLES” extracted from

each image’s accompanying speech caption.

volumetric connected components and their associated masks over the image and au-

dio. We average pool the image and audio feature maps within these masks, producing a

pair of vectors for each component. Because we found the image and speech representa-

tions to exhibit different dynamic ranges, we first rescale them by the average L2 norms

across all derived image vectors and speech vectors, respectively. We concatenate the

image and speech vectors for each component, and finally perform Birch clustering [53]

with 1000 target clusters for the first step, and an agglomerative final step that resulted

in 135 clusters. To derive word labels for each cluster, we take the most frequent word

label as overlapped by the components belonging to a cluster. To generate the object

labels, we compute the number of pixels belonging to each ADE20k class assigned to

a particular cluster, and take the most common label. We display the labels and their

purities for the top 50 most pure clusters in Figure 5.

5.4 Concept discovery: building an image-word dictionary

Figure 5 shows the clusters learned by our model. Interestingly, the audio and image

networks are able to agree to a common representation of knowledge, clustering similar

concepts together. Since both representations are directly multiplied by a dot product,

both networks have to agree on the meaning of these different dimensions. To further

explore this phenomenon, we decided to visualize the concepts associated with each of

these dimensions for both image and audio networks separately and then find a quanti-

tative strategy to evaluate the agreement.
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Fig. 5: Some clusters (speech and visual) found by our approach. Each cluster is jointly

labeled with the most common word (capital letters) and object (lowercase letters). For

each cluster we show the precision for both the word (blue) and object (red) labels,

as well as their harmonic mean (magenta). The average cluster size across the top 50

clusters was 44.

Table 2: Speech-prompted and ASR-

prompted object localization IoU scores on

ADE20K, averaged across the 100 word-

object pairs. ‘Rand.’ indicates a randomly

initialized model, while ‘Pre.’ indicates an

image branch pre-trained on ImageNet. The

full-frame baseline IoU was 0.16

Speech ASR Text

Sim. Func. Rand. Pre. Rand. Pre.

SIMA .1607 .1857 .1743 .1995

SISA .1637 .1970 .1750 .2161

MISA .1795 .2324 .2060 .2413

To visualize the concepts associated

with each of the dimensions in the image

path, we use the unit visualization tech-

nique introduced in [55]. A set of im-

ages is run through the image network

and the ones that activate the most that

particular dimension get selected. Then,

we can visualize the spatial activations in

the top activated images. The same pro-

cedure can be done for the audio net-

work, where we get a set of descriptions

that maximally activate that neuron. Fi-

nally, with the temporal map, we can find

which part of the description has pro-

duced that activation. Some most acti-

vated words and images can be found in

Figure 6. We show four dimensions with

their associated most activated word in the audio neuron, and the most activated images

in the image neuron. Interestingly, these pairs of concepts have been found completely

independently, as we did not use the final activation (after the dot product) to pick the

images.

The pairs image-word allow us to explore multiple questions. First, can we build

an image-word dictionary by only listening to descriptions of images? As we show in

Figure 6, we do. It is important to remember that these pairs are learned in a completely

unsupervised fashion, without any concept previously learned by the network. Further-

more, in the scenario of a language without written representation, we could just have

an image-audio dictionary using exactly the same technique.

Another important question is whether a better audio-visual dictionary is indicative

of a better model architecture. We would expect that a better model should learn more

total concepts. In this section we propose a metric to quantify this dictionary quality.
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Word Images Concept Value Word Images Concept Value

Building 0.78 Table 0.65

Furniture 0.77 Flower 0.65

Water 0.72 Rock 0.51

Fig. 6: Matching the most activated images in the image network and the activated

words in the audio network we can establish pairs of image-word, as shown in the

figure. We also define a concept value, which captures the agreement between both

networks and ranges from 0 (no agreement) to 1 (full agreement).

This metric will help us to compute the quality of each individual neuron and of each

particular model.

To quantify the quality of the dictionary, we need to find a common space between

the written descriptions and the image activations. Again, this common space comes

from a segmentation dataset. Using [59], we can rank the most detected objects by each

of the neurons. We pass through the network approx. 10,000 images from the ADE20k

dataset and check for each neuron which classes are most activated for that particular

dimension. As a result, we have a set of object labels associated with the image neuron

(coming from the segmentation classes), and a word associated with the audio neuron.

Using the WordNet tree, we can compute the word distance between these concepts and

define the following metric:

c =

|Oim|
∑

i=1

wiSimwup(o
im
i , oau), (5)

with oim
i ∈ Oim, where Oim is the set of classes present in the TOP5 segmented

images and Simwup(., .) is the Wu and Palmer WordNet-based similarity, with range

[0,1] (higher is more similar). We weight the similarity with wi, which is proportional

to intersection over union of the pixels for that class into the masked region of the image.

Using this metric, we can then assign one value per dimension, which measures how

well both the audio network and the image network agree on that particular concept.

The numerical values for six concept pairs are shown in Figure 6. We see how neurons

with higher value are cleaner and more related with its counterpart. The bottom right

neuron shows an example of low concept value, where the audio word is “rock” but the

neuron images show mountains in general. Anecdotally, we found c > 0.6 to be a good

indicator that a concept has been learned.

Finally, we analyze the relation between the concepts learned and the architecture

used in Table 3. Interestingly, the four maintain the same order in the three different

cases, indicating that the architecture does influence the number of concepts learned.
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5.5 Matchmap Visualizations and Videos

Table 3: The number of concepts learned by the

different networks with different losses. We find

it is consistently highest for MISA.

Speech ASR Text

Sim. Func. Rand. Pre. Rand. Pre.

SIMA 166 124 96 96

SISA 210 192 103 102

MISA 242 277 140 150

We can visualize the matchmaps

in several ways. The 3-dimensional

density shown in Figure 3 is perhaps

the simplest, although it can be dif-

ficult to read as a still image. In-

stead, we can treat it as a stack of

masks overlayed on top of the im-

age and played back as a video. We

use the matchmap score to modu-

late the alpha channel of the image

synchronously with the speech au-

dio. The resulting video is able to

highlight the salient regions of the

images as the speaker is describing

them.

Fig. 7: On the left are shown two images and their speech signals. Each color corre-

sponds to one connected component derived from two matchmaps from a fully random

MISA network. The masks on the right display the segments that correspond to each

speech segment. We show the caption words obtained from the ASR transcriptions be-

low the masks. Note that those words were never used for learning, only for analysis.

We can also extract volumetric connected components from the density and project

them down onto the image and spectrogram axes; visualizations of this are shown in

Figures 7 and 8. We apply a small amount of thresholding and smoothing to prevent the

matchmaps from being too fragmented. We use a temporal max pooling window with

a size of 7 frames, and normalize the scores to fall within the interval [0, 1] and sum
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Fig. 8: Additional examples of discovered image segments and speech fragments using

the fully random MISA speech network.

to 1. We zero out all the cells outside the top p percentage of the total mass within the

matchmap. In practice, p values between 0.15 and 0.3 produced attractive results.

6 Conclusions

In this paper, we introduced audio-visual “matchmap” neural networks which are capa-

ble of directly learning the semantic correspondences between speech frames and im-

age pixels without the need for annotated training data in either modality. We applied

these networks for semantic image/spoken caption search, speech-prompted object lo-

calization, audio-visual clustering and concept discovery, and real-time, speech-driven,

semantic highlighting. We also introduced an extended version of the Places audio cap-

tion dataset [19], doubling the total number of captions. Additionally, we introduced

nearly 10,000 captions for the ADE20k dataset. There are numerous avenues for fu-

ture work, including expansion of the models to handle videos, environmental sounds,

additional languages, etc. It may possible to directly generate images given a spoken de-

scription, or generate artificial speech describing a visual scene. More focused datasets

that go beyond simple spoken descriptions and explicitly address relations between

objects within the scene could be leveraged to learn richer linguistic representations.

Finally, a crucial element of human language learning is the dialog feedback loop, and

future work should investigate the addition of that mechanism to the models.
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