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Abstract. We provide a comprehensive evaluation of salient object de-
tection (SOD) models. Our analysis identifies a serious design bias of
existing SOD datasets which assumes that each image contains at least
one clearly outstanding salient object in low clutter. The design bias
has led to a saturated high performance for state-of-the-art SOD models
when evaluated on existing datasets. The models, however, still perform
far from being satisfactory when applied to real-world daily scenes. Based
on our analyses, we first identify 7 crucial aspects that a comprehensive
and balanced dataset should fulfill. Then, we propose a new high quality
dataset and update the previous saliency benchmark. Specifically, our
SOC (Salient Objects in Clutter) dataset, includes images with salien-
t and non-salient objects from daily object categories. Beyond object
category annotations, each salient image is accompanied by attributes
that reflect common challenges in real-world scenes. Finally, we report
attribute-based performance assessment on our dataset.

Keywords: Salient object detection · Saliency benchmark · Dataset ·

Attribute

1 Introduction

This paper considers the task of salient object detection (SOD). Visual saliency
mimics the ability of the human visual system to select a certain subset of the
visual scene. SOD aims to detect the most attention-grabbing objects in a scene
and then extract pixel-accurate silhouettes of the objects. The merit of SOD
lies in it applications in many other computer vision tasks including: visual
tracking [4], image retrieval [14,16], computer graphics [9], content aware image
resizing [45], and weakly supervised semantic segmentation [18,39,40].

Our work is motivated by two observations. First, existing SOD dataset-
s [2,5,10,11,23,26,29,32,43,44] are flawed either in the data collection procedure
or quality of the data. Specifically, most datasets assume that an image contains
at least one salient object, and thus discard images that do not contain salient
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Fig. 1. Sample images from our new dataset including non-salient object images (first
row) and salient object images (rows 2 to 4). For salient object images, instance-
level ground truth map (different color), object attributes (Attr) and category labels
are provided. Please refer to the supplemental material for more illustrations of our
dataset.

objects. We call this data selection bias. Moreover, existing datasets mostly con-
tain images with a single object or several objects (often a person) in low clutter.
These datasets do not adequately reflect the complexity of images in the real
world where scenes usually contain multiple objects amidst lots of clutter. As
a result, all top performing models trained on the existing datasets have nearly
saturated the performance (e.g., > 0.9 F -measure over most current datasets)
but unsatisfactory performance on realistic scenes (e.g., < 0.45 F -measure in
Table 3). Because current models may be biased towards ideal conditions, their
effectiveness may be impaired once they are applied to real world scenes. To
solve this problem, it is important to introduce a dataset that reaches closer to
realistic conditions.

Second, only the overall performance of the models can be analyzed over
existing datasets. None of the datasets contains various attributes that reflect
challenges in real-world scenes. Having attributes helps 1) gain a deeper insight
into the SOD problem, 2) investigate the pros and cons of the SOD models, and
3) objectively assess the model performances over different perspectives, which
might be diverse for different applications.

Considering the above two issues, we make two contributions. Our main
contribution is the collection of a new high quality SOD dataset, named the
SOC, Salient Objects in Clutter. To date, SOC is the largest instance-level
SOD dataset and contains 6,000 images from more than 80 common categories.
It differs from existing datasets in three aspects: 1) salient objects have category
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annotation which can be used for new research such as weakly supervised SOD
tasks, 2) the inclusion of non-salient images which make this dataset closer to
the real-world scenes and more challenging than the existing ones, and 3) salient
objects have attributes reflecting specific situations faced in the real-wold such
as motion blur, occlusion and cluttered background. As a consequence, our SOC
dataset narrows the gap between existing datasets and the real-world scenes
and provides a more realistic benchmark (see Fig. 1).

In addition, we provide a comprehensive evaluation of several state-of-the-art
convolutional neural networks (CNNs) based models [8, 15, 17, 23, 24, 28, 31, 36,
38,48–51]. To evaluate the models, we introduce three metrics that measure the
region similarity of the detection, the pixel-wise accuracy of the segmentation,
and the structure similarity of the result. Furthermore, we give an attribute-
based performance evaluation. These attributes allow a deeper understanding of
the models and point out promising directions for further research.

We believe that our dataset and benchmark can be very influential for future
SOD research in particular for application-oriented model development. The
entire dataset and analyzing tools will be released freely to the public.

2 Related Works

In this section, we briefly discuss existing datasets designed for SOD tasks, espe-
cially in the aspects including annotation type, the number of salient objects per
image, number of images, and image quality. We also review the CNNs based
SOD models.

(a) Image (b) Pixel (c) Instance (d) Segment

Fig. 2. Previous SOD datasets only annotate the image by drawing (b) pixel-accurate
silhouettes of salient objects. Different from (d) MS COCO object segmentation
dataset [27] (Objects are not necessarily being salient), our work focuses on (c) seg-
menting salient object instances.

2.1 Datasets

Early datasets are either limited in the number of images or in their coarse an-
notation of salient objects. For example, the salient objects in datasets MSRA-
A [29] and MSRA-B [29] are roughly annotated in the form of bounding
boxes. ASD [1] and MSRA10K [11] mostly contain only one salient object in
each image, while the SED2 [2] dataset contains two objects in a single image
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but contains only 100 images. To improve the quality of datasets, researchers in
recent years started to collect datasets with multiple objects in relatively com-
plex and cluttered backgrounds. These datasets include DUT-OMRON [44],
ECSSD [43], Judd-A [5], and PASCAL-S [26]. These datasets have been im-
proved in terms of annotation quality and the number of images, compared to
their predecessors. DatasetsHKU-IS [23],XPIE [41], andDUTS [37] resolved
the shortcomings by collecting large amounts of pixel-wise labeled images ( Fig.
2 (b)) with more than one salient object in images. However, they ignored the
non-salient objects and did not offer instance-level (Fig. 2 (c)) salient objects an-
notation. Beyond these, researchers of [19] collected about 6k simple background

images (most of them are pure texture images) to account for the non-salient
scenes. This dataset is not sufficient to reflect real scenes as the real-world scenes
are more complicated. The ILSO [22] dataset contains instance-level salient ob-
jects annotation but has boundaries roughly labeled as shown in Fig. 5 (a).

To sum up, as discussed above, existing datasets mostly focus on images with
clear salient objects in simple backgrounds. Taking into account the aforemen-
tioned limitations of existing datasets, a more realistic dataset which contains
realistic scenes with non-salient objects, textures “in the wild”, and salient ob-
jects with attributes, is needed for future investigations in this field. Such a
dataset can offer deep insights into weaknesses and strengths of SOD models.

2.2 Models

We divide the state-of-the-art deep models for SOD based on the number of
tasks.

Single-task models have the single goal of detecting the salient objects in
images. In LEGS [36], local information and global contrast were separately
captured by two different deep CNNs, and were then fused to generate a salien-
cy map. In [51], Zhao et al. presented a multi-context deep learning framework
(MC) for SOD. Li et al. [23] (MDF) proposed to use multi-scale features ex-
tracted from a deep CNNs to derive a saliency map. Li et al. [24] presented
a deep contrast network (DCL), which not only considered the pixel-wise in-
formation but also fused the segment-level guidance into the network. Lee et

al. [15] (ELD) considered both high-level features extracted from CNNs and
hand-crafted features. Liu et al. [28] (DHS) designed a two-stage network, in
which a coarse downscaled prediction map was produced. It is then followed by
another network to refine the details and upsample the prediction map hierarchi-
cally and progressively. Long et al. [30] proposed a fully convolutional network
(FCN) to make dense pixel prediction problem feasible for end-to-end train-
ing. RFCN [38] used a recurrent FCN to incorporate the coarse predictions as
saliency priors and refined the generated predictions in a stage-wise manner. The
DISC [8] framework was proposed for fine-grained image saliency computing.
Two stacked CNNs were utilized to obtain coarse-level and fine-grained saliency
maps, respectively. IMC [48] integrated saliency cues at different levels through
FCN. It could efficiently exploit both learned semantic cues and higher-order
region statistics for edge-accurate SOD. Recently, a deep architecture [17] with
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Table 1. CNNs based SOD models. We divided these models into single-task (S-T)
and multi-task (M-T). Training Set: MB is the MSRA-B dataset [29]. MK is the
MSRA-10K [11] dataset. ImageNet dataset refers to [34]. D is the DUT-OMRON [44]
dataset. H is the HKU-IS [23] dataset. P is the PASCAL-S [26] dataset. P2010 is
the PASCAL VOC 2010 semantic segmentation dataset [12]. Base Model: VGGNet,
ResNet-101, AlexNet, GoogleNet are base models. FCN: whether model uses the fully
convolutional network. Sp: whether model uses superpixels. Proposal: whether model
uses the object proposal. Edge: whether model uses the edge or contour information

No Model Year Pub #Training Training Set Base Model FCN Sp Proposal Edge

S
-T

1 LEGS [36] 2015 CVPR 3,340 MB + P — × × X ×

2 MC [51] 2015 CVPR 8,000 MK GoogLeNet × X × ×

3 MDF [23] 2015 CVPR 2,500 MB — × X × X

4 DCL [24] 2016 CVPR 2,500 MB VGGNet X X × ×

5 ELD [15] 2016 CVPR 9,000 MK VGGNet × X × ×

6 DHS [28] 2016 CVPR 9,500 MK+D VGGNet × × × ×

7 RFCN [38] 2016 ECCV 10,103 P2010 — X X × X

8 DISC [8] 2016 TNNLS 9,000 MK — × X × ×

9 IMC [48] 2017 WACV 6,000 MK ResNet-101 X X × ×

10 DSS [17] 2017 CVPR 2,500 MB VGGNet X × × X

11 NLDF [31] 2017 CVPR 2,500 MB VGGNet X × × ×

12 AMU [49] 2017 ICCV 10,000 MK VGGNet X × × X

13 UCF [50] 2017 ICCV 10,000 MK — X × × ×

M
-T

1 DS [25] 2016 TIP 10,000 MK VGGNet X X × ×

2 WSS [37] 2017 CVPR 456K ImageNet VGGNet X X × ×

3 MSR [22] 2017 CVPR 5,000 MB + H VGGNet X × X X

short connections (DSS) was proposed. Hou et al. added connections from high-
level features to low-level features based on the HED [42] architecture, achieving
good performance. NLDF [31] integrated local and global features and added
a boundary loss term into standard cross entropy loss to train an end-to-end
network. AMU [49] was a generic aggregating multi-level convolutional feature
framework. It integrated coarse semantics and fine detailed feature maps into
multiple resolutions. Then it adaptively learned to combine these feature map-
s at each resolution and predicted saliency maps with the combined features.
UCF [50] was proposed to improve the robustness and accuracy of saliency
detection. They introduced a reformulated dropout after specific convolutional
layers to construct an uncertain ensemble of internal feature units. Also, they
proposed reformulated dropout after an effective hybrid up-sampling method
to reduce the checkerboard artifacts of deconvolution operators in the decoder
network.

Multi-task models at present include three methods, DS, WSS, and MSR.
TheDS [25] model set up a multi-task learning scheme for exploring the intrinsic
correlations between saliency detection and semantic image segmentation, which
shared the information in FCN layers to generate effective features for object
perception. Recently, Wang et al. [37] proposed a model named WSS which de-
veloped a weakly supervised learning method using image-level tags for saliency
detection. First, they jointly trained Foreground Inference Net (FIN) and FCN
for image categorization. Then, they used FIN fine-tuned with iterative CRF
to enforce spatial label consistency to predict the saliency map. MSR [22] was
designed for both salient region detection and salient object contour detection,
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integrated with multi-scale combinatorial grouping and a MAP-based [47] subset
optimization framework. Using three refined VGG network streams with shared
parameters and a learned attentional model for fusing results at different scales,
the authors were able to achieve good results.

We benchmark a large set of the state-of-the-art CNNs based models (see
Table 1) on our proposed dataset, highlighting the current issues and pointing
out future research directions.

3 The Proposed Dataset

In this section, we present our new challenging SOC dataset designed to reflect
the real-world scenes in detail. Sample images from SOC are shown in Fig. 1.
Moreover, statistics regarding the categories and the attributes of SOC are shown
in Fig. 4 (a) and Fig. 6, respectively. Based on the strengths and weaknesses of
the existing datasets, we identify seven crucial aspects that a comprehensive and
balanced dataset should fulfill.

1) Presence of Non-Salient Objects. Almost all of the existing SOD
datasets make the assumption that an image contains at least one salient ob-
ject and discard the images that do not contain salient objects. However, this
assumption is an ideal setting which leads to data selection bias. In a realistic set-
ting, images do not always contain salient objects. For example, some amorphous
background images such as sky, grass and texture contain no salient objects at
all [6]. The non-salient objects or background “stuff” may occupy the entire
scene, and hence heavily constrain possible locations for a salient object. Xia et

al. [41] proposed a state-of-the-art SOD model by judging what is or what is not
a salient object, indicating that the non-salient object is crucial for reasoning
about the salient object. This suggests that the non-salient objects deserve equal
attention as the salient objects in SOD. Incorporating a number of images con-
taining non-salient objects makes the dataset closer to real-world scenes, while
becoming more challenging. Thus, we define the “non-salient objects” as images
without salient objects or images with “stuff” categories. As suggested in [6,41],
the “stuff” categories including (a) densely distributed similar objects, (b) fuzzy
shape, and (c) region without semantics, which are illustrated in Fig. 3 (a)-(c),
respectively.

(a) (b) (c)

Fig. 3. Some examples of non-salient objects.
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Based on the characteristics of non-salient objects, we collected 783 texture
images from the DTD [21] dataset. To enrich the diversity, 2217 images including
aurora, sky, crowds, store and many other kinds of realistic scenes were gathered
from the Internet and other datasets [26,27,32,35]. We believe that incorporating
enough non-salient objects would open up a promising direction for future works.

2) Number and Category of Images. A considerably large amount of
images is essential to capture the diversity and abundance of real-world scenes.
Moreover, with large amounts of data, SOD models can avoid over-fitting and
enhance generalization. To this end, we gathered 6,000 images from more than
80 categories, containing 3,000 images with salient objects and 3,000 images
without salient objects. We divide our dataset into training set, validation set
and test set in the ratio of 6:2:2. To ensure fairness, the test set is not published,
but with the on-line testing provided on our website3. Fig. 4 (a) shows the
number of salient objects for each category. It shows that the “person” category
accounts for a large proportion, which is reasonable as people usually appear in
daily scenes along with other objects.

3) Global/Local Color Contrast of Salient Objects. As described
in [26], the term “salient” is related to the global/local contrast of the fore-
ground and background. It is essential to check whether the salient objects are
easy to detect. For each object, we compute RGB color histograms for fore-
ground and background separately. Then, χ2 distance is utilized to measure the
distance between the two histograms. The global and local color contrast dis-
tribution are shown in Fig. 4 (b) and (c), respectively. In comparison to ILSO,
our SOC has more proportion of objects with low global color contrast and local
color contrast.

4) Locations of Salient Objects. Center bias has been identified as one
of the most significant biases of saliency detection datasets [3, 20, 26]. Fig. 4
(d) illustrates a set of images and their overlay map. As can be seen, although
salient objects are located in different positions, the overlay map still shows
that somehow this set of images is center biased. Previous benchmarks often
adopt this incorrect way to analyze the location distribution of salient objects.
To avoid this misleading phenomenon, we plot the statistics of two quantities
ro and rm in Fig. 4 (e), where ro and rm denote how far an object center and
the farthest (margin) point in an object are from the image center, respectively.
Both ro and rm are divided by half image diagonal length for normalization so
that ro, rm ∈ [0, 1]. From these statistics, we can observe that salient objects in
our dataset do not suffer from center bias.

5) Size of Salient Objects. The size of an instance-level salient object is
defined as the proportion of pixels in the image [26]. As shown in Fig. 4 (g),
the size of salient objects in our SOC varies in a broader range, compared with
the only existing instance-level ILSO [22] dataset. Also, medium-sized objects in
SOC have a higher proportion.

6) High-Quality Salient Object Labeling. As also noticed in [17], train-
ing on the ECSSD dataset (1,000) allows to achieve better results than other

3 http://dpfan.net/SOCBenchmark/

http://dpfan.net/SOCBenchmark/
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Fig. 4. (a) Number of annotated instances per category in our SOC dataset. (b, c)
The statistics of global color contrast and local color contrast, respectively. (d) A set of
saliency maps from our dataset and their overlay map. (e) Location distribution of the
salient objects in SOC. (f) Attribute visual examples. (g) The distribution of instance
sizes for the SOC and ILSO [22].

datasets (e.g., MSRA10K, with 10,000 images). Besides the scale, dataset quali-
ty is also an important factor. To obtain a large amount of high quality images,
we randomly select images from the MSCOCO dataset [27], which is a large-
scale real-world dataset whose objects are labeled with polygons (i.e., coarse
labeling). High-quality labels also play a critical role in improving the accu-
racy of SOD models [1]. Toward this end, we relabel the dataset with pixel-
wise annotations. Similar to famous SOD task oriented benchmark dataset-
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(a) ILSO (b) SOC

(c) MSCOCO (d) SOC

Fig. 5. Compared with the recent new (a) instance-level ILSO dataset [22] which is
labeled with discontinue coarse boundaries, (c) MSCOCO dataset [27] which is labeled
with polygons, our (b, d) SOC dataset is labeled with smooth fine boundaries.

Table 2. The list of salient object image attributes and the corresponding description.
By observing the characteristics of the existing datasets, we summarize these attributes.
Some visual examples can be found in Fig. 1 and Fig. 4 (f). For more examples, please
refer to the supplementary materials

Attr Description

AC Appearance Change. The obvious illumination change in the object region.
BO Big Object. The ratio between the object area and the image area is larger than 0.5.
CL Clutter. The foreground and background regions around the object have similar color.

We labeled images that their global color contrast value is larger than 0.2, local color
contrast value is smaller than 0.9 with clutter images (see Sec. 3).

HO Heterogeneous Object. Objects composed of visually distinctive/dissimilar parts.
MB Motion Blur. Objects have fuzzy boundaries due to shake of the camera or motion.
OC Occlusion. Objects are partially or fully occluded.
OV Out-of-View. Part of object is clipped by image boundaries.
SC Shape Complexity. Objects have complex boundaries such as thin parts

(e.g., the foot of animal) and holes.
SO Small Object. The ratio between the object area and the image area is smaller than 0.1.

s [1, 2, 11, 19, 22, 23, 29, 32, 37, 41, 43], we did not use the eye tracker device.
We have taken a number of steps to provide the high-quality of the annotations.
These steps include two stages: In the bounding boxes (bboxes) stage, (i)
we ask 5 viewers to annotate objects with bboxes that they think are salien-
t in each image. (ii) keep the images which majority (≥ 3) viewers annotated
the same (the IOU of the bbox > 0.8) object. After the first stage, we have
3,000 salient object images annotated with bboxes. In the second stage, we
further manually label the accurate silhouettes of the salient objects according
to the bboxes. Note that we have 10 volunteers involved in the whole steps for
cross-check the quality of annotations. In the end, we keep 3,000 images with
high-quality, instance-level labeled salient objects. As shown in Fig. 5 (b,d), the
boundaries of our object labels are precise, sharp and smooth. During the an-
notation process, we also add some new categories (e.g., computer monitor, hat,

pillow) that are not labeled in the MSCOCO dataset [27].
7) Salient Objects with Attributes. Having attributes information re-

garding the images in a dataset helps objectively assess the performance of mod-
els over different types of parameters and variations. It also allows the inspection
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Fig. 6. Left: Attributes distribution over the salient object images in our SOC dataset.
Each number in the grids indicates the image number of occurrences. Right: The domi-

nant dependencies among attributes base on the frequency of occurrences. Larger width
of a link indicates higher probability of an attribute to other ones.

of model failures. To this end, we define a set of attributes to represent specific
situations faced in the real-wold scenes such as motion blur, occlusion and clut-

tered background (summarized in Table 2). Note that one image can be annotated
with multiple attributes as these attributes are not exclusive.

Inspired by [33], we present the distribution of attributes over the dataset
as shown in Fig. 6 Left. Type SO has the largest proportion due to accurate
instance-level (e.g., tennis racket in Fig. 2) annotation. Type HO accounts for
a large proportion, because the real-world scenes are composed of different con-
stituent materials.Motion blur is more common in video frames than still images,
but it also occurs in still images sometimes. Thus, type MB takes a relatively
small proportion in our dataset. Since a realistic image usually contains multiple
attributes, we show the dominant dependencies among attributes based on the
frequency of occurrences in the Fig. 6 Right. For example, a scene containing
lots of heterogeneous objects is likely to have a large number of objects blocking
each other and forming complex spatial structures. Thus, type HO has a strong
dependency with type OC, OV, and SO.

4 Benchmarking Models

In this section, we present the evaluation results of the sixteen SOD models
on our SOC dataset. Nearly all representative CNNs based SOD models are
evaluated. However, since the codes of some models are not publicly available,
we do not consider them here. In addition, most models are not optimized for
non-salient objects detection. Thus, to be fair, we only use the test set of our
SOC dataset to evaluate SOD models. We describe the evaluation metrics in
Sec. 4.1. Overall model performance on SOC dataset is presented in Sec. 4.2 and
summarized in Table 3, while the attribute level performance (e.g., performance
of the appearance changes) is discussed in Sec. 4.3 and summarized in Table
4. The evaluation scripts are publicly available, and on-line evaluation test is
provided on our website.
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4.1 Evaluation Metrics

In a supervised evaluation framework, given a predicted map M generated by a
SOD model and a ground truth mask G, the evaluation metrics are expected to
tell which model generates the best result. Here, we use three different evaluation
metrics to evaluate SOD models on our SOC dataset.

Pixel-wise Accuracy ε. The region similarity evaluation measure does not
consider the true negative saliency assignments. As a remedy, we also compute
the normalized ([0,1]) mean absolute error (MAE) between M and G, defined
as:

ε =
1

W ×H

W∑

x=1

H∑

y=1

||M(x, y)−G(x, y)||, (1)

where W and H are the width and height of images, respectively.
Region Similarity F . To measure how well the regions of the two maps

match, we use the F -measure, defined as:

F =
(1 + β2)Precision×Recall

β2Precision+Recall
, (2)

where β2 = 0.3 is suggested by [1] to trade-off the recall and precision. However,
the black (all-zero matrix) ground truth is not well defined in F -measure when
calculating recall and precision. Under this circumstances, different foreground
maps get the same result 0, which is apparently unreasonable. Thus, F -measure

is not suitable for measuring the results of non-salient object detection.
However, both metrics of ε and F are based on pixel-wise errors and often

ignore the structural similarities. Behavioral vision studies have shown that the
human visual system is highly sensitive to structures in scenes [13]. In many
applications, it is desired that the results of the SOD model retain the structure
of objects.

Structure Similarity S. S-measure proposed by Fan et al. [13] evaluates
the structural similarity, by considering both regions and objects. Therefore, we
additionally use S-measure to evaluate the structural similarity between M and
G. Note that the next overall performance we evaluated and analyzed are based
on the S-measure.

4.2 Metric Statistics

To obtain an overall result, we average the scores of the evaluation metrics η

(η ∈ {F, ε, S}), denoted by:

Mη(D) =
1

|D|

∑

I∈D

η̄(Ii), (3)

where η̄(Ii) is the evaluation score of the image Ii within the image dataset D.
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Table 3. The performance of SOD models under three metrics. F stands for region
similarity, ε is the mean absolute error, and S is the structure similarity. ↑ stand
for the higher the number the better, and vice versa for ↓. The evaluation results
are calculated according to Eqn. (3) over our SOC dataset. Sall, Fall, εall indicate the
overall performance using the metric of S, F, ε, respectively. Bold for the best.

Single-task Multi-task

Type LEGS MC MDF DCL AMU RFCN DHS ELD DISC IMC UCF DSS NLDF DS WSS MSR
[36] [51] [23] [24] [24] [38] [28] [15] [8] [48] [50] [17] [31] [25] [37] [22]

Fall ↑ .276 .291 .307 .339 .341 .435 .360 .317 .288 .352 .333 .341 .352 .347 .327 .380

Sall ↑ .677 .757 .736 .771 .737 .814 .804 .776 .737 .664 .657 .807 .818 .779 .785 .819

εall ↓ .230 .138 .150 .157 .185 .113 .118 .135 .173 .269 .282 .111 .104 .155 .133 .113

Single-task: For the single-task models, the best performing model on the
entire SOC dataset (Sall in Table 3) is NLDF [31] (MS = 0.818), followed by
RFCN [38] (MS = 0.814). MDF [23] and AMU [49] use edge cues to promote
the saliency map but fail to achieve the ideal goal. Aiming at using the local
region information of images, MC [51], MDF [23], ELD [15], and DISC [8] try to
use superpixel methods to segment images into regions and then extract features
from these regions, which is complex and time-consuming. To further improve
the performance, UCF [50], DSS [17], NLDF [31], and AMU [49] utilize the
FCN to improve the performance of SOD (Ssal in Table 4). Some other methods
such as DCL [24] and IMC [48] try to combine superpixels with FCN to build
a powerful model. Furthermore, RFCN [38] combines two related cues including
edges and superpixels into FCN to obtain the good performance (MF = 0.435,
MS = 0.814) over the overall dataset.

Multi-task: Different from models mentioned above, MSR [22] detects the
instance-level salient objects using three closely related steps: estimating saliency
maps, detecting salient object contours, and identifying salient object instances.
It creates a multi-scale saliency refinement network that results in the highest
performance (Sall). Other two multi-task models DS [25] and WSS [37] utilize the
segmentation and classification results simultaneously to generate the saliency
maps, obtaining a moderate performance. It is worth mentioning that although
WSS is a weakly supervised multi-task model, it still achieves comparable per-
formance to other single-task, fully supervised models. So, the weakly-supervised
and multi-task based models can be promising future directions.

4.3 Attributes-based Evaluation

We assign the salient images with attributes as discussed in Sec. 3 and Ta-
ble 2. Each attribute stands for a challenging problem faced in the real-world
scenes. The attributes allow us to identify groups of images with a dominant
feature (e.g., presence of clutter), which is crucial to illustrate the performance
of SOD models and to relate SOD to application-oriented tasks. For example, s-
ketch2photo application [7] prefers models with good performance on big objects,
which can be identified by attributes-based performance evaluation methods.
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Table 4. Attributes-based performance on our SOC salient objects sub-dataset. For
each model, the score corresponds to the average structure similarity MS (in Sec. 4.1)
over all datasets with that specific attribute (e.g., CL). The higher the score the better
the performance. Bold for the best. The average salient-object performance Ssal is
presented in the first row using the structure similarity S. The symbol of + and −

indicates increase and decrease compared to the average (Ssal) result, respectively

Single-task Multi-task

Attr LEGSMC MDF DCL AMU RFCNDHSELDDISCIMC UCF DSS NLDFDS WSSMSR
[36] [51] [23] [24] [24] [38] [28] [15] [8] [48] [50] [17] [31] [25] [37] [22]

Ssal .607 .619 .610 .705 .705 .709 .728 .664 .629 .679 .678 .698 .714 .719 .676 .748

AC .625 .631 .614 .734 .736 .744 .745 .673 .644 .702 .714 .726 .737 .764 .691 .789

BO .509 .490 .461− .610 .569 .540 .590 .576 .517 .701+ .636 .496− .568 .685 .566 .667

CL .620 .635 .566 .699 .708 .714 .743 .658 .635 .696 .704 .677− .713 .729 .678 .756

HO .666 .666 .648 .745 .755 .759 .766 .706 .681 .715 .744 .748 .755 .756 .707 .777

MB .543− .603 .615 .693 .706 .715 .722 .639 .600 .689 .682 .695 .685 .711 .641 .757

OC .609 .617 .608 .708+ .725+ .711 .716 .658 .630 .672 .701+ .689 .709 .725+ .672 .740

OV .548 .584 .568 .699 .708+ .687 .706 .637 .573 .693+ .685+ .665 .688 .722+ .624 .743

SC .608 .620 .669+ .738 .731 .735 .763 .688 .653 .690 .722+ .746+ .745 .724 .677 .773

SO .573− .601 .621 .691 .685 .698 .713 .644 .614 .648− .650 .696− .703 .696 .659 .730

Results. In Table 4, we show the performance on subsets of our dataset
characterized by a particular attribute. Due to space limitation, in the following
parts, we only select some representative attributes for further analysis. More
details can be found in the supplementary material.

Big Object (BO) scenes often occur when objects are in a close distance with
the camera, in which circumstances the tiny text or patterns would always be
seen clearly. In this case, the models which prefer to focus on local information
will be mislead seriously, leading to a considerable (e.g., 28.9% loss for DSS [17],
20.8% loss for MC [51] and 23.8% loss for RFCN [38]) loss of performance.

However, the performance of IMC [48] model goes up for a slight margin of
3.2% instead. After taking a deeper look of the pipeline of this model, we came up
a reasonable explanation. IMC uses a coarse predicted map to express semantics
and utilizes over-segmented images to supplement the structural information,
achieving a satisfying result on type BO. However, over-segmented images cannot
make up the missing details, causing 4.6% degradation of performance on the
type of SO.

Small Object (SO) is tricky for all SOD models. All models encounter perfor-
mance degradation (e.g., from DSS [17] -0.3% to LEGS [36] -5.6%), because SOs

are easily ignored during down-sampling of CNNs. DSS [17] is the only model
that has a slight decrease of performance on type SO, while it has the biggest
(28.9%) loss of performance on type BO. MDF [23] uses multi-scale superpixels
as the input of network, so it retains the details of small objects well. However,
due to the limited size of superpixels, MDF can not efficiently sense the global
semantics, causing a big failure on type BO.

Occlusions (OC) scenes in which objects are partly obscured. Thus, it re-
quires SOD models to capture global semantics to make up for the incomplete
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information of objects. To do so, DS [25] & AMU [49] made use of the multi-scale
features in the down-sample progress to generate a fused saliency map; UCF [50]
proposed an uncertain learning mechanism to learn uncertain convolutional fea-
tures. All these methods try to get saliency maps containing both global and
local features. Unsurprisingly, these methods have achieved pretty good results
on type OC. Based on the above analyses, we also find that these three models
perform very well on the scenes requiring more semantic information like type
AC, OV and CL.

Heterogeneous Object (HO) is a common attribute in nature scenes. The
performance of different models on type HO gets some improvement to their
average performances respectively, all fluctuating from 3.9% to 9.7%. We suspect
this is because type HO accounts for a significant proportion of all datasets,
objectively making models more fitting to this attribute. This result in some
degree confirms our statistics in Fig. 6.

5 Discussion and Conclusion

To our best knowledge, this work presents the currently largest scale perfor-
mance evaluation of CNNs based salient object detection models. Our analysis
points out a serious data selection bias in existing SOD datasets. This design
bias has lead to state-of-the-art SOD algorithms almost achieve saturated high
performance when evaluated on existing datasets, but are still far from being sat-
isfactory when applied to real-world daily scenes. Based on our analysis, we first
identify 7 important aspects that a comprehensive and balanced dataset should
fulfill. We firstly introduces a high quality SOD dataset, SOC. It contains salient
objects from daily life in their natural environments which reaches closer to re-
alistic settings. The SOC dataset will evolve and grow over time and will enable
research possibilities in multiple directions, e.g., salient object subitizing [46],
instance level salient object detection [22], weakly supervised based salient ob-
ject detection [37], etc. Then, a set of attributes (e.g., Appearance Change) is
proposed in the attempt to obtain a deeper insight into the SOD problem, in-
vestigate the pros and cons of the SOD algorithms, and objectively assess the
model performances over different perspectives/requirements. Finally, we report
attribute-based performance assessment on our SOC dataset. The results open
up promising future directions for model development and comparison.
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