This ECCV 2018 paper, provided here by the Computer Vision Foundation, is the author-created version.
The content of this paper is identical to the content of the officially published ECCV 2018
LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/eccy

Deep Model-Based 6D Pose Refinement in RGB

Fabian Manhardt!*, Wadim Kehl?*, Nassir Navab!, and Federico Tombari!

! Technical University of Munich, Garching b. Muenchen 85748, Germany
{fabian.manhardt, nassir.navab}@tum.de tombari@in.tum.de
2 Toyota Research Institute, Los Altos, CA 94022, USA
wadim.kehl@tri.global

Abstract. We present a novel approach for model-based 6D pose re-
finement in color data. Building on the established idea of contour-based
pose tracking, we teach a deep neural network to predict a translational
and rotational update. At the core, we propose a new visual loss that
drives the pose update by aligning object contours, thus avoiding the def-
inition of any explicit appearance model. In contrast to previous work our
method is correspondence-free, segmentation-free, can handle occlusion
and is agnostic to geometrical symmetry as well as visual ambiguities.
Additionally, we observe a strong robustness towards rough initializa-
tion. The approach can run in real-time and produces pose accuracies
that come close to 3D ICP without the need for depth data. Further-
more, our networks are trained from purely synthetic data and will be
published together with the refinement code at http://campar.in.tum.
de/Main/FabianManhardt| to ensure reproducibility.

Keywords: Pose Estimation, Pose Refinement, Tracking

1 Introduction

The problem of tracking CAD models in images is frequently encountered in con-
texts such as robotics, augmented reality (AR) and medical procedures. Usually,
tracking has to be carried out in the full 6D pose, i.e. one seeks to retrieve both
the 3D metric translation as well as the 3D rotation of the object in each frame.
Another typical scenario is pose refinement, where an object detector provides a
rough 6D pose estimate, which has to be corrected in order to provide a better
fit (Figure. The usual difficulties that arise include viewpoint ambiguities, oc-
clusions, illumination changes and differences in appearance between the model
and the object in the scene. Furthermore, for tracking applications the method
should also be fast enough to cover large inter-frame motions.

Most related work based on RGB data can be roughly divided into sparse
and region-based methods. The former methods try to establish local correspon-
dences between frames [40/23] and work well for textured objects, whereas latter

* The first two authors contributed equally to this work.

http://campar.in.tum.de/Main/FabianManhardt
http://campar.in.tum.de/Main/FabianManhardt

2 F. Manhardt, W. Kehl, N. Navab and F. Tombari

a) Input Image b) Initial pose hypotheses c¢) Poses after 10 iterations

Fig. 1: Exemplary illustration of our method. While a) depicts an input RGB
frame, b) shows our four initial 6D pose hypotheses. For each obtained frame we
refine each pose for a better fit to the scene. In d) we show the final results after
convergence. Note the rough pose initializations as well as the varying amount
of occlusion the objects of interest undergo.

ones exploit more holistic information about the object such as shape, contour
or color [27I8I37I38] and are usually better suited for texture-less objects. It
is worth mentioning that mixtures of the two sets of methods have been pro-
posed as well [B0J6I3TI24]. Recently, methods that use only depth [34] or both
modalities [2III8IT0] have shown that depth can make tracking more robust by
providing more clues about occlusion and scale.

This work aims to explore how RGB information alone can be sufficient to
perform visual tasks such as 3D tracking and 6-Degree-of-Freedom (6DoF) pose
refinement by means of a Convolutional Neural Network (CNN). While this has
already been proposed for camera pose and motion estimation [T9J43J4T139], it
has not been well-studied for the problem at hand.

As a major contribution we provide a differentiable formulation of a new vi-
sual loss that aligns object contours and implicitly optimizes for metric transla-
tion and rotation. While our optimization is inspired by region-based approaches,
we can track objects of any texture or shape since we do not need to model
global [27I37IT8] or local appearance [11I38]. Instead, we show that we can do
away with these hand-crafted approaches by letting the network learn the object
appearance implicitly. We teach the CNN to align contours between synthetic
object renderings and scene images under changing illumination and occlusions
and show that our approach can deal with a variety of shapes and textures.
Additionally, our method allows to deal with geometrical symmetries and visual
ambiguities without manual tweaking and is able to recover correct poses from
very rough initializations.

Notably, our formulation is parameter-free and avoids typical pitfalls of hand-
crafted tracking or refinement methods (e.g. via segmentation or correspondences
+ RANSAC) that require tedious tuning to work well in practice. Furthermore,
like with depth-based approaches such as ICP, we are robust to occlusion and
produce results which come close to RGB-D methods without the need for depth
data, making it thus very applicable to the domains of AR, medical and robotics.

Deep Model-Based 6D Pose Refinement in RGB 3

2 Related work

Since the field of tracking and pose refinement is vast, we will only focus here on
works that deal with CAD models in RGB data. Early methods in this field used
either 2D-3D correspondences [291I30] or 3D edges [9I35l32] and fit the model
in an ICP fashion with iterative, projective update steps. Successive methods
in this direction managed to obtain improved performance [631]. Additionally,
other works focused on tracking the contour densely via level-sets [3I]].

Based on these works, [27] presented a new approach that follows the pro-
jected model contours to estimate the 6D pose update. In a follow-up work [26],
the authors extended their method to simultaneously track and reconstruct a
3D object on a mobile phone in real-time. The authors from [37] improved the
convergence behavior with a new optimization scheme and presented a real-time
implementation on a GPU. Consequently, [38] showed how to improve the color
segmentation by using local color histograms over time. Orthogonally, the work
[18] approximates the model pose space to avoid GPU computations and en-
ables real-time performance on a single CPU core. All these approaches share
the property that they rely on hand-crafted segmentation methods that can
fail in the case of sudden appearance changes or occlusion. We instead want to
entirely avoid hand-crafting manual appearance descriptions.

Another set of works tries to combine learning with simultaneous detection
and pose estimation in RGB. The method presented in [I7] couples the SSD
paradigm [22] with pose estimation to produce 6D pose pools per instance which
are then refined with edge-based ICP. On the contrary, the approach from [5]
uses auto-context Random Forests to regress object coordinates in the scene
that are used to estimate poses. In [28] a method is presented that instead
regresses the projected 3D bounding box and recovers the pose from these 2D-
3D correspondences whereas the authors in [25] infer keypoint heatmaps that
are then used for 6D pose computation. Similarly, the 3D Interpreter Network
[42] infers heatmaps for categories and regresses projection and deformation to
align synthetic with real imagery. In the work [10], a deep learning approach is
used to track models in RGB-D data. Their work goes along similar grounds but
we differ in multiple ways including data generation, energy formulation and
their use of RGB-D data. In particular, we show that a naive formulation of
pose regression does not work in the case of symmetry which is often the case
for man-made objects.

We also find common ground with Spatial Transformer Networks in 2D [16]
and especially 3D [2], where the employed network architecture contains a sub-
module to transform the 2D /3D input via a regressed affine transformation on
a discrete lattice. Our network instead regresses a rigid body motion on a set of
continuous 3D points to minimize the visual error.

3 Methodology

In this section we explain our approach to train a CNN to regress a 6D pose
refinement from RGB information alone. We design the problem in such a way

4 F. Manhardt, W. Kehl, N. Navab and F. Tombari

High-Level Feature Extraction

Input Information Patch Sampling Low-Level
- £ e - Feature Extraction

3x3 Stride 2 '

25x25x768 el 12x12x384

RGB scene image

Rotation Branch Translation Branch
m r2 rn3 t
1n 2 st 3x3 Stride 2 3x3 Stride 2
m ot s by
ra ra ra b r 7 1
0 0 0 1

Trained on 6x6 Pad ‘Valid’
ImageNet |
3D CAD model Pose hypothesis Render patch 7{ & frozen X663 .

Fig. 2: Schematic overview of the full pipeline. Given input image and pose hy-
pothesis (R, t), we render the object, compute the center of the bounding box
of the hypothesis (green point) and then cut out a scene patch S and a render
patch H. We resize both to 224x224 and feed them separately into pre-trained
InceptionV4 layers to extract low-level features. Thereafter, we concatenate and
compute high-level features before diverging into separate branches. Eventually,
we retrieve our pose update as 3D translation and normalized 4D quaternion.

that we supply two color patches (S and #) to the network in order to infer
a translational and rotational update. In Figure [2] we depict our pipeline and
show a typical scenario where we have a 6D hypothesis (coming from a detector
or tracker) that is not correctly aligned. We want to estimate a refinement such
that eventually the updated hypothesis overlaps perfectly with the real object.

3.1 Input patch sampling

We first want to discuss our patch extraction strategy. Provided a CAD model
and a 6D pose estimate (R, t) in camera space, we create a rendering and compute
the center of the associated bounding box of the hypothesis around which we
subsequently extract S and H. Since different objects have varying sizes and
shapes it is important to adapt the cropping size to the spatial properties of the
specific object. The most straightforward method would be to simply crop S and
H with respect to a tight 2D bounding box of the rendered mask. However, when
employing such metric crops, the network loses the ability to robustly predict
an update along the Z-axis: indeed, since each crop would almost entirely fill
out the input patch, no estimate of the difference in depth can be drawn. Due
to this, we explicitly calculate the spatial extent in pixels at a minimum metric
distance (with some added padding) and use this as a fixed-size 'window’ into
our scene. In particular, prior to training, we render the object from various
different viewpoints, compute their bounding boxes, and take the maximum
width or height of all produced bounding boxes.

3.2 Training stage

To create training data we randomly sample a ground truth pose (R*,t*) of the
object in camera coordinates and render the object with that pose onto a random

Deep Model-Based 6D Pose Refinement in RGB 5

background to create a scene image. To learn pose refinement, we perturb the
true pose to get a noisy version (R, t) and render a hypothesis image. Given those
two images, we cut out patches S and H with the strategy mentioned above.

The naive approach Provided these patches, we now want to infer a separate
correction (Ra,ta) of the perturbed pose (R,t) such that

R*=RA-R, t"=t+ta. (1)

Due to the difficulty of optimizing in SO(3) we parametrize via unit quaternions
q*,q,qa to define a regression problem, i.e. similar to what [20] proposed for
camera localization or [I0] for model pose tracking:

qa
llgall

min ||¢* — ||+t = tall (2)

qasta
In essence, this energy weighs the numerical error in rotation against the one in
translation by means of the hyper-parameter v and can be optimized correctly
when solutions are unique (as is the case, e.g., of camera pose regression). Un-
fortunately, the above formulation only works for injective relations where an
input image pair gets always mapped to the same transformation. In the case of
one-to-many mappings, i.e. an image pair can have multiple correct solutions,
the optimization does not converge since it is pulled into multiple directions
and regresses the average instead. In the context of our task, visual ambiguity
is common for most man-made objects because they are either symmetric or
share the same appearance from multiple viewpoints. For these objects there is
a large (sometimes infinite) set of refinement solutions that yield the same visual
result. In order to regress ga and ¢4 under ambiguity, we therefore propose an
alternative formulation.

Proxy loss for visual alignment Instead of explicitly minimizing an ambigu-
ous error in transformation, we strive to minimize an unambiguous error that
measures similarity in appearance. We thus treat our search for the pose refine-
ment parameters as a subproblem inside another proxy loss that optimizes for
visual alignment. While there are multiple ways to define a similarity measure,
we seek one that fulfills the following properties: 1) invariant to symmetric or
indistinguishable object views, 2) robust to color deviation, illumination change
and occlusion as well as 3) smooth and differentiable with respect to the pose.
To fulfill the first two properties we propose to align the object contours.
Tracking the 6D pose of objects via projective contours has been presented be-
fore [IRIBTI27] but, to the best of our knowledge, has not so far been introduced
in a deep learning framework. Contour tracking allows to reduce the difficult
problem of 3D geometric alignment to a simpler task of 2D silhouette match-
ing by moving through a distance transform, avoiding explicit correspondence
search. Furthermore, a physical contour is not affected by deviations in coloring
or lighting which makes it even more appealing for pure RGB methods. We refer
to Figure [3]for a training example and the visualization of the contours we align.

6 F. Manhardt, W. Kehl, N. Navab and F. Tombari

e

i

i

u |
a) Synthetic scene b) 6D hypothesis ¢) Pose estimate at d) Refinement after
input image S rendering H initial training state convergence

Fig. 3: Visualization of our training procedure. In (a) and (b) we show the two
image patches that constitute one training sample and the input to our net-
work. We highlight for the reader the contours for which we seek the projective
alignment from white to red. In (c) we see the initial state of training with no
refinement together with the distance transform of the scene Ds and the projec-
tion of 3D sample points V3 from the initial 6D hypothesis. Finally, in (d) we
can see the refinement after convergence.

Fulfilling smoothness and differentiability is more difficult. An optimization
step for this energy requires to render the object with the current pose hypoth-
esis for contour extraction, estimate the similarity with the target contour and
back-propagate the error gradient such that the refined hypothesis’ projected
contour is closer in the next iteration. Unfortunately, back-propagating through
a rendering pipeline is non-trivial (due to, among others, z-buffering and ras-
terization). We therefore propose here a novel formulation to drive the network
optimization successfully through the ambiguous 6D solution space. We employ
an idea, introduced in [I8], that allows us to use an approximate contour for
optimization without iterative rendering. When creating a training sample, we
use the depth map of the rendering to compute a 3D point cloud in camera space
and sample a sparse point set on the contour, denoted as V := {v € R3}. The
idea is then to transform these contour points with the current refinement esti-
mate (ga,ta), followed by a projection into the scene. This mimics a rendering
plus contour extraction at no cost and allows for back-propagation.

For a given training sample with input patch pair (S,), a distance transform
of the scene contour Dg and hypothesis contour points V3, we define the loss

L(ga,ta,Ds,Vy) :i= Z Ds |:7r(qA«U.q21+tA) (3)

veVy

with qu being the conjugate quaternion. With the formulation above we also
free ourselves from any ~-balancing issue between quaternion and translation
magnitudes as in a standard regression formulation.

Minimizing the above loss with a gradient descent step forces a step towards
the O-level set of the distance transform. We basically tune the network weights
to rotate and translate the object in 6D to maximize the projected contour

Deep Model-Based 6D Pose Refinement in RGB 7

overlap. While this works well in practice, we have observed that for certain
objects and stronger pose perturbations the optimization can get stuck in local
minima. This occurs when our loss drives the contour points into a configuration
where the distance transform allows them to settle in local valleys. To remedy
this problem we introduce a bi-directional loss formulation that simultaneously
aligns the contours of hypothesis as well as scene onto each other, coupled and
constrained by the same pose update. We thus have an additional term that runs
into the opposite direction:

L= ﬁ(QA,tA,DS,VH)+£(q217_tA,DH,VS). (4)

This final loss £ does not only alleviate the locality problem but has also shown to
lead to faster training overall. We therefore chose this energy for all experiments.

3.3 Network design and implementation

We give a schematic overview of our network structure in Figure [2] and pro-
vide here more details. In order to ensure fast inference, our network follows
a fully-convolutional design. The network is fed with two 224 x 224 x 3 input
patches representing the cropped scene image S and cropped render image H.
Both patches run in separate paths through the first levels of an InceptionV4
[33] instance to extract low-level features. Thereafter we concatenate the two fea-
ture tensors, down-sample by employing max-pooling as well as a strided 3 x 3
convolution, and concatenate the results again. After two Inception-A blocks we
branch off into two separate paths for the regression of rotation and translation.
In each we employ two more Inception-A blocks before down-sampling by an-
other strided 3 x 3 convolution. The resulting tensors are then convolved with
either a 6 x 6 x 4 kernel to regress a 4D quaternion or a 6 x 6 x 3 kernel to predict
a 3D update translation vector.

Initial experiments showed clearly that training the network from scratch
made it impossible to bridge the domain gap between synthetic and real images.
Similarly to [I7/13] we found that the network focused on specific appearance
details of the rendered CAD models and the performance on real imagery col-
lapsed drastically. Synthetic images usually possess very sharp edges and clear
corners. Since the first layers learn low-level features they overfit quickly to this
perfect rendered world during training. We therefore copied the first five convo-
lutional blocks from a pre-trained model and froze their parameters. We show
the improvements in terms of generalization to real data in the supplement.

Further, we initialize the final regression layers such that the bias equals
identity quaternion and zero translation whereas the weights are given a small
Gaussian noise level of o = 0.001. This ensures that we start refinement from a
neutral pose, which is crucial for the evaluation of the projective visual loss.

While our approach produces very good refinements in a single shot we de-
cided to also implement an iterative version where we run the pose refinement
multiple times until the regressed update falls under a threshold.

8 F. Manhardt, W. Kehl, N. Navab and F. Tombari

4 Evaluation

We ran our method with TensorFlow 1.4 [I] on a i7-5820K@3.3GHz with an
NVIDIA GTX 1080. For all experiments we ran the training with 100k iterations,
a batch size of 16 and ADAM with a learning rate of 3 - 10~%. Furthermore, we
fixed the number of 3D contour points per view to |Vs| = |V3| = 100. Addition-
ally, our method is real-time capable since one iteration requires approximately
25ms during testing.

To evaluate our method, we carried out experiments on three, both synthetic
and real, datasets and will convey that our method can come close to RGB-D
based approaches. In particular, the first dataset, referred to as 'Hinterstoisser’,
was introduced in [I2] and consists of 15 sequences each possessing approximately
1000 images with clutter and mild occlusion. Only 13 of these provide water-
tight CAD models and we therefore, like others before us, skip the other two
sequences. The second one, which we refer to as 'Tejani’, was proposed in [36]
and consists of six mostly semi-symmetric, textured objects each undergoing
different levels of occlusion. In contrast to the first two real datasets, the latter
one, referred to as ’Choi’ [7], consists of four synthetic tracking sequences.

In essence, we will first conduct some self-evaluation in which we illustrate our
convergence properties with respect to different degrees of pose perturbation on
real data. Then we show our method when applied to object tracking on ’Choi’.
As a second application, we compare our approach to a variety of other state-of-
the-art RGB and RGB-D methods by conducting experiments in pose refinement
on "Hinterstoisser’, the 'Occlusion’ dataset and 'Tejani’. Finally, we depict some
failure cases and conclude with a qualitative category-level experiment.

4.1 Pose perturbation

We study the convergence behavior of our method by taking correct poses, ap-
plying a perturbation by a certain amount and measure how well we can refine
back to the original pose. To this end, we use the 'Hinterstoisser’ dataset since
it provides a lot of variety in terms of both colors and shapes. For each frame of
a particular sequence we perturb the ground truth pose either by an angle or by
a translation vector. In Figure [f] we illustrate our results for the ’ape’ and the
"bvise’ objects and kindly refer the reader to the supplement for all graphs. In
particular, we report our results for increasing degrees of angular perturbations
from 5°to 45°and for increasing translation perturbations from 0 to 1 relative to
the object’s diameter. We define divergence if the refined rotation is above 45°in
error or the refined translation larger than half of the object’s diameter and we
employ 10 iterative steps to maximize our possible precision.

In general, our method can recover poses very robustly even under strong
perturbations. Even for the extreme case of rotating the 'bvise’ with 45°we can
refine back to an error less than 5°in more than 60% of all trials, and to an
error less than 10°in more than 80% of all runs. Additionally, our approach
only diverged for less than 1%. However, for the more difficult ’ape’ object our
numbers worsen. In particular, in almost 50% of the cases we were not able

Deep Model-Based 6D Pose Refinement in RGB 9

Hinterstoisser - ‘Ape’ Hinterstoisser - ‘Bvise’
W <5° W <10° <15° W <25° [<45° >45° W <5° W <10° <15° W <25° [<45° >45°
100 100 -
d

75

50

25

]

5° ’ 10° ‘ 15° ’ 20° ’ 30° ’ 35° ’40' ’ 45°)
Initial Rotational Perturbation In Degrees

“ Diverged [%] 4% Mean Translation Error [mm] 4 Diverged [%] 4% Mean Translation Error [mm]
70 70

52.5 52.5 P e

y / s
s oSS
_— =/

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 9.0 1.0

Initial Translational Perturbation Relative To Object Diameter

Perturbation Refinement Perturbation Refinement

Fig. 4: Top: Perturbation results for two objects from [I2] for increasing rotation
and translation levels. Bottom: Qualitative results from the same experiment.

to rotate back the object to an error of less than 10%. Yet, this can be easily
explained by the object’s appearance. The ’ape’ is a rather small object with poor
texture and non-distinctive shape, which does not provide enough information
to hook onto whereas the 'bvise’ is large and rich in appearance. It is noteworthy
that the actual divergence behavior in rotation is similar for both and that the
visual alignment for the ’ape’ is often very good despite the error in pose.

The translation error correlates almost linearly between initial and final pose.
We also observe an interesting tendency starting from perturbation levels at
around 0.6 after which the results can be divided up into two distinct sets:
either the pose diverges or the error settles on a certain level. This implies that
certain viewpoints are easy to align as long as they have a certain visual overlap
to begin with, rather independent of how strong we perturb. Other views instead
are more difficult with higher perturbations and diverge from some point on.

10 F. Manhardt, W. Kehl, N. Navab and F. Tombari

PCL C&C Krull Tan Kehl Tjaden Ours

g |1.(43.99| 1.84 | 0.8 | 1.54 |0.76| 55.75 | 1.46
A \t,|42.51| 2.23 | 1.67 | 1.90 [1.09| 70.57 | 2.28
§ t.155.89| 1.36 | 0.79 | 0.34 | 0.38 |402.14|10.61
S| 762|641 | 1.11 | 0.42 |0.17 | 42.61 | 1.84
iﬁ 1.87/0.76 | 0.55 | 0.22 |0.18| 27.74 | 2.09
E1v]831[6.32| 1.04 | 0.68 |0.20 |38.979| 1.23

t,(13.38/ 0.93 | 0.51 | 1.23 | 0.64 | 39.21 | 3.89
< |ty|31.45) 1.94 | 1.27 | 0.74 | 0.59| 48.13 | 4.25
S t.126.09| 1.09 | 0.62 | 0.24 |0.24 |332.11|57.68
ks 59.37| 3.83| 2.19 | 0.50 |0.41| 45.54 |38.74
~—|B3]19.58| 1.41 | 1.44 |0.28 | 0.29 | 26.37 |27.62

v175.03| 3.26 | 1.90 | 0.46 | 0.42 | 21.72 |42.68
8tz]2.53]0.96| 0.52 | 1.10 |0.50 | 2.29 |0.65
S |ty[2.20| 1.44| 0.74 | 0.94 |0.69| 2.85 |0.69
|tz 1.91|1.17| 0.63 | 0.18 |0.17| 48.61 | 6.49
§ «(85.81| 1.32 | 1.28 | 0.35 | 0.12| 8.46 | 1.5
Q|4 |42.12|0.75| 1.08 | 0.24 |0.20| 5.95 | 0.68
Ok 46.37) 1.39 | 1.20 | 0.37 |0.19| 2.24 | 0.39

t:| 1.46 (0.853| 0.69 | 0.73 [0.34 | 1.31 | 1.74
2 ty|2.25|1.37| 0.81 | 0.56 [0.49 | 0.83 |0.74
& [t-(0.92|1.20 | 0.81 | 0.24 | 0.18 | 12.49 |10.71
=|a 5.15|1.78 | 2.10 | 0.31 |0.15 | 2.03 | 1.78
~|£]213[1.09| 1.38 |0.25 | 0.39 | 1.56 |1.64

(1298|113 | 1.27 |0.34 | 0.37 | 1.39 | 0.80

(a) Errors on 'Choi’ in respect to others. (b) Tracking quality compared to [37].

Fig.5: Left: Translation (mm) and rotation (degrees) errors on Choi for PCL’s

ICP, Choi and Christensen (C&C)[7], Krull2I], Tan[34], Kehl[Ig], Tjaden|37]
and our method. Right: Comparing [37] (left) to us (right) using only RGB.

4.2 Tracking

As a first use case we evaluated our method as a tracker on the 'Choi’ bench-
mark [7]. This RGB-D dataset consists of four synthetic sequences and we present
detailed numbers in Figure[5] Note that all other methods utilize depth informa-
tion. We decided for this dataset because it is very hard for RGB-only methods:
it is poor in terms of color and the objects are of (semi-)symmetric nature. To
provide an interesting comparison we also qualitatively evaluated against our
tracker implementation of [37]. While their method is usually robust for texture-
less objects it diverges on 3 sequences which we show and for which we provide
reasoninﬂ in Figure [5| and in the supplementary material. In essence, except
for the 'Milk’ sequence we can report very good results. The reason why we
performed comparably bad on the 'Milk’ resides in the fact that our method
already treats it as a rather symmetric object. Thus, sometimes it rotates the
object along its Y-axis, which has a negative impact on the overall numbers. In
particular, while already being misaligned, the method still tries to completely
fill the object into the scene, thus, it slightly further rotates and translates the
object. Referring to the remaining objects, we can easily outperform PCL’s ICP
for all objects and also Choi and Christensen [7] for most of the cases. Compared

3 The authors acknowledged our conclusions in correspondence.

Deep Model-Based 6D Pose Refinement in RGB 11

‘ ape ‘bvise‘ cam‘ can ‘ cat ‘driller‘duek‘ box ‘glue ‘holep‘ iron ‘lamp‘phonthotal

No Refinement 0.64|0.65 |0.71]0.72]0.63 | 0.62 |0.65|0.64|0.64| 0.69 [0.71|0.63 | 0.69 |/ 0.66
2D Edge-based ICP |0.73]0.67 |0.73]0.76 | 0.68 | 0.67 |0.72]0.73|0.72| 0.71 |0.74]0.67 | 0.70 || 0.71
3D Cloud-based ICP|0.86|0.88(0.91|0.87/0.87| 0.85 |0.83|0.84|0.75| 0.77 |0.85/0.84| 0.81 (|0.84

Ours 0.83|0.83|0.75]0.87|0.79 | 0.85 |0.87|0.88|0.85| 0.82 |0.85|0.80 | 0.83 |/0.83

Table 1: VSS scores for each sequence of [12] with poses initialized from SSD-6D
[17]. The first three rows are provided by [17]. We evidently outperform 2D-based
ICP by a large margin and are on par with 3D-based ICP.

|Rot. Error [°]| Transl. Error [mm]|ADD [%]

Sequence| Ours |MSE Loss|Kehl [I8]| Tjaden [37]

No Ref.| 27.96 9.75,9.33, 71.09 | 7.4

3DICP| 17.62 |10.42, 10.56, 27.31| 90.9 Camera |0.803| 0.562 | 0.493 0.385
Ows | 16.17 | 4.9,5.87,4269 | 34.1 Coffee 10.848) 0.717 | 0.747 | 0.170
B3 - ~ 436 Joystick |0.850| 0.746 | 0.773 0.298
B _ _ 50.2 Juice |0.828 0.613 | 0.523 0.205

S Milk |0.766| 0.721 0.580 0.514
‘Rot. Error []‘Transl. Error [mm] ‘ADD (%) Shampoo|0.804| 0.700 0.648 0.250

No Ref.| 34.42 13.7, 13.4, 77.5 6.2 Total]0.817] 0.676 | 0.627 | 0.304
Ours 24.36 8.5, 9.0, 49.1 27.5
(a) Absolute pose errors on [12] and [4]. (b) VSS scores for each sequence of [36].

Table 2: Refinement scores with poses initialized from SSD-6D [17]. Left: Average
ADD scores on 'Hinterstoisser’ [12] (top) and ’Occlusion’ [4] (bottom). Right:
VSS scores on "Tejani’. We compare our visual loss to naive pose regression as
well as two state-of-the-art trackers for the case of RGB [37] and RGB-D [I§].

to Krull [21], which is a learned RGB-D approach, we perform better for some
values and worse for others. Note that our translation error along the Z-axis is
quite high. Since the difference in pixels is almost nonexistent when the object
is moved only a few millimeters, it is almost impossible to estimate the exact
distance of the object without leveraging depth information. This has also been
discussed in [I5] and is especially true for CNNs due to pooling operations.

4.3 Detection refinement

This set of experiments analyzes our performance in a detection scenario where
an object detector will provide rough 6D poses and the goal is to refine them. We
decided to use the results from SSD-6D [17], an RGB-based detection method,
that outputs 2D detections with a pool of 6D pose estimates each. The authors
publicly provide their trained networks and we use them to detect and create 6D
pose estimates which we feed into our system. Tables (a) and (b) depict our
results for the 'Hinterstoisser’, ’Occlusion’ and the "Tejani’ dataset using different
metrics. We maximally ran 5 iterations of our method, yet, we also stopped if the
last update was less than 1.5°and 7.5mm. Since our method is particularly strong
at recovering from bad initializations, we employ the same RGB-verification
strategy as SSD-6D. However, we apply it before conducting the refinement,
since in contrast to them, we can also deal with imperfect initializations, as long
as they are not completely misaligned. We report our errors with the VSS metric

12 F. Manhardt, W. Kehl, N. Navab and F. Tombari

Fig. 6: Comparison on Tejani between (from left to right) our visual loss, mean
squared error loss, the RGB-D tracker from [I8] and the RGB tracker from [37].

(which is VSD from [I4] with 7 = oo) that calculates a visual 2D error as the
pixel-wise overlap between the renderings of ground truth pose and estimated
pose. Furthermore, to compare better to related work, we also use the ADD
score [12] to measure a 3D metrical error as the average point cloud deviation
between real pose and inferred pose when transformed into the scene. A pose is
counted as correct if the deviation is less than a %th of the object diameter.

Referring to 'Hinterstoisser’ with the VSS metric, we can strongly improve
the state-of-the-art for most objects. In particular, for the case of RGB only, we
can report an average VSS score of 83%, which is an improvement of impressive
and can thus successfully bridge the gap between RGB and RGB-D in terms of
pose accuracy.

Except for the 'cam’ and the 'cat’ object our results are on par with or even
better than SSD-6D + 3D refinement. ICP relies on good correspondences and
robust outlier removal which in turn requires very careful parameter tuning.
Furthermore, ICP is often unstable for rougher initializations. In contrast, our
method learns refinement end-to-end and is more robust since it adapts to the
specific properties of the object during training. However, due to this, our method
requires meshes of good quality. Hence, similar to SSD-6D we have especially
problems for the 'cam’ object since the model appearance strongly differs from
the real images which exacerbates training. Also note that their 3D refinement
strategy uses ICP for each pose in the pool, followed by a verification over depth
normals to decide for the best pose. Our method instead uses a simple check
over image gradients to pick the best.

With respect to the ADD metric we fall slightly behind the other state-of-
the-art RGB methods [528]. We got the 3D-ICP refined poses from the SSD-6D
authors and analyzed the errors in more detail in Table a). We see again that
we have bigger errors along the Z-axis, but less errors along X and Y. Unfor-
tunately, the ADD metric penalizes this deviation overly strong. Interestingly,
[5128] have better scores and we reason this to come from two facts. The datasets
are annotated via ICP with 3D models against depth data. Unfortunately, in-
accurate intrinsics and the sensor registration error between RGB and D leads
to an inherent mismatch where the ICP 6D pose does not always align per-
fectly in RGB. Purely synthetic RGB methods like ours or [I7] suffer from (1)
a domain gap in terms of texture/shape and (2) the dilemma that better RGB
performance can worsen results when comparing to that ’true’ ICP pose. We

Deep Model-Based 6D Pose Refinement in RGB 13

PEVE VOIS ®O Y

Train Models Test Models

Fig. 7: Qualitative category-level experiment where we train our network on a
specific set of mugs and bowls and track hitherto unseen models. The first frame
depicts very rough initialization while the next frames show some intermediate
refined poses throughout the sequence. The supplement shows the full video.

suspect that [BI28] can learn this registration error implicitly since they train on
real RGB cut-outs with associated ICP pose information and thus avoid both
problems. We often observe that our visually-perfect alignments in RGB fail the
ADD criterion and we show examples in the supplement. Since our loss actually
optimizes a form of VSS to maximize contour overlap, we can expect the ADD
scores to go up only when perfect alignment in color equates perfect alignment
in depth.

Eventually, referring to the ’Occlusion’ dataset, we can report a strong im-
provement compared to the original numbers from SSD-6D, despite the presence
of strong occlusion. In particular, while the rotational error decreased by approx-
imately 8 degrees, the translational error dropped by 4mm along *X’ and Y’ axes
and by 28mm along ’Z’. Thus, we can increase ADD from 6.2% up to 28.5%,
which demonstrates that we can deal with strong occlusion in the scene.

For 'Tejani’ we decided to show the improvement over networks trained with
a standard regression loss (MSE). Additionally, we re-implemented the RGB
tracker from [37] and were kindly provided with numbers from the authors of
the RGB-D tracker from [I8] (see Figure[6]). Since the dataset mostly consists of
objects with geometric symmetry, we do not measure absolute pose errors here
but instead report our numbers with the VSS metric. The MSE-trained networks
constantly underperform since the dataset models are of symmetric nature which
in turn leads to a large difference of 14% in comparison to our visual loss. This
result stresses the importance of correct symmetry entangling during training.
The RGB tracker was not able to refine well due to the fact that the color
segmentation was corrupted by either occlusions or imperfect initialization. The
RGB-D tracker, which builds on the same idea, performed better because it uses
the additional depth channel for segmentation and optimization.

4.4 Category-level tracking

We were curious to find out whether our approach can generalize beyond a spe-
cific CAD model, given that many objects from the same category share similar

14 F. Manhardt, W. Kehl, N. Navab and F. Tombari

Fig.8: Two prominent failure cases: Occlusion (left pair) and objects of very
similar colors and shapes (right pair) can negatively influence the regression.

appearance and shape properties. To this end, we conducted a final qualitative
experiment (see Figure E[) where we collected a total of eight CAD models of
cups, mugs and a bowl and trained simultaneously on all. During testing we
then used this network to track new, unseen models from the same category. We
were surprised to see that the approach has indeed learned to metrically track
previously unseen but nonetheless similar structures. While the poses are not as
accurate as for the single-instance case, it seems that one can indeed learn the
projective relation of structure and how it changes under 6D motion, provided
that at least the projection functions (i.e. camera intrinsics) are constant. We
show the full sequence in the supplementary material.

4.5 Failure cases

Figure [§] illustrates two known failure cases where the left image of each pair
represents initialization and the right image the refined result. Although we train
with occlusion certain occurrences can worsen our refinement nonetheless. While
two 'milk’ instances were refined well despite occlusion, the left 'milk’ instance
could not be recovered correctly. The network assumes the object to end at
the yellow pen and only maximizes the remaining pixel-wise overlap. Besides
occlusion, objects of similar color and shape can in rare cases lead to confusion.
As shown in the right pair, the network mistakenly assumed the stapler, instead
of the cup, to be the real object of interest.

5 Conclusion

We believe to have presented a new approach towards 6D model tracking in
RGB with the help of deep learning and we demonstrated the power of our
approach on multiple datasets and for the scenarios of pose refinement and for
instance/category tracking. Future work will include investigation towards gen-
eralization to other domains, e.g. the suitability towards visual odometry.

Acknowledgments We would like to thank Toyota Motor Corporation for fund-
ing and supporting this work.

Deep Model-Based 6D Pose Refinement in RGB 15

References

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S.,
Murray, D., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y.,
Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems.
In: OSDI (2016)

Bhagavatula, C., Zhu, C., Luu, K., Savvides, M.: Faster Than Real-time Facial
Alignment: A 3D Spatial Transformer Network Approach in Unconstrained Poses.
In: ICCV (2017)

Bibby, C., Reid, I.: Robust Real-Time Visual Tracking using Pixel-Wise Posteriors.
In: ECCV (2008)

Brachmann, E., Krull, A., Michel, F., Gumhold, S., Shotton, J., Rother, C.: Learn-
ing 6D Object Pose Estimation using 3D Object Coordinates. In: ECCV (2014)
Brachmann, E., Michel, F., Krull, A., Yang, M.Y., Gumhold, S., Rother, C.:
Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from a Single RGB
Image. In: CVPR (2016)

Brox, T., Rosenhahn, B., Gall, J., Cremers, D.: Combined Region and Motion-
Based 3D Tracking of Rigid and Articulated Objects. TPAMI (2010)

Choi, C., Christensen, H.: RGB-D Object Tracking: A Particle Filter Approach on
GPU. In: IROS (2013)

Dambreville, S., Sandhu, R., Yezzi, A., Tannenbaum, A.: A Geometric Approach to
Joint 2D Region-Based Segmentation and 3D Pose Estimation Using a 3D Shape
Prior. STAM Journal on Imaging Sciences (2010)

Drummond, T., Cipolla, R.: Real-time visual tracking of complex structures.
TPAMI (2002)

Garon, M., Lalonde, J.F.: Deep 6-DOF Tracking. In: ISMAR (2017)

Hexner, J., Hagege, R.R.: 2D-3D Pose Estimation of Heterogeneous Objects Using
a Region Based Approach. IJCV (2016)

Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K., Navab,
N.: Model based training, detection and pose estimation of texture-less 3D objects
in heavily cluttered scenes. In: ACCV (2012)

Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image
features and synthetic images for deep learning. CoRR (2017)

Hodan, T., Matas, J., Obdrzalek, S.: On Evaluation of 6D Object Pose Estimation.
In: ECCV Workshop (2016)

Holloway, R.L.: Registration error analysis for augmented reality. Presence:
Teleoper. Virtual Environ. 6(4), 413-432 (Aug 1997)

Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial Transformer
Networks. In: NIPS (2015)

Kehl, W., Manhardt, F., Ilic, S., Tombari, F., Navab, N.: SSD-6D: Making RGB-
Based 3D Detection and 6D Pose Estimation Great Again. In: ICCV (2017)
Kehl, W., Tombari, F., Ilic, S., Navab, N.: Real-Time 3D Model Tracking in Color
and Depth on a Single CPU Core. In: CVPR (2017)

Kendall, A.; Cipolla, R.: Geometric loss functions for camera pose regression with
deep learning. In: CVPR (2017)

Kendall, A., Grimes, M., Cipolla, R.: PoseNet: A Convolutional Network for Real-
Time 6-DOF Camera Relocalization. In: ICCV (2015)

Krull, A., Michel, F., Brachmann, E., Gumhold, S., Ihrke, S., Rother, C.: 6-DOF
Model Based Tracking via Object Coordinate Regression. In: ACCV (2014)

16

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

F. Manhardt, W. Kehl, N. Navab and F. Tombari

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.y., Berg, A.C.: SSD
: Single Shot MultiBox Detector. In: ECCV (2016)

Park, Y., Lepetit, V.: Multiple 3d object tracking for augmented reality. In: ISMAR
(2008)

Pauwels, K., Rubio, L., Diaz, J., Ros, E.: Real-time model-based rigid object pose
estimation and tracking combining dense and sparse visual cues. In: CVPR (2013)
Pavlakos, G., Zhou, X., Chan, A., Derpanis, K.G., Daniilidis, K.: 6-DoF Object
Pose from Semantic Keypoints. In: ICRA (2017)

Prisacariu, V.A., Murray, D.W., Reid, I.D.: Real-Time 3D Tracking and Recon-
struction on Mobile Phones. TVCG (2015)

Prisacariu, V.A., Reid, I.D.: PWP3D: Real-Time Segmentation and Tracking of
3D Objects. IJCV (2012)

Rad, M., Lepetit, V.: BB8: A scalable, accurate, robust to partial occlusion method
for predicting the 3d poses of challenging objects without using depth. In: ICCV.
pp. 3848-3856 (2017)

Rosenhahn, B., Brox, T., Cremers, D., Seidel, H.P.: A comparison of shape match-
ing methods for contour based pose estimation. LNCS (2006)

Schmaltz, C., Rosenhahn, B., Brox, T., Cremers, D., Weickert, J., Wietzke, L.,
Sommer, G.: Region-Based Pose Tracking. In: IbPRIA (2007)

Schmaltz, C., Rosenhahn, B., Brox, T., Weickert, J.: Region-based pose tracking
with occlusions using 3D models. MVA (2012)

Seo, B.K., Park, H., Park, J.I., Hinterstoisser, S., Ilic, S.: Optimal local searching
for fast and robust textureless 3D object tracking in highly cluttered backgrounds.
In: TVCG (2014)

Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet
and the impact of residual connections on learning. In: ICLR Workshop (2016)
Tan, D.J., Tombari, F., Ilic, S., Navab, N.: A Versatile Learning-based 3D Temporal
Tracker : Scalable , Robust , Online. In: ICCV (2015)

Tateno, K., Kotake, D., Uchiyama, S.: Model-based 3D Object Tracking with On-
line Texture Update. In: MVA (2009)

Tejani, A., Tang, D., Kouskouridas, R., Kim, T.k.: Latent-class hough forests for
3D object detection and pose estimation. In: ECCV (2014)

Tjaden, H., Schwanecke, U., Schoemer, E.: Real-Time Monocular Segmentation
and Pose Tracking of Multiple Objects. In: ECCV (2016)

Tjaden, H., Schwanecke, U., Schémer, E.: Real-Time Monocular Pose Estimation
of 3D Objects using Temporally Consistent Local Color Histograms. In: ICCV
(2017)

Ummenhofer, B., Zhou, H., Uhrig, J., Mayer, N., Ilg, E., Dosovitskiy, A., Brox, T.:
DeMoN: Depth and Motion Network for Learning Monocular Stereo. In: CVPR
(2017)

Vacchetti, L., Lepetit, V., Fua, P.: Stable Real-Time 3D Tracking Using Online
and Offline Information. TPAMI (2004)

Wang, S., Clark, R., Wen, H., Trigoni, N.: DeepVO: Towards End to End Visual
Odometry with Deep Recurrent Convolutional Neural Networks. In: ICRA (2017)
Wu, J., Xue, T., Lim, J.J., Tian, Y., Tenenbaum, J.B., Torralba, A., Freeman,
W.T.: Single Image 3D Interpreter Network. In: ECCV (2016)

Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised Learning of Depth
and Ego-Motion from Video. In: CVPR (2017)

