This ECCV 2018 paper, provided here by the Computer Vision Foundation, is the author-created version.
The content of this paper is identical to the content of the officially published ECCV 2018
LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/eccy

Interpolating Convolutional Neural Networks
Using Batch Normalization

Gratianus Wesley Putra Datal0000—-0002—2748—-7360] ' {(jrjon

Ngu[0000—0002—9499—3597]7 David William Murray[0000—0001—5309—5080]’ and
Victor Adrian Prisacariul0000—0002—0630—6129]

Active Vision Laboratory, Department of Engineering Science,
University of Oxford, Oxford, United Kingdom
http://www.robots.ox.ac.uk/ActiveVision/

Abstract. Perceiving a visual concept as a mixture of learned ones is
natural for humans, aiding them to grasp new concepts and strengthen-
ing old ones. For all their power and recent success, deep convolutional
networks do not have this ability. Inspired by recent work on universal
representations for neural networks, we propose a simple emulation of
this mechanism by purposing batch normalization layers to discriminate
visual classes, and formulating a way to combine them to solve new tasks.
We show that this can be applied for 2-way few-shot learning where we
obtain between 4% and 17% better accuracy compared to straightfor-
ward full fine-tuning, and demonstrate that it can also be extended to
the orthogonal application of style transfer.

Keywords: neural network interpolation - batch normalization - few-
shot learning - style transfer

1 Introduction

Human visual cognition is remarkable. One of the many things humans do natu-
rally is linking visual concepts to a combination of other concepts. For example,
after being shown images of a dog, a cat, and a fox, a child could say that the
fox looks like a cross between a cat and a dog (Fig. 1). Furthermore, the child
will understand much about the concept of a fox given prior knowledge of what
cats and dogs look like. A loose mathematical analogy can be expressed as fol-
lows: if visual representations of cats and dogs can be encapsulated in the form
of functions ¢car and @aog, respectively, it should also be possible to build from
them a representation for foxes ¢ox = f(@cat; Pdog, t), where f represents how
the functions should be combined as parameterized by «. Additionaly, it should
be easier to deduce the value of o than ¢y, directly.

In this paper we ask if the same ideas can be adapted to deep convolutional
neural networks to enable more efficient learning. This is desirable as, despite
generally being powerful state-of-the-art models [16,22,11], deep networks re-
quire a tremendous amount of data to tune millions of parameters that allow it to
work so well, limiting its application to tasks where data is plenty or inexpensive.

2 G. W. P. Data et al.

Fig. 1: The fox can be seen as a mix between this cat and this dog.

Recent works [3,20] have reported that it is possible to prepare a single net-
work that is able to perform visual recognition in multiple domains. This is
achieved by training the network to produce universal image representations,
relying on (i) the convolutional kernels to extract domain-agnostic information
about the world and on (ii) the batch normalization (BN) layers to transform
the internal representations to the relevant target domains. Analogously, within
the application domain of style transfer, [6] shows that a single network can be
equipped with multiple distinct styles by encoding the style information in the
network’s instance normalization (IN) layers, after which each style can selec-
tively be applied to a target image. These discoveries seem to provide evidence
for the ability of normalization layers to encode transforms that can be used to
express visual concepts.

In line with our opening exposition, we propose and wish to test the following
intuition in this paper: given that normalization layers (e.g. BN) can be trained
to discriminate specific visual classes, it should be possible to combine these
normalization layers and interpolate within them to efficiently learn new, unseen
classes. In particular, since we will only be manipulating the normalization layers
within a network, the number of parameters that we need to tweak will be much
lower than full fine-tuning. Fewer parameters also means less tendency to overfit,
enabling training with smaller amounts of data. Focusing on binary classification
tasks, we summarize our contributions in this paper as follows:

1. Defining a procedure that specifies how component networks that discrim-
inate specific classes are generated and interpolated to discriminate new,
unseen classes.

2. Demonstrating how interpolation of component BN layers can be applied to
the problem of few-shot visual recognition.

3. Showing that the same interpolation process (using IN) can be adapted to
the orthogonal task of style transfer.

The remainder of the paper proceeds as follows: we first mention several
works that are related to our method in Section 2. Afterwards, we describe and
elaborate procedures for creating and interpolating between component BNs in
Section 3. We validate the key idea of interpolating BNs on CIFAR10 [15], apply
the same procedures to few-shot learn ImageNet32 [5] using CIFAR10-trained

Interpolating CNNs Using BN 3

kernels, and also apply it to the orthogonal task of style transfer (by replacing
BNs with INs) in Section 4. Finally, we conclude our paper in Section 5.

2 Related Work

To our knowledge, we are the first to tackle the problem of neural network in-
terpolation. Our main reason for attempting this is to reduce the number of
parameters required to train the neural network and to achieve faster conver-
gence with fewer images. We therefore believe our approach is most related to
other works that (i) try to reduce the number of trained/tested parameters, (ii)
dictionary learning, and (iii) few-shot learning/meta-learning approaches.

Parameter Reduction Within the realm of parameter reduction, there have
been attempts to compress and distill knowledge in neural networks [12], and
novel designs for efficient architectures which reduce the number of parameters
during inference [4, 9]. These assume the neural network is trained in a traditional
way and provide methods by which the post-training parameters can be reduced,
e.g. through some form of sparsity. Reduction of training parameters is however
much less studied, with the traditional approach looking at training only a subset
of the complete network, e.g. the last few layers. However, recent work has shown
an alternative strategy of training a neural network (rather than just retuning the
last layers): to adapt the network’s batch normalization parameters. This proved
to be effective when training and adapting domain-agnostic neural networks in
[3,20] and, relatedly, when aiming to adapt existing neural networks to new
types of style transfer as in [6].

Dictionary Learning The aim of dictionary learning [21] is to learn fundamen-
tal representations from data that can be combined linearly to construct sparse
codings of the data. A collection of these fundamental representations (atoms)
form a dictionary. A few well-known algorithms that perform dictionary learning
include the method of optimal directions [7] and K-SVD [1].

Few-shot Learning/Meta-learning The application of deep convolutional
networks for few-shot learning has recently seen a resurgence. Naming just a few
methods, Koch et al. [14] used Siamese networks to quantify distances between
samples, and then used a non-parametric classifier such as k-nearest neighbours
to perform one-shot learning. Bertinetto et al. [2] modified the Siamese archi-
tecture to enable the first network to predict suitable weights for the other in
the one-shot regime. Hariharan and Girschick [10] proposed the SGM loss and
hallucination as data augmentation to perform n-way few-shot learning where
n is large. Luo et al. [18] suggested a network framework that is able to learn
transferrable representations in a label-efficient manner.

Within the framework of meta-learning, Vinyals et al. [25] introduced the
concept of episodic training to ensure few-shot training and testing conditions

4 G. W. P. Data et al.

match, and used a cosine similarity metric on network embeddings to peform the
classification. Ravi and Larochelle [19] used an LSTM meta-learner to directly
perform episodic weight updates on a few-shot learner network, made possible
by the similarity between LSTM and gradient descent update formulation. Snell
et al. [23] utilized a network to learn embeddings which cluster classes around
prototypes, which then classifies new examples by proximity to learned proto-
types. Finn et al. [8] proposed a simple meta-learning training algorithm that
aims to generate good initialization parameters for a classifier network, which
was then able to achieve good performance after a single parameter update step.

3 Method

First, we briefly review the batch normalizing (BN) transform [13]. Let x; be the
activations of a single example 7 inside a mini-batch of size m. The BN transform
is defined as the operation

given the mean pug = L > x;, variance o = L 3" (2; — pug)?, and the
normalized input Z; = (x; — ug)/\/0g + €. The scale v and shift 3 parameters
are learnable, while € is a small positive constant to prevent division by zero.

Next, we will show how component BNs are constructed, and detail two ways
of combining them for the purpose of interpolating new classes. This section
focuses on the binary classification scenario, but the principles presented can
translate to other application domains, as we show later in Section 4.

3.1 Component Generation

Given that component BNs are purposed to be discriminative towards a partic-
ular object class, a straightforward way to generate them for that object class
would be to extract BNs from a network trained on a corresponding binary
classification task.

More specifically, we start from a base pretrained network which we refer to
as the template network. To create BN layers that detect the concept of e.g. cat,
we fine-tune the network on a dataset containing examples of cats and non-cats
by adjusting only the BN and last classification layer parameters. This fine-tuned
network is now a component network that detects cats. We repeat this procedure
for other object classes, always starting from the same template network, until
the desired number of component networks is obtained.

The number of component networks is a function of the task at hand and
the quantity of available data and classes. For example, for our experiments, we
create 9 component networks for CIFAR10 and 200 for ImageNet.

Interpolating CNNs Using BN 5

3.2 Binary Dataset Creation

It is beneficial to generate a number of component BNs so that a good cover-
age of the target task is achievable. Large multiclass datasets are naturally a
suitable source. However, they need to be binarized before they can be used for
component generation.

We formalize this as follows. Suppose we have a set of N labelled images
D = {(z1,11),...,(xN,yn)} where y, € {1,..., K} are the labels. Binarizing
D for class k means randomly copying S/2 elements of D where y,, = k and
another S/2 where y,, # k to form a new set Dy, = {(x1,91),...,(xs,ys)} where
ys € {0,1} after applying the binary label transform

1 ify, =k,

0 ify,#Ek. @

3.3 Component Selection

Once a number of component BNs have been generated, it is important to select
the components that will be relevant for the task at hand (e.g. airplanes are prob-
ably not a good component to include when trying to detect foxes). Although
there may exist sophisticated selection methods, we propose two straightforward
criteria which we demonstrate in more detail in Section 4.2. The first criterion
involves selecting m component networks with the lowest cross-entropy loss on
the target binary task. The second criterion does the same thing, except that it
ranks based on highest accuracy on the target binary task. Naturally, the first
criterion is more amenable to tasks with few examples to evaluate.

3.4 Interpolating Component Networks

After the BN components have been computed and selected for a specific novel
target class, we propose two approaches for interpolation:

1. Composite Batch Normalization (ComBN), providing a linear combination
of BN components.

2. Principal Component Batch Normalization (PCBN), providing a PCA-based
latent space interpolation.

The interpolation weights for both approaches are learned through standard
neural network optimization techniques, i.e. backpropagation and stochastic gra-
dient descent (SGD).

Other methods could be used to interpolate the BN components, such as more
complex non-linear dimensionality reduction techniques like Gaussian Process
Latent Variable Models [17], but, as we show in the results section, the simpler
linear models already achieve very good results.

6 G. W. P. Data et al.

Composite Batch Normalization (ComBN) Using a similar notation to
the one above, we propose the ComBN transform as a linear combination of
generated BN components,

J
ComBN, (z;) = Z ;BN (z;), (3)

where J is the number of BN components that make up a ComBN, and «; are
learnable scalar coefficients that represent the interpolation weights, all initial-
ized to 1/J.

In practice, after the component networks have been generated, each BN
layer in the original template network is replaced with a ComBN, which is con-
structed from BN layers of selected component networks originating from the
same depth-wise layer position. Afterwards, we train the ComBN network by
optimizing o; and the last layer to the target task using standard techniques
(i.e. backpropagation and SGD).

Note that the component BNs in the ComBN network are always utilized in
inference mode; i.e. their v, £, running mean, and running variance are frozen,
and the running mean and variance are used in place of the mini-batch mean pp
and variance o when evaluating Eq. 1.

Additionally, this formulation typically enables a large reduction of the num-
ber of parameters, which is helpful in reducing overfitting when the training data
is scarce.

Principal Component Batch Normalization (PCBN) An alternative way
to exploit information contained in BN components is to first use them to learn
a latent space mapping for its parameters, and then perform optimization in the
latent space.

To achieve this using PCA, we first stack row vectors of v and 8 parameters
that originate from each BN component j to form J x C' matrices T' and B,
respectively, where J is the number of components and C' is the number of chan-
nels in each component BN layer. We then mean-center I' and B by subtracting
from them their column-wise mean vectors p., and pg, resulting in X, =T' — p,
and Xz = B — pg. Afterwards, we apply singular value decomposition to obtain
principal axes matrices Vjv— and V[,

U,S, V] « X,, (4)

UsSsVj + Xp. (5)

The number of dimensions of our latent space is set to the maximum possible,
i.e. min(J, C'). We then train latent space parameter vectors g and b (initialized

by transforming existing BN weights of the template network to latent space),
and transform these back to parameter space using the principal axes matrices,

Y=gV, + s, (6)
B=bV] +pp. (7)

Interpolating CNNs Using BN 7

This is then finally applied in a similar fashion to ComBN by replacing BN
layers in the original template network with PCBN (i.e. substituting Egs. 6 and 7
into Eq. 1). In essence, this is like using standard BN except for the optimization
of parameters in latent space.

In contrast to ComBN where interpolation is directly performed in the pa-
rameter space of the original component class (in the form of frozen BN compo-
nents), here we attempt to first distill the concepts of class into principal classes
in latent space before optimizing them.

4 Experiments

In this section, we show results for two application domains: visual classification
and style transfer.

We choose to constrain our experiments to binary classification so that the
same protocol can be used for both component generation and evaluation. To
highlight the contribution of BN layers, we utilize a template network trained
on a different dataset to the one we are testing with; first using ImageNet for
the template and CIFARI10 for the testing of our approach, and second using
CIFARI0 to train the template network and ImageNet32 for testing.

We chose style transfer because (i) we view this as an orthogonal (i.e. related
but highly distinct) task to binary classification since it requires utilization of full
encoder-decoder networks and replacement of batch normalization with instance
normalization, and (ii) it allows us to produce qualitative results.

4.1 Learning CIFARI10 from ImageNet Template

Here we validate the idea of using BN components for training networks on new,
unseen tasks. Lastly, for the experiments in this section, we base our template
network on an ILSVRC2012-pretrained ResNet34 [11], and use binarized CI-
FARI10 datasets to generate our BN components and evaluate the performance
of ComBN and PCBN networks.

We begin by creating master training/validation/test splits. These master
training/validation splits are created by partitioning the original CIFAR10 train-
ing set 40,000/10,000, while the master test split is the same as the original CI-
FARI10 test set. Afterwards, we generate binarized splits by applying the method
in Section 3.2 to each of the master splits. Specifically, for each target class, the
binary training split is formed by sequentially sampling 1000 positive and 1000
negative examples from the master split, while the binary validation/test splits
are formed by sequentially and exhaustively sampling all available examples
from their respective master splits such that a balanced dataset is obtained. All
experiments pertaining to a particular target class use identical binary train-
ing/validation/test splits.

All networks (except the template, which naturally follows [11]) are trained
on random batches of size of 8 using SGD with a momentum of 0.9 for 30 epochs.

8 G. W. P. Data et al.

Table 1: Percentage test accuracies on binary CIFAR10 datasets. Asterix (*)
indicates results that were based on a random template network. Best results
are in bold.

Positive class Last Full BN ComBN PCBN BN* ComBN* PCBN*

airplane 90.1 96.1 95.8 81.9 93.8 76.8 77.2 95.4
car 92.0 98.0 97.3 97.7 974 777 79.8 97.1
bird 87.5 95.5 94.5 93.8 91.4 66.7 68.3 93.5
cat 84.3 91.7 89.6 91.9 90.3 70.6 69.8 88.9
deer 86.0 96.6 94.8 94.3 94.0 71.7 73.1 93.5
dog 89.1 93.1 93.3 93.9 93.7 714 70.9 93.1
frog 92.3 97.3 959 97.4 96.0 77.6 77.8 97.0
horse 91.2 96.8 96.0 96.2 95.3 674 68.5 95.1
ship 91.2 97.3 96.9 97.0 95.8 T77.8 78.7 96.0
truck 92.9 97.3 96.5 90.1 96.2 76.4 73.7 95.9

The learning rate is set initially to 102 and decayed by 0.1 after epoch 20. Im-
ages fed into the networks are upscaled to 224 by 224 using bilinear interpolation
and normalized without any additional augmentation. We did not perform hy-
perparameter tuning and while this choice of hyperparameters is arbitrary, we
believe it suffices for the tasks at hand as all networks were able to converge.

To generate and evaluate a component network pertaining to a target class,
we fine-tune the BN and last layers (BN) of the template network on its binary
training set. We then select the network that has the best validation accuracy
and finally report on the test set accuracy. This is repeated for each target class
in CIFARI10, resulting in 10 component networks. To generate and evaluate the
ComBN/PCBN networks, we replace the BN layers in the template network
with ComBN/PCBN layers built from the BNs of the 9 component networks
that were not trained on the target class, and then apply the same evaluation
procedure. One might object to the fact that the 9 component networks might
have seen a few examples of the target class as negative examples during their
original training, but we find the difference to be negligible even after carefully
omitting them. Finally, for completeness, we also report on results of performing
full (Full) and last layer (Last) fine-tuning on the same tasks. The results are
summarized in Table 1.

For this initial set of experiments, we find that in comparison with other
methods, fine-tuning just the last layer results in the lowest accuracy. We also
find that results obtained by ComBN and PCBN were comparable, if not just
slightly worse, with BN and full fine-tuning, suggesting that ComBN and PCBN
are potentially valid methods for training networks.

To better understand the role of BN components, we also performed the
Comp, ComBN and PCBN experiments using a template network that has ran-
domized (according to [11]) convolutional layer weights. Surprisingly, this config-
uration still manages to achieve respectable accuracies, suggesting that random

Interpolating CNNs Using BN 9

weights can still manage to map the inputs to representations which can be dis-
criminated by the BN tranformations, while also attesting the representational
power of BN layers. Even more surprising is the performance that random PCBN
obtained, which we leave for future investigation.

4.2 Few-shot Learning ImageNet32 from CIFAR10 Template

Motivated by the results in Section 4.1, we now attempt the more challenging
task of evaluating ComBN and PCBN on ImageNet using a CIFAR10-pretrained
template network. Owing to constraints on computational resources, we switch
to testing on ImageNet32 [5] (which is ImageNet downsampled to 32x32 images)
and use ResNet32 [11] as the template network. Additionally, to align ourselves
with the original goal, we will perform the evaluations in terms of 2-way few-shot
tasks.

Unlike the previous experiments, we forego the creation of a test split and
will instead report on validation accuracy. We use the original ImageNet train-
ing/validation sets as our master training/validation splits, and then create
binarized splits from the master splits using the same procedure outlined in
Section 3.2. In order to ensure evaluation is performed on unseen classes, we
first randomly sample 200 target classes to construct our component networks
and reserve the remaining 800 for few-shot tuning and evaluation. The train-
ing/validation splits of these 200 binary datasets exhaust all available positive
and negative examples from the master splits that result in a balanced dataset
(i.e. about 2000 examples in the training split, and exactly 100 in the validation
split). The remaining 800 binary datasets will have training/validation splits
that respectively possess 2n/100 examples per split, where n refers to a partic-
ular n-shot task.

Unless stated otherwise, all results are trained on random batches of size 128
(2n during few-shot) using SGD with a momentum of 0.9 for 60 epochs and
weight decay of 10~#. The learning rate is set initially to 0.01, and is decayed by
0.1 after epochs 30 and 45. The model with the best validation accuracy during
the training procedure is selected. No data augmentation is performed, and this
choice of hyperparameters is again not optimized. The template network was
trained following [11].

The following discussions refer to Table 2, where we report the mean valida-
tion accuracy of various networks trained in the few-shot training regime on the
800 binary datasets (except for Max, which uses all training data and is there-
fore not few-shot; we include this to illustrate a peformance upper bound). As in
Section 4.1, we also report on the results of fine-tuning the last layer (Last), all
layers (Full), and only BN + last layers (BN) of the template network to serve
as baselines.

Afterwards, we proceed to generating the 200 component networks by fine-
tuning the BN and last layers of the template network using the aforementioned
200 binary datasets, and use all 200 components to construct a PCBN network.
However, as we can see from the results, this construction performs worse than
the baselines in both 1-shot and 5-shot tasks. This drop in performance might be

10 G. W. P. Data et al.

Table 2: Mean percentage validation accuracies g on the 800 binary ImageNet32
datasets and their differences relative to full fine-tuning A = p— . Asterix (*)
indicates evaluation towards a subset (of about 400) of the 800 binary datasets
that fulfill the 75% threshold criterion.

1-shot 5-shot
Setup Component selection No. of components n A I A
Max — — 87.6 251 87.6 176
Last — — 63.0 0.5 69.3 0.7
Full — — 62.5 — 70.1 —
BN — — 629 04 69.6 —0.5
PCBN — 200 58.2 —4.3 65.3 —4.8
ComBN Few-shot loss 3 66.3 3.8 73.6 3.5
ComBN Few-shot loss 5 65.8 3.3 73.3 3.2
ComBN Few-shot loss 10 65.7 3.2 715 1.4
ComBN Max-shot accuracy 3 772 14.7 78.3 8.3
ComBN Max-shot accuracy 5 76.3 13.8 78.0 7.9
ComBN Max-shot accuracy 10 722 9.7 75.0 4.9
ComBN Max-shot accuracy 75% threshold* 80.0 17.5 81.6 11.5
PCBN Few-shot loss 3 64.5 20 71.3 1.3
PCBN Few-shot loss 5 63.3 0.7 70.6 0.5
PCBN Few-shot loss 10 628 26 684 —1.7
PCBN Max-shot accuracy 3 71.2 87 744 4.4
PCBN Max-shot accuracy 5 70.8 83 745 4.4
PCBN Max-shot accuracy 10 67.5 50 714 1.3
PCBN Max-shot accuracy 75% threshold* 73.0 10.5 77.5 7.4
SGM — — 64.8 2.3 70.6 0.5
L2 — — 57.0 —5.5 59.7 —10.4

attributed to the presence of components that are irrelelvant for the target task.
Furthermore, it is not feasible to create a ComBN network using 200 components
due to memory constraints, making it apparent that we need to selectively reduce
the number of components used in ComBN/PCBN.

To do so, and as previously hinted in Section 3.3, we propose to evalute the
cross-entropy loss of each component network on the training split of one of the
800 datasets that correspond to the unknown target class. We then rank and
select m component networks with the lowest loss and use these m networks to
construct our ComBN/PCBN networks (i.e. few-shot loss component selection).
The results from Table 2 seem to indicate that this strategy works, with both
ComBN and PCBN outpeforming the baselines by about 4%, and m = 3 leading
to the best results overall.

Furthermore, we also considered the case of having an ideal selection of com-
ponents by assuming we were able to binarize all available training data from
the master split for component selection (i.e. max-shot accuracy component

Interpolating CNNs Using BN 11

~
(o)}
I

i ~ ~
o N N
)))

Mean accuracy (%)

[e)]
©
1

[<)]
)]

20 40 60 80 100
No. of positive examples

o

Fig.2: Mean 1-shot validation accuracy of 3-component ComBN as a function
of number of positive examples in training split used in 1-shot loss component
selection.

selection). From here, we (i) selected m component networks with the highest
validation accuracy on the target task and (ii) selected 3-10 component networks
that perform above 75% in terms of validation accuracy on the target task. This
resulted in a marked performance increase of about 14-17% when compared to
the baseline, suggesting that component selection is an important procedure that
warrants further study. Again, m = 3 seems to lead to the best results overall.
An illustration of (i) for 3-component ComBN in the 1-shot regime for other as
a function of dataset size is plotted in Fig. 2.

Additionally if we plot the validation accuracies of 75% threshold components
and ComBN/PCBN networks constructed from them (Fig. 3), we notice that for
some classes ComBN/PCBN does worse than any of the components. This seems
odd given that we know for ComBN, a solution consisting of a; = 1if j = 1, and
a; = 0if j # 1 should result in an accuracy above 75%. This anomaly might
be caused by the tendency of SGD to avoid this particular solution, although
further work is necessary to better understand this.

As an extra benchmark, we also attempted to compare our results to [10],
which is one of the few works which attempted to tackle few-shot tasks with-
out resorting to meta-learning. We do this by training two additional template
networks using SGM and L2 loss functions as described in that work, which are
theorized to create features better suited for few-shot learning. As before, we then
subjected the two template networks to fine-tuning in the few-shot regime, and
reported their mean validation accuracies. Set up this way, our best-performing
method (3-component ComBN) outperformed theirs (SGM) by a margin of 2-
3% with the few-shot loss selection, which could go up to 8-13% assuming ideal
component selection.

12 G. W. P. Data et al.

100 7 100 7
90 A
g g 80
(o) [}
o o
3 3 70
1) [}
<< <
Component
60 1 —— ComBN 60 1
PCBN
50 T T T 1 50 T T T 1
0 100 200 300 400 0 100 200 300 400
Class Class
(a) 1-shot (b) 5-shot

Fig. 3: 75% threshold component, ComBN, and PCBN network validation accu-
racies. The filled plot represents the minimum, mean, and maximum accuracies
for each set of component networks. Each plot has been independently sorted by
mean accuracy to aid visualization.

4.3 Style Transfer

To demonstrate a completely orthogonal application of our framework and gen-
erate qualitative results, we took the network proposed by [6] and used it as a
template. As the network uses instance normalization (IN) layers [24], we will
need to replace BNs in our method formulation with INs, resulting in compos-
ite instance normalization (ComIN) and principal component instance normal-
ization (PCIN). The bases are formed by 32 IN parameters that were already
present in the original network, and are used to learn new styles, some of which
are shown in Fig. 4.

5 Conclusions

Based on a recent idea that batch normalization modules could transform in-
puts to encode class-specific representations, we propose an interpolation method
within learned BN layers to efficiently learn new classes. We show that this
works for few-shot learning by implementing it as a linear combination of BNs
(ComBN) or PCA on BN paramaters (PCBN), obtaining an accuracy between
4% to 17% over standard full fine-tuning. We have also shown that good per-
formance is dependent on careful selection of the BN modules, and proposed a
simple criterion to achieve this. Source code for the experiments can be down-
loaded from http://www.robots.ox.ac.uk/OxVisionLib/.

Interpolating CNNs Using BN 13

Dumoulin
et al.

PCIN

ComlIN

Dumoulin
et al.

PCIN

ComlIN

Fig. 4: Results on style transfer. Images on the top row are styles that are applied
on the leftmost content image. Images on each consecutive row below are stylized
images obtained from utilizing the original training procedure of Dumoulin et
al. [6], PCIN, and ComlIN, respectively.

14 G. W. P. Data et al.
References
1. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An Algorithm for Designing Over-

10.

11.

12.

13.

14.

complete Dictionaries for Sparse Representation. IEEE Transactions on Signal Pro-
cessing 54(11), 4311-4322 (nov 2006). https://doi.org/10.1109/TSP.2006.881199

. Bertinetto, L., Henriques, J.F., Valmadre, J., Torr, P., Vedaldi, A.: Learning feed-

forward one-shot learners. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon,
I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29,
pp. 523—-531. Curran Associates, Inc. (2016), http://papers.nips.cc/paper/6068-
learning-feed-forward-one-shot-learners.pdf

Bilen, H., Vedaldi, A.: Universal representations: The missing link be-
tween faces, text, planktons, and cat breeds. CoRR abs/1701.0 (2017),
http://arxiv.org/abs/1701.07275

Chen, W., Wilson, J., Tyree, S., Weinberger, K., Chen, Y.: Compressing Neu-
ral Networks with the Hashing Trick. In: Bach, F., Blei, D. (eds.) Proceedings
of the 32nd International Conference on Machine Learning. Proceedings of Ma-
chine Learning Research, vol. 37, pp. 2285-2294. PMLR, Lille, France (2015),
http://proceedings.mlr.press/v37/chencl5.html

Chrabaszcz, P., Loshchilov, I., Hutter, F.: A Downsampled Variant of Ima-
geNet as an Alternative to the CIFAR datasets. CoRR abs/1707.0 (2017),
http://arxiv.org/abs/1707.08819

Dumoulin, V., Shlens, J., Kudlur, M.: A Learned Representation For Artistic Style.
CoRR abs/1610.0 (2016), http://arxiv.org/abs/1610.07629

Engan, K., Aase, S.O., Husoy, J.H.: Method of optimal directions for frame design.
In: 1999 IEEE International Conference on Acoustics, Speech, and Signal Process-
ing. Proceedings. ICASSP99 (Cat. No.99CH36258). vol. 5, pp. 2443-2446 (1999).
https://doi.org/10.1109/ICASSP.1999.760624

Finn, C., Abbeel, P., Levine, S.: Model-Agnostic Meta-Learning for Fast Adapta-
tion of Deep Networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th
International Conference on Machine Learning. Proceedings of Machine Learning
Research, vol. 70, pp. 1126-1135. PMLR, International Convention Centre, Sydney,
Australia (2017), http://proceedings.mlr.press/v70/finn17a.html

Gao, Y., She, Q., Ma, J., Zhao, M., Liu, W., Yuille, A.L.: NDDR-CNN: Layer-
wise Feature Fusing in Multi-Task CNN by Neural Discriminative Dimensionality
Reduction. CoRR abs/1801.0 (2018), http://arxiv.org/abs/1801.08297
Hariharan, B., Girshick, R.: Low-Shot Visual Recognition by Shrinking and Hal-
lucinating Features. In: The IEEE International Conference on Computer Vision
(ICCV). pp. 3018-3027 (oct 2017)

He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition.
In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 770-778 (jun 2016)

Hinton, G., Vinyals, O., Dean, J.: Distilling the Knowledge in a Neural Network.
In: NIPS Deep Learning and Representation Learning Workshop (2015)

Toffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift. In: Bach, F., Blei, D. (eds.) Proceed-
ings of the 32nd International Conference on Machine Learning. Proceedings of
Machine Learning Research, vol. 37, pp. 448-456. PMLR, Lille, France (2015),
http://proceedings.mlr.press/v37 /ioffe15.html

Koch, G., Zemel, R., Salakhutdinov, R.: Siamese Neural Networks for One-Shot
Image Recognition. In: ICML Deep Learning Workshop (2015)

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Interpolating CNNs Using BN 15

Krizhevsky, A.: Learning Multiple Layers of Features from Tiny Images. Tech. rep.
(2009)

Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet Classification with Deep Con-
volutional Neural Networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097—
1105. Curran Associates, Inc. (2012), http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks.pdf

Lawrence, N.: Probabilistic Non-linear Principal Component Analysis with Gaus-
sian Process Latent Variable Models. J. Mach. Learn. Res. 6, 1783-1816 (dec 2005),
http://dl.acm.org/citation.cfm?id=1046920.1194904

Luo, Z., Zou, Y., Hoffman, J., Fei-Fei, L.: Label Efficient Learning of Transfer-
able Representations acrosss Domains and Tasks. In: Guyon, I., Luxburg, U.V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Ad-
vances in Neural Information Processing Systems 30, pp. 165-177. Curran As-
sociates, Inc. (2017), http://papers.nips.cc/paper/6621-label-efficient-learning-of-
transferable-representations-acrosss-domains-and-tasks.pdf

Ravi, S., Larochelle, H.: Optimization As a Model for Few-Shot Learning. In: In-
ternational Conference on Learning Representations (2017)

Rebuffi, S.A., Bilen, H., Vedaldi, A.: Learning multiple visual domains
with residual adapters. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach,
H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neu-
ral Information Processing Systems 30, pp. 506-516. Curran Associates, Inc.
(2017), http://papers.nips.cc/paper/6654-learning-multiple-visual-domains-with-
residual-adapters.pdf

Rubinstein, R., Bruckstein, A.M., Elad, M.: Dictionaries for Sparse Repre-
sentation Modeling. Proceedings of the IEEE 98(6), 1045-1057 (jun 2010).
https://doi.org/10.1109/JPROC.2010.2040551

Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale
Image Recognition. In: International Conference on Learning Representations
(2015)

Snell, J., Swersky, K., Zemel, R.S.: Prototypical Networks for Few-shot Learning.
CoRR abs/1703.0 (2017), http://arxiv.org/abs/1703.05175

Ulyanov, D., Vedaldi, A., Lempitsky, V.S.: Instance Normalization:
The Missing Ingredient for Fast Stylization. CoRR abs/1607.0 (2016),
http://arxiv.org/abs/1607.08022

Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.:
Matching Networks for Omne Shot Learning. In: Lee, D.D., Sugiyama, M.,
Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Informa-
tion Processing Systems 29, pp. 3630-3638. Curran Associates, Inc. (2016),
http://papers.nips.cc/paper/6385-matching-networks-for-one-shot-learning. pdf

