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Abstract. The Reference-based Super-resolution (RefSR) super-resolves
a low-resolution (LR) image given an external high-resolution (HR) refer-
ence image, where the reference image and LR image share similar view-
point but with significant resolution gap (8×). Existing RefSR methods
work in a cascaded way such as patch matching followed by synthe-
sis pipeline with two independently defined objective functions, leading
to the inter-patch misalignment, grid effect and inefficient optimization.
To resolve these issues, we present CrossNet, an end-to-end and fully-
convolutional deep neural network using cross-scale warping. Our net-
work contains image encoders, cross-scale warping layers, and fusion de-
coder: the encoder serves to extract multi-scale features from both the
LR and the reference images; the cross-scale warping layers spatially
aligns the reference feature map with the LR feature map; the decoder
finally aggregates feature maps from both domains to synthesize the HR
output. Using cross-scale warping, our network is able to perform spatial
alignment at pixel-level in an end-to-end fashion, which improves the
existing schemes [1, 2] both in precision (around 2dB-4dB) and efficiency
(more than 100 times faster).

Keywords: Reference-based Super resolution · Light field imaging · Im-
age synthesis · Encoder-decoder · Optical flow

1 Introduction

Reference-based super-resolution (RefSR) methods [2] utilizes an extra high res-
olution (HR) reference image to help super-resolve the low resolution (LR) im-
age that shares similar viewpoint. Benefit from the high resolution details in
reference image, RefSR usually leads to competitive performance compared to
single-image SR (SISR). While RefSR has been successfully applied in light-field
reconstruction [1, 3, 2] and giga-pixel video synthesis [4], it remains a challenging
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and unsolved problem, due to the parallax and the huge resolution gap (8x) ex-
ist between HR reference image and LR image. Essentially, how to transfer the
high-frequency details from the reference image to the LR image is the key to
the success of RefSR. This leads to the two critical issues in RefSR, i.e., image
correspondence between the two input images and high resolution synthesis of
the LR image.
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Fig. 1. Left: the ‘patch maching + synthesis’ pipeline of [2], middle: the proposed
end-to-end CrossNet, right: results comparisons.

In the initial work of [1], to develop image correspondences between the two
inputs, the gradient features on the down-sampled patches in the HR reference
are used for patch-based matching, while patch averaging is designed for the
image synthesis. However, the oversimplified and down-sampled correspondence
estimation of [1] does not take advantage of the high frequency information for
matching, while the synthesizing step does not utilize high resolution image prior
for better fusion. To address the above two limitations, a recent work [2] replaces
the gradient feature of [1] with the convolutional neural network (CNN) learned
features to improve the matching accuracy, and then proposes an additional
CNN which utilizes the state-of-the-art single image super-resolution (SISR) al-
gorithm [5] for patch synthesis. However, the ‘patch matching + patch synthesis’
scheme of [1, 2] are fundamentally limited. Firstly, the adopted sliding averaging
blurs the output image and causes grid artifacts. Moreover, patch-based synthe-
sis is inherently incapable in handling the non-rigid image deformation caused
by viewpoint changes. To impose the non-rigid deformation to patch-based al-
gorithms, [3] enriches the reference images by iteratively applying non-uniform
warping before the patch synthesis. However, directly warping between the low
and high resolution images is inaccurate. In addition, such iterative combination
of patch matching and warping introduces heavy computational burden, e.g.
around 30min for synthesizing an image.

In this paper, we propose CrossNet, an end-to-end convolutional neural net-
work based on the idea of ‘warping + synthesis’ for reference-based image super-
resolution. We discard the idea of ‘patch matching’ and replace it with ‘warping’,
which enables the design of ‘Encoder-Warping-Decoder’ structure, as shown in
Fig. 1. Such structure contains two encoders to extract multi-scale features from
LR and reference image respectively. We take advantage of the warping module
originated from spatial transformer network (STN) [6], and integrate it to our
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HR reference image encoder. Compared with the patch matching based methods,
warping naturally supports non-rigid deformation to overcome the parallax chal-
lenge in RefSR. More over, we extract multi-scale features in the encoder, and
then perform multi-scale spatial alignment using warping, as shown in Fig. 1.
The introduced multi-scale features capture the complementary scale informa-
tion from two images, which help to alleviate the huge resolution gap challenge
in RefSR. Finally, the decoder aggregates features to synthesize the HR output.
Overall, our model is fully end-to-end trainable and does not require pretraining
the flow estimator.

Extensive experiments have shown the superior performance of CrossNet
(around 2dB-4dB gain) compared to state-of-the-art SISR and RefSR meth-
ods, under different datasets with large/small viewpoint disparities and different
scales. Our trained model that generalized to external dataset including Stanford
light field maintains the ability to retain high frequency details. More impor-
tantly, CrossNet is efficient in terms that it generates a 320× 512 image within
one second, while [1], [2] and [3] take 86.3s, 105.0s and around 30 minutes to
perform the same task, respectively.

2 Related work

2.1 Single-image Super-resolution

The single-image super-resolution (SISR) problem aims to super-resolve an LR
image without additional references. Despite that, the SISR problems are closely
related to the Reference-based Super-resolution (RefSR) problem. In the early
days, approaches based on adaptive sampling [7, 8] has been applied to SISR.
However, such approaches did not utilize the statistics of nature images. In
contrast, model-based approaches try to design image prior which helps to super-
resolve the image-specific patterns. Such works usually utilize edge prior [9],
total variation model [10], hyper-Laplacian prior [11], sparsity priors [12–15], or
exemplar patches [16, 17].

More recently, the SISR problem was casted into a supervised regression
problem, which try to learn a mapping function from LR patches to HR patches.
Those works relies on varieties of learning techniques including nearest-neighbor
search [18, 19], decision tree [20], random forests [21, 22], simple function [23, 24],
Gaussian process regression [25], and deep neural networks.

With the increasing model capacity of the deep neural networks, the SISR
performance has been rapidly improved. Since the appearance of the first deep
learning-based SR method [26], a large number of works have been proposed to
further improve the SISR performance. For example, Dong et al. [27] and Shi et
al. [28] accelerate the efficiency of SISR by computing features on low-resolution
domains. Kim et al. [29] proposed a 20-layers deep network for predicting the
bicubic upsampling residue. Ledig et al. [5] proposed a deep residue network with
adversarial training for SISR. Lai et al. [30] reconstructed the sub-band residuals
using a multi-stage Laplacian network. Lim et al. [31] improved [5] by introducing
a multi-scale feature extraction residue block for better performance. Because of
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the impressive performance of the MDSR network from [31], we employ MDSR
as a sub-module for LR images feature extraction and RefSR synthesis.

2.2 Reference-based Super-resolution

Recent works such as [2, 1, 3, 32–34] uses additional reference images from dif-
ferent viewpoints to help super-resolving the LR input, which forms a new kind
of SR method called RefSR. Specifically, Boominathan et al. [1] used an DSLR
captured high-definition image as reference, and applies a patch-based synthe-
sizing algorithm using non-local mean [19] for super-resolving the low-definition
light-field images. Wu et al. [34] improved such algorithm by employing patch
registration before the nearest neighbor searching, then applies dictionary learn-
ing for reconstruction. Wang et al. [3] iterate the patch synthesizing step of
[1] for enriching the exemplar database. Zheng et al. [35] decompose images
into subbands by frequencies and apply patch matching for high-frequency sub-
band reconstruction. Recently, Zheng et al. [2] proposed a deep learning-based
approach for the cross-resolution patch matching and synthesizing, which sig-
nificantly boosts the accuracy of RefSR. However, the patch-based synthesizing
algorithms are inherently incapable in handling the non-rigid image deformation
that is often caused by the irregular foreground shapes. Under such cases, patch-
based synthesize causes issues such as blocky artifact and blurring effect. Despite
that sliding windows [1, 2] or iterative refinement [3] mitigate such difficulties to
some extends, these strategies usually introduce heavy computational cost. On
the contrary, our fully convolutional network makes it possible to achieve more
than 100 times speedup compared to existing RefSR approaches, allowing the
model to be applicable for real-time applications.

2.3 Image/video Synthesis using Warping

Our task is also related to image/video synthesis tasks that use additional im-
ages from other viewpoints or frames. Such tasks include view synthesis [36,
37], video denoising [38], super-resolution [38–40], interpolation or extrapola-
tion [41, 42]. To solve this type of problems, deep neural networks based of the
design of “warping and synthesis” has been recently proposed. Specifically, the
additional images are backward warped to the target image using the estimated
flow. Afterward, the warped image is used for image/frame synthesis using an
additional synthesis module. We follow such “warping and synthesis” pipeline.
However, our approach is different from existing works in the following ways:
1) in stead of the common practice where warping was performed on image-
domain at pixel-scale [41, 42, 36, 37], our approach performs multi-scale warping
on feature domain, which accelerates the model convergence by allowing flow to
be globally updated at higher scales. 2) after the warping operations, a novel
fusion scheme is proposed for image synthesis. Our fusion scheme is different
from the existing synthesizing practices that include image-domain early fusion
(concatenation) [41, 37] and linearly combining images [42, 36].
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Fig. 2. Network structure of our proposed CrossNet.

3 Approach

Our reference-based super resolution scheme, named CrossNet, is based on a
fully convolutional cross-scale alignment module that spatially aligns the ref-
erence image information to the LR image domain. Along with the cross-scale
alignment module, an encoder-decoder structure is proposed to directly synthe-
size the RefSR output in an end-to-end, and fully convolutional fashion. The
entire network is plotted in Fig. 2. In Section 3.1, we introduce the designs and
properties of the fully convolutional cross scale alignment module. In Section 3.2,
the end-to-end network structure is described, followed by the image synthesis
loss function depicted in Section 3.3.

3.1 Fully Convolutional Cross-scale Alignment Module

Since the reference image is captured at different view points from LR image,
it is necessary to perform spatial alignment. In [1–3], such correspondence is
estimated by matching every LR patches with its surrounding reference patches.
However, such sparsely-sampled and non-rigidly upsampled correspondence can
easily fail around the region with varying depth or disparity.
Cross-scale warping. We propose cross-scale warping to perform non-rigid
image transformation. Comparing to patch matching, we do not assume the
depth plane to be locally constant. Our proposed cross-scale warping operation
considers a pixel-wise shift vector V :

Io = warp(yRef , V ), (1)

which assigns a specific shift vector for each pixel location, so that it avoids the
blocky and blurry artifacts.
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Cross-scale flow estimator. As shown on the top of Fig. 2, given an upsam-
pled LR image and its corresponding reference image, we adopt the widely used
FlowNetS [43] as our flow estimator to generate the cross-scale correspondence
at multiple scale. To further improve the FlowNetS, we replace the final ×4 bi-
linear upsampling layer of FlownetS with two ×2 upsampling module, whereas
each ×2 upsampling module contains a skip connection structure following a
deconvolution layer. Such additional upsampling procedure allow the modified
model to predict the flow-field with much finer definition. The modified flow
estimator works to generate the multi-scale flow-fields as follows:

{V (3), V (2), V (1), V (0)} = Flow(ILR↑, IREF ), (2)

where the IREF denotes the reference image, and ILR↑ denotes an representative
Single-Image SR (SISR) approach [31] upsampled the LR image (ILR):

ILR↑ = SISR(ILR). (3)

More discussions on the choice of flow estimator are presented in discussion
in Section 4.3.

3.2 End-to-end Network Structure

The patch matching calculates pixel-wise flow using a sliding window scheme.
Such matching is computationally expensive, compared with the proposed fully
convolutional network for cross-scale flow field estimation.

Resorting the cross-scale warping as a key component for spatial alignment,
we propose an end-to-end network for RefSR synthesis. Our network, contains
a LR image encoder which extracts multi-scale feature maps from the LR
image IL, a reference image encoder which extracts and aligns the reference
image feature maps at multiple scales , and a decoder which perform multi-scale
feature fusion and synthesis using the U-Net[44] structure. Fig. 2 summarizes the
structure of our proposed CrossNet. The major modules, i.e., encoder, estimator
and decoder, are elaborated as follows.
LR image encoder. Given the LR image IL, we design a LR image encoder to
extract reference feature maps at 4 scales. Specifically, we utilize SISR approach
in Equation 3 to upsample the LR image. After that, we convolve the upsampled
images with 64 filters (of size 5×5) with stride 1 to extract feature map at scale
0. We repeatedly convolve the feature map at the scale i − 1 (for 0 < i ≤ 3)
with 64 filters (of size 5×5) with stride 2 to extract feature map at scale i. Such
operations can be represented as

F
(0)
LR = σ(W

(0)
LR ∗ ILR↑ + b

(0)
LR),

F
(i)
LR = σ(W

(i)
LR ∗ F (i−1)

LR + b
(i)
LR)⇓2, i = 1, 2, 3,

(4)

where F
(i)
LR is the LR feature map at scale i, σ stands for the activation function

of rectified linear unit (ReLU) [45], ∗ denotes convolution, and ⇓2 denotes 2D
sampling with stride 2.
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Note that resorting independent SISR approaches (such as [31] ) to encode
LR image owns two advantages. First, the SISR approaches that are validated
on large-scale external datasets help the LR image encoder to generalize better
on unseen scenes. Second, new state-of-the-art SISR approaches can be easily
integrated into our system to improve the performance without changing our
network structures.
Reference image encoder. Given the raw reference image IR, a 4 scale fea-
ture extraction network with the exact structure from Equation 4 are used to

sequentially extract reference image features {F (0)
REF , F

(1)
REF , F

(2)
REF , F

(3)
REF } from

multiple scales. We allow the reference feature extractor and the LR feature
extractor to learn different weights, which helps the two sets of features to com-
plement each other.

After that, we perform backward warping operation on the reference im-

age features F
(i)
R using the cross-scale flow V (i) in equation 2, to generate the

spatially aligned feature F̂
(i)
R .

F̂
(i)
REF = warp(F

(i)
REF , V

(i)), i = 0, 1, 2, 3. (5)

More discussions on the multi-scale warping are presented in Section 4.3.
Decoder. After extracting the LR image feature and the warped reference image
feature at different scales, a U-Net like decoder is proposed to perform fusion
and SR synthesis. Specifically, the warped features and the LR image features
at scale i (for 0 ≤ i ≤ 3), as well as the decoder feature from scale i− 1 (if any)
are concatenated following a deconvolution layer with 64 filters (of size 4 × 4)
and stride 2 to generate decoder features at scale i,

F
(3)
D = σ(W

(3)
D ⋆ (F

(3)
LR, F̂

(3)
REF ) + b

(3)
D ),

F
(i)
D = σ(W

(i)
D ⋆ (F

(i+1)
LR , F̂

(i+1)
REF , F

(i+1)
D ) + b

(i)
D ), i = 2, 1, 0,

(6)

where ⋆ denotes the deconvolution operation.
After generating the decoder feature at scale 0, three additional convolution

layers with filter sizes 5 × 5 and filter number {64, 64, 3} are added to perform
post-fusion and to generate the SR output,

F1 = σ(W 1 ∗ F
(0)
D + b1),

F2 = σ(W 2 ∗ F1 + b2),
Ip = σ(W p ∗ F2 + bp).

(7)

3.3 Loss Function

Our network can be directly trained to synthesize the SR output. Given the
network prediction Ip, and the ground truth high-resolution image IHR, the loss
function can be written as

L =
1

N

N∑

i=1

∑

s

ρ(I
(i)
HR(s)− I(i)p (s)), (8)
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where ρ(x) =
√
x2 + 0.0012 is the Charbonnier penalty function [46], N is the

number of samples, i and s iterate over training samples and spatial locations,
respectively.

4 Experiment

4.1 Dataset

The representative Flower dataset [47] and Light Field Video (LFVideo) dataset
[42] are used here. The Flower dataset [47] contains 3343 flowers and plants light-
field images captured by Lytro ILLUM camera, whereas each light field image
has 376 × 541 spatial samples, and 14 × 14 angular samples. Following [47], we
extract the central 8 × 8 grid of angular sample to avoid invalid images, and
randomly divide the dataset into 3243 images for training and 100 images for
testing. The LFVideo dataset [42] contains real-scene light-field image captured
by Lytro ILLUM camera. Similar to the Flower dataset, each light field image
has 376×541 spatial samples and 8×8 angular samples. There are in total 1080
light-field samples for training and 270 light-field samples for testing.

For model training using these two dataset, the LR and reference images are
randomly selected from the 8× 8 angular grid. While for testing, the LR images
at angular position (i, i), 0 < i ≤ 7 and reference images at position (0, 0) are
selected for evaluating RefSR algorithms. As our model requires the input size
being a factor of 32, the images from the two dataset are cropped to 320× 512
for training and validation.

To validate the generalization ability of CrossNet, we also test it on the
images from Stanford Light Field dataset [48] and Scene Light Field dataset
[49], where we apply our trained model using sliding windows approach, with
windows size being 512×512 and stride being 256 to output the SR result of the
entire image. More details are presented in the generalization analysis in 4.2.

4.2 Evaluation

We train the CrossNet for 200K iterations on the Flower and LFVideo datasets
for ×4 and ×8 SR respectively. The learning rates are initially set to 1e-4 and
7e-5 for the two dataset respectively, and decay to 1e-5 and 7e-6 after 150k
iterations. As optimizer, the Adam [50] is used with β1 = 0.9, and β1 = 0.999.
In comparison to CrossNet, we also test the latest RefSR algorithms SS-Net [2]
and PatchMatch [1], and the representative SISR approaches including SRCNN
[26], VDSR [29] and MDSR [31].

We evaluate the results using three image quality metrics: PSNR, SSIM [51],
and IFC [52]. Table 1 shows quantitative comparisons for ×4 and ×8 RefSR
under the two parallax settings, where the reference images are sampled at posi-
tion (0, 0) while LR images are sampled at position (1, 1) and (7, 7). Examining
Table 1, the proposed CrossNet outperforms the previous approaches consider-
ably under various settings including small/large parallax, different upsampling
scales and different datasets, achieving 2dB-4dB gain in general.
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Algorithm Scale Flower (1,1) Flower (7,7) LFVideo (1,1) LFVideo (7,7)
PSNR/SSIM/IFC PSNR/SSIM/IFC PSNR/SSIM/IFC PSNR/SSIM/IFC

SRCNN [26] ×4 32.76 / 0.89 / 2.46 32.96 / 0.90 / 2.49 32.98 / 0.86 / 2.07 33.27 / 0.86 / 2.08
VDSR [29] ×4 33.34 / 0.90 / 2.73 33.58 / 0.91 / 2.76 33.58 / 0.87 / 2.29 33.87 / 0.88 / 2.30
MDSR [31] ×4 34.40 / 0.92 / 3.04 34.65 / 0.92 / 3.07 34.62 / 0.89 / 2.62 34.91 / 0.90 / 2.63
PatchMatch [1] ×4 38.03 / 0.97 / 5.11 35.23 / 0.94 / 3.85 38.22 / 0.95 / 4.60 37.08 / 0.94 / 3.99
CrossNet (ours) ×4 42.09 / 0.98 / 6.70 38.49 / 0.97 / 5.02 42.21 / 0.98 / 5.96 39.03 / 0.96 / 4.61

SRCNN [26] ×8 28.17 / 0.77 / 0.98 28.25 / 0.77 / 1.00 29.43 / 0.75 / 0.82 29.63 / 0.76 / 0.82
VDSR [29] ×8 28.58 / 0.78 / 1.04 28.68 / 0.78 / 1.06 29.83 / 0.77 / 0.89 30.04 / 0.77 / 0.89
MDSR [31] ×8 29.15 / 0.79 / 1.17 29.26 / 0.80 / 1.19 30.43 / 0.78 / 1.04 30.65 / 0.79 / 1.05
PatchMatch [1] ×8 35.26 / 0.95 / 4.00 30.41 / 0.85 / 2.07 36.72 / 0.94 / 3.81 34.48 / 0.91 / 2.84
SS-Net [2] ×8 37.46 / 0.97 / 4.72 32.42 / 0.91 / 2.95 37.93 / 0.95 / 4.06 35.81 / 0.93 / 3.30
CrossNet (ours) ×8 40.31 / 0.98 / 5.74 34.37 / 0.93 / 3.45 41.26 / 0.97 / 5.22 36.48 / 0.93 / 3.43

Table 1. Quantitative evaluation of the state-of-the-art SISR and RefSR algorithms,
in terms of PSNR/SSIM/IFC for scale factors ×4 and ×8 respectively.

For better comparison, we also visualize the PSNR performance under differ-
ent parallax setting in Fig. 3. As expected, the RefSR approaches such as Cross-
Net, PatchMatch, SS-Net outperform SISR approaches owe to the high-frequency
details provided by reference images. However, RefSR results deteriorate as the
parallax enlarges, due to the fact that the correspondence searching is more diffi-
cult for large parallax. In contrast, the performance of SISR approaches appears
as ‘U-shape’ for different views, i.e., at the corners of LF image for disparity be-
ing (1, 1) and (7, 7), the SISR performs slightly better. This is probably due to
the occurrence of easily super-resolved invalid region becomes larger at corners.
Finally, it can be seen that the proposed CrossNet consistently outperforms the
resting approaches under different disparities, datasets and scales.

Fig. 4 presents the visual comparisons of CrossNet with SISR approaches
including SRCNN, VDSR, MDSR and RefSR approaches including PatchMatch
and SS-Net under the challenging ×8 scale setting. Benefiting from the refer-
ence image, RefSR approaches show competitive results compared to the SISR
methods, where the high frequency details are explicitly retained. Among them,
the proposed CrossNet can further provide finer details, resembling the details
in ground truth image. More visual comparison are shown in the supplementary
material and supplementary video 4.

Generalization: to further estimate the cross-dataset generalization capac-
ity of our model, we report the results on Stanford light field dataset (Lego
Gantry) [48] and the Scene Light Field dataset [49], where the former one con-
tains light field images captured by a Canon Digital Rebel XTi that set on a
movable Mindstorms motors on the Lego gantry, and images from the latter one
are also captured on a motorized stage with a standard DSLR camera. Under
such equipment settings, the captured light-field images of the two datasets have
much large parallax comparing to the ones captured by Lytro ILLUM cameras.
The parallax discrepancy between datasets yields difficulty to our trained model,
as our model is not particularly trained with large parallax.

4 https://youtu.be/7htEaaNkxG8
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Fig. 3. The PSNR measurement under different parallax settings: the reference images
are select at (0, 0) LF grid, while the LR image are selected at (i, i) LR grid ((i, i), 0 <

i ≤ 8).

To handle these two datasets, we employ a parallax augmentation procedure
during training, which randomly offsets the reference input by [−15, 15] pixels
both horizontally and vertically. We take the pre-trained model parameters using
LFVideo dataset (in Section 4.2) as the initialization, and re-train the CrossNet
on the Flower dataset for 200K iterations in order to achieve better generaliza-
tion. We use 7e-5 as the initial learning rate, and decay the learning rate using
factors 0.5, 0.2, 0.1 at 50K, 100K, 150K iterations.

Table 2 and Table 3 compare in PSNR measurement our re-trained model
with PatchMatch [1], SS-Net [2] for ×8 RefSR on the Stanford light-field dataset
and the Scene Light Field dataset respectively. It can be seen that our approach
outperforms the resting approaches with different parallax settings on the Stan-
ford dataset. On average, our approach outperforms the competitive SS-Net by
1.79-2.50dB on the Stanford light-field dataset and 2.84dB on the Stanford light-
field dataset.

Efficiency: It is worth mentioning that the proposed CrossNet generates
an 320 × 512 image for ×8 RefSR within 1 second, i.e., 0.75 second to perform
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Fig. 4. Visual comparison for ×8 RefSR on LFVideo(1, 1), LFVideo(3, 3), Flower(1, 1).
In the experiment, our approach is compared against SRCNN[26], VDSR[29],
MDSR[31], PatchMatch[1], and SS-Net[2].

SISR preprocessing using the MDSR [31] model, and 0.12 seconds to synthesize
the final output. In contrast, the PatchMatch [1] takes 86.3 seconds to run on
Matlab2016 using GPU parallelization while the SS-Net [2] takes on average
105.6 seconds running on GPU. The above running times are profiled using a
machine with 8 Intel Xeon CPU (3.4 GHz) and a GeForce GTX 1080 GPU,
while the model inferences of our CrossNet and SS-Net [2] are implemented on
Python with Theano deep learning package [53].
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Image, parallax=(1/3/5,0) MDSR [31] PatchMatch [1] SS-Net [2] Ours

Amethyst 29.64 / 29.66 / 29.74 36.44 / 34.71 / 33.20 36.91 / 34.97 / 33.35 39.52 / 36.92 / 35.13
Bracelet 24.66 / 24.68 / 24.64 35.66 / 33.71 / 25.47 36.33 / 34.19 / 32.53 38.19 / 34.27 / 27.20
Chess 30.39 / 30.42 / 30.39 38.68 / 36.68 / 34.99 39.85 / 38.64 / 37.12 41.85 / 40.68 / 39.34
Flowers 30.01 / 30.00 / 29.98 33.74 / 33.24 / 32.58 37.46 / 35.44 / 34.09 39.50 / 36.53 / 34.56
JellyBeans 41.09 / 41.00 / 41.15 39.48 / 38.68 / 37.19 37.98 / 36.60 / 35.14 43.81 / 42.29 / 40.11
LegoBulldozer 29.58 / 29.56 / 29.58 35.60 / 31.39 / 28.87 35.99 / 33.26 / 31.86 38.79 / 35.00 / 32.61
LegoGantry 26.58 / 26.52 / 26.58 31.73 / 29.86 / 27.15 32.68 / 30.97 / 30.06 33.42 / 30.83 / 29.96
LegoKnights 29.49 / 29.48 / 29.46 33.57 / 30.73 / 27.57 33.48 / 31.45 / 30.20 37.60 / 34.40 / 32.11
LegoTruck 30.82 / 30.80 / 30.67 34.96 / 34.22 / 33.30 37.80 / 36.44 / 34.87 39.87 / 38.51 / 37.17
TarotCardsLarge 22.91 / 22.89 / 22.86 27.98 / 20.90 / 20.40 29.69 / 26.71 / 24.63 31.27 / 23.69 / 22.16
TarotCardsSmall 23.98 / 23.98 / 23.97 30.08 / 29.30 / 27.60 32.92 / 31.44 / 30.70 35.48 / 31.42 / 28.22
StanfordBunny 36.82 / 36.90 / 36.96 37.39 / 37.15 / 36.75 40.36 / 39.77 / 39.09 41.99 / 41.48 / 40.88

Average 29.66 / 29.66 / 29.67 34.61 / 32.55 / 30.42 35.96 / 34.16 / 32.81 38.44 / 35.50 / 33.29

Table 2. ×8 super-resolution experiment on the Stanford light field dataset [48].

Image, parallax=(1,0) MDSR [31] PatchMatch [1] SS-Net [2] Ours

Bikes 28.38 36.70 36.36 37.91
Church 36.04 41.89 40.10 43.68
Couch 32.52 33.93 35.86 39.83
Mansion 28.03 32.83 33.39 36.38
Statue 29.72 35.96 35.21 37.30

Average 30.94 36.26 36.18 39.02

Table 3. ×8 super-resolution experiment on the Scene light field dataset [49].

4.3 Discussions

One may concern that our loss is designed for image synthesis, and does not
explicitly define terms for flow estimation. However, since the correctly aligned
features are extremely informative for decoder to reconstruct high-frequency
details, our model actually learns to predict optical flow by aligning features
maps in an unsupervised fashion. To validate the effectiveness of the learned flow
by aligning feature, we visualize the intermediate flow field at all scales in Fig.
5(d), where flow predictions at scales 0, 1, 2, 3(×1,×2,×4,×8) are reasonably
coherent, yet noisy flow predictions are observed at scales 4, 5(×16,×32), because
the flow at scale 4, 5 are not used for the feature-domain warping.

In addition to the multi-scale feature warping module proposed in this pa-
per, we investigate a single-scale image warping counterpart which performs
reference image warping before the following image encoder for feature ex-
traction. This counterpart is inspired by the common practice in [42, 36] that
performs image warping before synthesis. More concretely, our single-scale im-
age warping counterpart performs image warping using the flow from scale 0:
ÎREF = warp(IREF , V

(0)). After that, reference image encoder with the same
structure is used to extract features from the warped reference image. Without
changing the structure of encoder and decoder, such image warping counterpart
CrossNet-iw has the same model size as CrossNet.

We train both CrossNet-iw and CrossNet according to the same procedure
in Section 4.2. We also adopt a pretraining strategy to train CrossNet-iw. We
pretrain the flow estimator of WS-SRNet with image warping task for 100K
iterations, and then apply the joint training for another 100K iterations, resulting
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Fig. 5. Flow visualization and comparison for sample #1, #99 in the Flower ×8 testing
set. (a) the HR image, (b)(c)(d) flow visualization of PatchMatch [1], SS-Net [2], and
our approach respectively. In (d), the flow is visualized at scales ×1,×2,×4 (row 1),
and ×8,×32,×64 (row 2).

the CrossNet-iw-p model. Fig. 6 shows the PSNR convergence curves on training
set for ×8RefSR on the Flower and LFVideo dataset. It can be noticed that our
CrossNet converges faster than the CrossNet-iw counterparts. At the end of the
training, CrossNet outperforms CrossNet-iw 0.20dB and 0.27dB on training set.
Table 4 shows the RefSR precision on the test sets with three representative point
views. CrossNet outperforms CrossNet-iw, especially on small parallax setting.
It is reasonable because the training uses random sampled pairs from the LF
grid, which are mostly took up by small parallax training pairs.
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(a) Training convergence curve on
Flower×8.
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(b) Training convergence curve on
LFVideo×8.

Fig. 6. The convergence analysis on our feature domain warping scheme (CrossNet)
versus image warping schemes. Our model (CrossNet, red) converges faster than the
image-domain warping counterpart (CrossNet-iW) with or without pre-training.

As our method relies on the cross-scale flow estimators, it is also impor-
tant to study the flow predicting capacities of different flow estimator. For such
purpose, we train the FlowNetS and our modified model (FlowNetS+) on the
Flower and the LFVideo dataset for warping the reference images to the ground
truth images given the reference and LR image as input. As shown In Table 5,
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Model parameter size Flower×8 (1,1) Flower×8 (3,3) Flower×8 (7,7)
PSNR/SSIM/IFC PSNR/SSIM/IFC PSNR/SSIM/IFC

CrossNet 41M 40.31 / 0.98 / 5.74 36.95 / 0.96 / 4.61 34.37 / 0.93 / 3.45
CrossNet-iw 41M 40.14 / 0.98 / 5.75 36.94 / 0.96 / 4.59 34.49 / 0.93 / 3.52
CrossNet-iw-p 41M 40.01 / 0.98 / 5.75 36.85 / 0.96 / 4.58 34.35 / 0.93 / 3.49

LFVideo×8 (1,1) LFVideo×8 (3,3) LFVideo×8 (7,7)
PSNR/SSIM/IFC PSNR/SSIM/IFC PSNR/SSIM/IFC

CrossNet 41M 41.26 / 0.97 / 5.22 38.69 / 0.96 / 4.32 36.48 / 0.93 / 3.43
CrossNet-iw 41M 41.12 / 0.97 / 5.20 38.61 / 0.96 / 4.32 36.32 / 0.93 / 3.43
CrossNet-iw-p 41M 40.96 / 0.97 / 5.16 38.47 / 0.96 / 4.29 36.11 / 0.93 / 3.43
Table 4. Ablation study to evaluate the effectiveness of multi-scale feature warping.

while the FlowNetS+ contains 2% more parameters in comparison to FlowNetS,
the additional upscaling layers of FlowNetS+ reasonably improves the warping
precision in both the Flower dataset [47] and the LFVideo dataset [42], as they
help to generate finer flow field. In addition, we also observe that by plain warp-
ing, the FlowNetS+ achieves notably better compatible performance compared
to SS-Net [2], as depicted by the SS-Net (×8) row in Table 1.

Model # of parameters Flower×8(1,1) Flower×8(7,7) LFVideo×8(1,1) LFVideo×8(7,7)
PSNR/SSIM/IFC PSNR/SSIM/IFC PSNR/SSIM/IFC PSNR/SSIM/IFC

FlownetS 31.9 million 37.78 / 0.97 / 5.41 31.23 / 0.90 / 3.02 39.39 / 0.97 / 4.97 34.94 / 0.92 / 3.30
FlownetS+ 32.6 million 38.04 / 0.97 / 5.46 31.66 / 0.90 / 3.11 39.37 / 0.97 / 4.88 35.85 / 0.93 / 3.54

Table 5. Quantitative evaluation and the parameter sizes comparison, using different
flow estimators to warp the reference image. The LR images are located at angular
position (3, 3).

5 Conclusion

Aiming for the challenge large-scale (8×) super-resolution problem, we pro-
pose an end-to-end reference-based super resolution network named as Cross-
Net, where the input is a low-resolution (LR) image and a high-resolution (HR)
reference image that shares similar view-point, the output is the super-resolved
(4x or 8x) result of LR image. The pipeline of CrossNet is full-convolutional,
containing encoder, cross-scale warping, and decoder respectively. Extensive ex-
periment on several large-scale datasets demonstrate the superior performance of
CrossNet (around 2dB-4dB) compared to previous methods. More importantly,
CrossNet achieves a speedup of more than 100 times compared to existing RefSR
approaches, allowing the model to be applicable for real-time applications.
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